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Abstract: IoT Android application is the most common implementation system in the mobile ecosys-
tem. As assaults have increased over time, malware attacks will likely happen on 5G mobile IoT
Android applications. The huge threat posed by malware to communication systems security has
made it one of the main focuses of information security research. Therefore, this paper proposes a
new graph neural network model based on a network traffic graph for Android malware detection
(NT-GNN). While some current malware detection systems use network traffic data for detection, they
ignore the complex structural relationships of network traffic, focusing exclusively on network traffic
between pairs of endpoints. Additionally, our suggested network traffic graph neural network model
(NT-GNN) considers the graph node and edge aspects, capturing the connection between various
traffic flows and individual traffic attributes. We first extract the network traffic graph and then detect
it using a novel graph neural network architecture. Finally, we experimented with the proposed
NT-GNN model on the well-known Android malware CICAndMal2017 and AAGM datasets and
achieved 97% accuracy. The results reflect the sophisticated nature of our methodology. Furthermore,
we want to provide a new method for malicious code detection.

Keywords: internet of things; deep earning; network traffic; 5G and beyond networks; network
traffic graph; graph neural network; malware detection

1. Introduction

With the increasing expansion of the Android system, it has become the most popular
mobile-operating platform globally. Unfortunately, due to its reputation, it becomes linked
to and thus is a potential candidate for, assaults [1]. Adversaries have launched millions
of malicious applications. Victims have been exposing their personal information or
performing nefarious activities, such as spying on what users do, spreading malicious
attacks, or putting up annoying ad campaigns. As a result, reliable virus identification is
critical in ensuring such systems’ security. Numerous researchers have suggested using
a number of machine learning-based malware analysis approaches to lessen the severity
of the situation [2–5]. Although great efforts have been made to detect android malware
using deep learning approaches [6–8], only a few attempts have been made to classify and
describe it using static characteristics [9–13]. Detecting android malware on mobile devices
is a crucial objective for the cyber community to eliminate hazardous malware samples [14].
Existing studies have investigated machine learning (ML) in Android malware detection
to alleviate the strain of human analysis with varying degrees of effectiveness [15–17].
However, machine learning is built as black boxes and cannot supply relevant data for a
further research projects.

One of the newest and quickest subfields of machine learning is Graph Neural Network
(GNN) [18]. Their capacity to recognize morphological topologies in graph-based data
can be used in various real-world scenarios, such as social networking sites, biology,
telecommunications, etc. A series of program information and the transfer of their data
clipping make up the network traffic generated by Android malware, which may be
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extracted from the malware pcap packages and visualized as a graph. Based on learning
graph representations, Android malware may be identified by the utilization of suitable
graph topologies.

In addition to not considering the relationship between network traffic, deep learning
methods require extracting many features, which is a complicated and time-consuming
process. Consequently, this research accomplishes Android malware detection and classifi-
cation by employing graph neural networks based solely on network traffic characteristics,
with no other hand-crafted characteristics.

This paper suggests a graph neural network model based on network traffic character-
istics. It can identify malware on Android. In a nutshell, we first extract information about
network traffic from pcap packets and express it as vectors. After training a classifier to
differentiate between good and bad applications, we feed the graph-embedded vectors to
identify Android malware families. We assess our method on the CICAndMal2017 and
AAGM datasets and demonstrate that it surpasses the majority of current frameworks
as we gain 97.4% and 97.3% accuracy in malware detection. We evaluate our method on
different datasets and show that it outperforms most existing frameworks.

In conclusion, we contribute the following key findings:

(1) A GNN model is used to construct an Android malware detection system to extract
the topological data in network traffic. The method’s utilization of network traffic
characteristics discovered by dynamic analysis, which enables a more thorough
examination of its structure, is one of its main advantages.

(2) The thorough assessment of the suggested framework using actual datasets shows its
superiority compared to state-of-the-art techniques.

The rest of the paper is organized as follows. Section 2 presents related works of
Android malware detection. In Section 3, we present the methods used in this paper which
consist of network traffic graph extractions, graph neural networks with network traffic
graphs. Section 4 describes the experiment and results which consist of the experimen-
tal setup, datasets, and evaluation metrics. Lastly, Section 5 summarizes our research,
highlighting the limitation of the study and future research work.

2. Related Work

The primary source of numerous internet security issues is the unprecedented threat
posed by Android malware. Few attempts are made to categorize and define android
malware using deep learning, despite the impressive efforts in its detection and classifi-
cation using machine learning techniques. The cyber community must identify android
smartphone malware to eliminate dangerous malware samples.

2.1. Android Malware Detection Based on Deep Learning

Rahali et al. [19] suggested an image-based deep neural network technique (DI-Droid)
to identify and describe Android malware samples in 2020 to classify and characterize
Android malware samples. The accuracy of the CNN modules that make up the DIDroid
framework, which employs system characteristics such as permissions and intent to act,
is 93.6%, which is far from sufficient for malware detection accuracy. For this purpose,
a deep learning system called DL-Droid was created by Alzaylaee et al. [20] to identify
malicious Android applications through dynamic analysis and stateful input production.
Studies have revealed that this approach has a 97.8% detection success rate when employing
dynamic characteristics. The model itself is excessively complicated and overloaded with
parameters for applications that merely need to perform detection duties since this system
compares stateful input generation techniques with stateless ways for code coverage in
addition to applying malware detection. Therefore, Lotfollahi et al. [21] used stacked
autoencoders and 1D-CNN for traffic features to process traffic characteristics and identify
Android malware. This system incorporates stacked autoencoders and convolutional
neural networks and is scalable enough to tackle both malware detection and classification
tasks. However, this framework’s detection accuracy is 0.94, and there is still an opportunity
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for development. Feng et al. [22] introduced a deep learning model with a novel cascaded
two-layer classification structure (CACNN) for Android malware identification, which
is also based on self-encoders and convolutional neural networks. With a detection rate
of 95.22%, this model combines fully linked layers and static characteristics to identify
malware. Although the detection rate is greater than [21], it may be improved. Guo [23]
et al. proposed a convolutional neural network-based application traffic classification
algorithm, improved in terms of network structure, hyperparameter space, and parameter
optimization, tested on the datasets CICAndMal2017 [24] with a malware traffic detection
rate of 95.58%. From the above, it is clear that deep learning models using network
traffic features for detection generally perform better than static features. In 2022, Gohari
et al. [25] achieved a 99.79% detection rate by using 1D CNN to glean information about
network traffic and LSTM to detect the sequential relationship of features and finally detect
Android malware. However, the preprocessing part of the deep learning framework is
time-consuming and requires high device performance.

All of the above studies on deep learning methods using malware-related features
have one thing in common: they ignore the topology of samples and focus only on which
neural network to use to process it.

2.2. Android Malware Detection Based on Graph Representation Learning

Back in 2019, Abuthawabeh et al. [26] recommended a supervised model for identify-
ing malware using conversation-level traffic features. This model used ensemble learning
techniques to study the traffic subgraph structural relationships and, finally, malware de-
tection, which had a detection efficiency of 87.75% but did not reach the industry-required
efficiency. In 2020, John et al. [27] recognized the structural relations between system calls.
For malware detection, they deployed a graph convolutional network model, which was
the initial deployment of GCN for Android dynamic malware detection. This study suc-
cessfully represented malware in four dimensions and achieved 92.3% detection efficiency
in the datasets. However, system call graph processing is relatively time-consuming, and
this model needs to be improved. In 2021, Han et al. [28] developed a prototype system
called GDroid based on previous ideas. GDroid organizes Android applications and APIs
into a vast heterogeneous graph, feeds the graph into a GCN model, iteratively generates
node embeddings, and finally completes the malware detection task. In addition, this is
the first research to investigate the use of graph neural networks in categorising malware.
GDroid is capable of detecting 99.99% of Android malware. However, the heterogeneous
graph mapping process is time-consuming and cannot meet many detection needs.

Hei [29] et al. propose HAWK, a novel malware detection framework for evolving
Android apps. They created an incremental learning model to handle dynamically be-
having applications without reconstructing the entire HIN and subsequent embedding
models, greatly saving runtime, with a detection time of only 3.5 ms and detection efficiency
of up to 98%. However, graph convolutional models can also be more advanced to prevent
evolution when the model decays. Lo [30] et al. propose a revolutionary Android malware
detection method (GraphSAGE-JK) based on graph neural networks (GNNs) and jump
knowledge (JK). It forms an Android function call graph (FCG) by recording significant
call route patterns throughout programs and utilizes jump knowledge to reduce over-
smoothing. GraphSAGE-JK detection accuracy is 97.8%, but the model only uses static
features and needs to be improved. Xu [31] et al. introduced the hybrid-Falcon model,
which combines the dynamic and static features for the detection task using a graph neural
network structure. The malware detection rate of this model is 97.16%, which is different
from the previous one. In [32], their strategy is to extract and classify traffic graphs using a
cutting-edge graphical neural network model. Three variations of the underlying model
are also put forth; each one enables the detection and classification of malware in both
supervised and unsupervised situations. Finally, they can achieve 99% accuracy. NF-GNN
has the best classification performance out of all the methods. If the model comes across
network traffic data and not in the training set, it must be completely retrained.
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The literature above demonstrates the GNN technique’s potential for Android malware
detection. At the same time, the dependency on network traffic data structure can also
provide a basis for feature graphs for detection. Based on this, we suggest an Android
malware detection model based on network traffic graphs, and this framework uses an
inductive learning approach that is not limited by these issues.

3. Methods

In the paper, we suggest a new graphical neural network model Network Traffic Graph
Network Neural (NT-GNN), for malware detection that incorporates network traffic. Since
graph neural networks are now the de facto norm for problems involving machine learning
with graph data, most current models only consider node characteristics; however, our
model also concentrates on edge attributes. It is more thorough and precise at identifying
Android malware.

Figure 1 depicts the whole NT-GNN workflow. Given a collection of applications with
and without labels, the following actions are taken: (1) Collecting the apps’ network traffic
data. (2) Extracting network traffic creates a heterogeneous graph from the hosts and traffic,
with the hosts’ edges determined by the traffic. (3) Updating the hidden state of each node
and combining adjacency data with node attributes to construct the GNN model with the
network traffic graph. (4) Determining untagged programs are malicious or benign based
on their ultimate concealed state.
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Figure 1. The overall architecture of the proposed model.

3.1. Extraction of Network Traffic Graph

To collect the network traffic created by the execution of the malicious program, we
install and execute the Apk application in a real environment and capture the network
traffic it creates over time. With programs such as CICFlowMeter-V3 [33], a set of network
flows characterized by feature vectors can be retrieved from pcap files. Each flow F has
a feature vector f ∈ Rm attached to it that describes the network traffic between two
endpoints over time. After cleaning the data by removing null and zero values, we choose
the entire data set to input into the model. From the set of flows that are produced, we let
V = {V1, . . . , Vn} denotes the set of IP endpoints. We disregard port information and take
IP endpoints into account for the main reason; aside from standard ports, port selection is
frequently arbitrary, leading to arbitrary and potentially misleading graph structures.

Each pcap traffic packet comprises numerous pieces of traffic F from which the traffic
graph can be extracted when the edges represent the methods of communication between
these endpoints, and the nodes of the traffic graph represent the network endpoints.
Based on our prior research of the expressiveness necessary to accurately capture the traffic
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patterns of an attack, we construct the expression technique employing each traffic as a node
and IP addresses as endpoints of the network traffic graph. This method uses IP addresses
as host IDs for two reasons: (1) IP addresses can distinguish between the upstream and
downstream properties of flows and may graphically depict the flow relationships between
various flows. (2) IP addresses are not randomly selected and contain sufficient data to
create a suitable graph structure based on the flows. Figure 2 shows a model graph made
from actual data. In more detail, we build a network traffic graph G = (V, E) from a set
of flows F, where the nodes represent the endpoints engaged in any one of the flows in F
and a directed edge is added for all pairs (si, di) for which a flow Fi exists with source and
destination IP si and di, respectively. The feature vector of all flows is combined into the
feature vector allocated to this edge fi ∈ Rm. The mean and standard deviation are used to
aggregate the data along this edge, and the 2d-dim feature vector is used to connect the
aggregated values for each edge.
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Figure 2. Network traffic graph extraction process.

The resulting graph depicts the flow of network traffic between the monitored net-
work’s hosts over a specified time period, as well as a clear representation of its structural
properties. This graphic shows the monitored network’s structural elements and traffic
flow between the hosts over a predetermined time period. It is possible to discern the
upstream and downstream properties of the flows, offering a more thorough representation
of the linkages in the graphs for individual flows than if the traffic data were treated
independently. Consequently, we anticipate that models learning from these graphs will
perform considerably better than models identifying individual flows at detection tasks.
Our experimental results validate this point.

It should be noted that the IP addresses and traffic in this graph representation are
heterogeneous, and the usual GNN model does not support this graph drive well. We
redesigned a graph neural network model structure for processing and learning the network
traffic graphs retrieved in this section to achieve this goal.

3.2. NT-GNN Model

This section presents the NT-GNN model, a non-standard graph neural network
method that takes the network traffic graph and the presence or absence of Android
malware as input. NT-GNN model can classify fresh graphs with binary class labels after
training in a supervised anomaly detection environment and learning pertinent concepts
from the training data (normal vs. abnormal). The traffic graph network model is adapted
from the fundamental framework of Message–passing Neural Network (MPNN) [34],
which covers most contemporary GNN models.

The entire computation process is carried out along the graph’s structure by the graph
neural network, which effectively preserves the graph’s structural information before
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learning it. Gilmer et al. [34] introduced the universal graph processing architecture known
as MPNN, which comprises two primary phases: message–passing and reading. The
messaging–passing phase creates information based on the node’s unique properties and
transmits it according to the network’s structure. Aggregating neighbor information and
updating state information are the next two tasks in this phase. The formula for updating
the node’s information and concealed state is as follows.

mv,i = m
(
ht

v, ht
i , ev,i

)
(1)

where every node in a graph G = (V, E) that MPNN operates on has an initial set of
features Xv that it uses to encode the first hidden state h0

v (which is shown as a vector with
n elements). Each message–passing iteration is denoted by t, and each node v gets one
message mv,i, i from each of its neighbors i = N(v). The edge characteristics of nodes v and i
are represented by ev,i, while ht

i is node i’s feature vector at iteration t. After the information
has been generated, the node must be modified. Here is the formula for updating nodes.

Mt+1
v = w({{mv,i|i ∈ N(v)} ) (2)

ht+1
v = U

(
ht

v, Mt+1
v

)
(3)

where w(·) is an aggregate function that produces a predetermined output regardless of
the number of messages received (i.e., the number of nodes connected). U(·) is the node
update function, and it uses the information from Mt+1

v and the previous node state ht
v as

input to produce the new node state ht+1
v .

The GNN performs a readout phase based on the final hidden states attained after T
message–passing iterations. In this situation, the output of the GNN model is generated by
passing a subset of hidden states through a programmable readout function, which relies
on the particular GNN model. Therefore, the read function’s primary goal is to include
the hidden-state embeddings of the final nodes into the model’s output labels. It has the
following formula.

ŷ = R
({

hT
v

∣∣∣v ∈ G
})

(4)

where ŷ is the final output vector, and R(·) is the read function, which has two requirements:
(1) to be derivable. (2) to satisfy permutation invariance (the input order of the nodes does
not change the final result, which is also to ensure that MPNN has invariance to the
graph isomorphism).

The input to our model is a multiple-directed graph G = (V, E), whose nodes can be
represented by a host or a flow. Assuming that the initial attributes are Xj = [x0, . . . , xn],
the prospective state characteristics of the nodes in the graph often rely on the monitoring
data available in the network and require features of a varied kind for initialization. Our
model’s representation learning component computes the hidden state features of the
graph’s edges and nodes and then generates a hidden state feature vector for each node. ht

j
is the hidden state feature vector of node j at iteration t, and Xj is the initial feature of the
node’s hidden state. In this scenario, the initial hidden state of flow j is formed as follows:

h0
j = [x0, . . . , xn, 0, 0, 0 . . . , 0] (5)

where the length of the hidden state vector is frequently more than the number of items in
the initial feature vector. It should be emphasized that while the possible feature vectors
above intuitively explain how the associated endpoints are related to other endpoints in the
network, our model is more focused on the network traffic structure, allowing for end-to-
end training and improved experimentation. Figure 3 depicts the whole NT-GNN process.
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Based on the picture above, we apply the following iterative operations in each
messaging t ∈ [T]:

wt
j =

1
|N(j)|∑i∈N(j) αtype(ht

j ||ht
i) (6)

In the above equation, αtype denotes a learnable information function applied on the
connection of the hidden states of two linked nodes of the model, i.e., an input graph
edge of the NT-GNN model. According to the explanation in the network traffic graph’s
extraction section, αtype automatically comprises two distinct learnable functions: αs for
edges ( s→ f ), and αd for edges ( f → d ). The purpose of the entire formula is to combine
the messages calculated on each node using an aggregation function. Since element
averaging improves data normalization across numerous messaging rounds, we select it as
the message application function.

The node hidden status must be updated after the node information aggregation has
been completed. The updated formula is shown here.

ht+1
j = βtype(ht

j ||wt
j) (7)

where βtype is the update function applied to the current concealed states of aggregated
nodes and messages. As with the message’s function, δtype consists of two distinct learnable
functions (βe and β f ) that are used to change the hidden states of nodes and flows, respectively.

Consequently, the αs, αd, βe, and β f functions are all learnable functions that neural
networks may approximate during training. αs and αd are implemented as two-layer fully
connected neural networks in our model, whereas βe and β f are represented as gated
recurrent units (GRUs [35]). To activate all of the layers between the various NNs stated
above, we utilize the ReLU activation function. We define the function as follows:

ReLU(x) = max(0, x) (8)

After aggregating node information and updating the hidden state, the final step is to
read the function definition.

yj = R
(

hT
j

)
(9)
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The function R(·) accepts the final concealed state of each flow as its argument and
returns the anticipated category for that flow (either malicious or benign flows). This
component is constructed with a three-layer fully connected neural networks, and one hot
encoding is used to produce the potential output volume classes. We employ the softmax
activation function for the R(·) function in the last layer instead of the ReLU activation
function previously discussed. Here is the softmax function formula.

so f tmax(x)j =
exp
(
xj
)

∑k exp(xk)
(10)

To prevent gradient dispersion, which lowers the learning rate during gradient descent
computations, the NT-GNN model in the article utilizes a cross-entropy loss function. It
has the following formula.

Loss = −[ylogŷ + (1− y)log(1− ŷ)] (11)

Here, y is the true label value (Positive class values are 1, whereas negative class values
are 0.) and ŷ is the predicted rate value (ŷ ∈ (0, 1)). It characterizes the distinction between
the actual sample label and the predicted probability.

4. Experiment and Results

In this part, we describe the datasets and the experimental setup in detail. Then, the
evaluation metrics are introduced, and finally, we compare the detection results of the
NT-GNN model using network traffic graphs and the detection results of deep learning
models with other feature extraction methods.

4.1. Experimental Setup

We used a Windows 10-based operating system with Intel(R) i7-11700 CPU with 32 GB
of RAM, GeForce RTXTM 3090 Ti GPU to deploy NT-GNN. GPU is used to speed up the
neural network model’s training process because the model contains a lot of data. We
use several packages for Python to implement the proposed method: CICFlowMeter-V3,
NetworkX, TensorFlow, and Matplotlib. On top of this equipment setup, the NT-GNN
model takes 36 h to run the entire data. The same data imported into the DT model takes
42 h to run, the RF model takes 38 h, and the CNN takes 37.5 h.

4.2. Datasets

We utilized two openly accessible datasets, CICAndMal2017 [24] and AAGM [36],
to evaluate our method realistically and accurately. The CICAndMal2017 dataset was
created by running malicious and benign apps on smartphones, avoiding the behavior
of more sophisticated malware samples that alter their behavior to generate erroneous
results when they recognize the emulator environment at runtime. On actual devices, the
researchers installed 5000 symptoms (426 malicious and 5065 benign samples), gathered
data for each sample in three states (overcoming the invisibility of sophisticated malware),
and documented network traffic characteristics to construct the datasets. Currently, the
full datasets comprise 2126 samples and 2,583,878 network traffic, each representing an
instance of an Android application loaded on a mobile device. During the run, network
flows for each sample are collected. A total of 84 characteristics were captured for each
network flow. Each of these samples contains three labels: (1) a binary label stating whether
the sample is dangerous or not, (2) a category label with five potential values indicating
the specific type of malware, and (3) a family label with 42 possible values identifying
the specific family of malware. The precise categories of the CICAndMal2017 datasets are
detailed in Table 1. Since this is a detection job, only binary labels are employed.
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Table 1. CICAndMal2017 datasets specific categories.

Category Family Tree

Benign Benign2015 Benign2016 Benign2017

Malware

Adware
Dowgin Ewind Feiwo Gooligan Kemoge
koodous Mobidash Selfmite Shuanet Youmi

Ransomware
Charger Jisut Koler LockerPin Simplocker
Pletor PornDroid RansomBO Svpeng WannaLocker

Scareware
FakeAV AndroidSpy AVpass AVAndroid FakeApp
Penetho VirusShield FakeJobOffer FakeTaoBao FakeAppAL

AndroidDefender

SMSMalware
BeanBot Biige FakeInst FakeMart FakeNotify

Jifake Mazarbot Zsone Plankton SMSsniffer
Nandrobox

We also carried out malware detection tasks on the AAGM dataset to more accurately
reflect the performance of the methods in this paper. The AAGM dataset also installs An-
droid apps on actual devices and records sample traffic while they are in use, avoiding the
behavior of sophisticated Android malware that would otherwise recognize the emulator
and react. There are 1900 samples total in this collection, 1500 of which are good software
and 400 malware. CICFlowMeter-V3 with 84 features was used to extract network traffic
for each sample. Each sample has three labels, similar to the previous datasets, and Table 2
lists their precise classifications.

Table 2. AAGM datasets specific categories.

Category Family Tree

Benign Benign2015 Benign2016

Malware
Adware

Airpush Dowgin Kemoge
Mobidash Shuanet

General
Malware

AVpass FakeAV FakeFlash
GGtracker Penetho

In the paper, each sample needs to be cleaned before entering the network traffic graph
extraction by removing the null and outlier values. Then, the cleaned data set is normalized
by converting the timestamp and IP address into the numerical format, and finally, each
sample enters the network traffic graph extraction session. There are 4026 samples and
3,445,000 flows, and the data size is about 40 GB.

We adhere to a rigid evaluation procedure to provide a fair and unbiased comparison.
First, we divide the datasets into training, test, and validation sets, and evaluate our model
on them. Then the model is trained on the training data set, hyperparameters are selected
based on the performance of grid search for the validation set, and the outcomes are
given on the test set utilizing the best hyperparameters. Finally, our experiments show the
average results of the 10-fold cross-validation.

4.3. Evaluation Metrics

The NT-GNN model is an ML model in which malware detection is a classification
issue. This research uses the following assessment measures to analyze the ML model’s
performance. We determined the values for True Negatives (TN), True Positives (TP),
False Negatives (FN), and False Positives (FP). True Negatives (TN) indicate the right
classification of benign applications as benign. True Positives (TP) are the number of
malware programs that have been accurately recognized as harmful. False Negatives
(FN) are the number of malware samples that have been incorrectly categorized as benign.
False Positives (FP) represent the number of benign apps that were wrongly identified as
malicious software.
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Accuracy is the proportion of samples properly categorized by the model relative to
the overall sample count of a given test data set. This is how the formula is displayed:

Accuracy =
TP + TN

TP + TN + FN + FP
(12)

Precision is the percentage of samples with positive prediction results that are right.
The equation reads as follows:

Precision =
TP

TP + FP
(13)

Recall that relates to the fraction of projected positive samples among the total positive
samples. The formula for calculating is:

Recall =
TP

TP + TN
(14)

F1-Score is a mix of accuracy and memory. When one variable rises, the other must
decrease proportionally. To harmonize the 2 metrics, F1-Score is made available:

F−measure =
2× precision× recall

precision + recall
(15)

The receiver-operating characteristic (ROC) curve is sometimes referred to as the curve
of receptivity. The curve’s vertices represent the reaction to the identical signal stimulus,
but the results are derived using various evaluative standards. They create the curve by
fusing the points using the rate of erroneous positives (FPR) as the X coordinate and the
true positive rate (TPR) as the Y coordinate.

FPR = FP/FP + TN (16)

TPR = TP/TP + FN (17)

The precision-recall (PR) curve is the line generated by joining Recall as the X coordi-
nate and Precision as the Y coordinate are two points. It serves to assess the classification
performance of ML algorithms for given datasets. It correlates ROC curves spatially when
the recall is greater than 0, and their confusion matrices are the same.

The area under the curve (AUC) is a crucial gauge of how well a classifier performs
and is regarded as the region beneath the ROC curve. When the value is closer to 1, the
detection method’s authenticity is greater; when it reaches 0.5, its veracity is at its smallest
and it is useless. The calculation formula is given below.

AUC =
∑iεpositiveClass ranki − M(1+M)

2

M× N
(18)

The Kappa coefficient is a statistic for assessing the accuracy of the categorization as
well as its consistency. This coefficient may be used to determine if the classification results
obtained and the model predictions for the classification issue are consistent. The confusion
matrix, which accepts values between −1 and 1 and is typically larger than 0, is used to
determine the kappa coefficient. The formula for calculating is

kappa =
p0 − pe

1− pe
(19)

where pe stands for the chance of consistency errors and p0 stands for the overall classifica-
tion accuracy.
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4.4. Experimental Results

This section focuses on the model’s performance in this paper and compares it to the
DecisionTree (DT), Random Forest (RF), Convolutional Neural Network (CNN) models.
DT is a widely used classifier with a simple structure and fast efficiency. RF is a type of
integrated learning in which numerous poor classifiers are combined to get good results.
CNN is a typical deep neural network model, which can be tuned by parameters to train
a huge amount of data and get good performance. The better the model performs, the
higher the accuracy, precision, recall, and F1 score values. Table 3 shows each ML model’s
two-classifier performance on the CICAndMal2017 test datasets. The findings show that
the proposed model performs greater overall than the ML and CNN models that are more
often used. The four assessment indicators showed that the NT-GNN model performed the
best. For example, while traditional ML techniques and CNN can achieve accuracy and
precision values of 0.90 and higher, the NT-GNN described in this research can achieve
accuracy and precision values of 0.97 and 0.98. Table 4 displays the performance of two
classifiers using the NT-GNN, DT, RF, and CNN models on the test datasets of AAGM.
It is clear from this table that the NT-GNN model had a recall and accuracy of 0.96 and
0.97, respectively.

Table 3. Performances of five models in CICAndMal2017.

Model Accuracy Precision Recall F1-Score

DT 0.90 0.91 0.90 0.90
RF 0.92 0.91 0.91 0.91

CNN 0.94 0.93 0.94 0.93
NT-GNN 0.97 0.98 0.97 0.97

Table 4. Performances of five models in AAGM.

Model Accuracy Precision Recall F1-Score

DT 0.85 0.86 0.86 0.85
RF 0.88 0.88 0.88 0.88

CNN 0.91 0.92 0.92 0.92
NT-GNN 0.97 0.97 0.96 0.97

In contrast, the recall value (0.86) and accuracy (0.85) of DT; and the accuracy, precision,
recall, and F1-score values (0.88) of RF were compared. In summary, the NT-GNN model
outperforms the other three models on the CICAndMal2017 dataset as well as the other
three models on the AAGM dataset. Because of their power to digest raw data formats and
capacity to learn characteristics, graph neural networks are increasingly being employed
for malware detection.

The performance of the DT, RF, CNN, and NT-GNN models is more clearly reflected
in their result distributions, shown in Figure 4.

To better demonstrate the model’s advantages in this paper, we assess the effectiveness
of the NT-GNN model compared to other cutting-edge approaches. It is important to note
that these articles use either the CICAndMal2017 datasets or the AAGM datasets. The
NT-GNN model classified malware binary files with the best accuracy (0.97) and precision
(0.98), as shown in Table 5. This graph neural network model with network traffic graph
displays superior performance than CNN or other deep learning techniques. NT-GNN
achieves an accuracy of 0.97; other research [23,25,31,37] obtained precisions of 0.94, 0.95,
0.96, and 0.96, respectively. As seen from Table 6, the precision of the NT-GNN model
for malware detection in the AAGM datasets reached 0.97, while other studies [31,36,37]
achieved 0.96, 0.57, and 0.94, respectively. It can be seen that NT-GNN is very effective on
the AAGM datasets.
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Table 5. Performance of the proposed method in CICAndMal2017.

Prediction Method Model Accuracy Precision Recall F1-Score

Guo [23] CNN 0.94 0.91 0.95 -
Gohari [25] CNN-LSTM 0.95 0.97 0.93 0.95

Xu [31] Hybrid-Falcon 0.96 0.96 0.96 0.96
Zhu [37] MSerNetDroid 0.96 0.98 0.97 0.96

Our Model NT-GNN 0.97 0.98 0.97 0.97

Table 6. Performance of the proposed method in AAGM.

Prediction Method Model Accuracy Precision Recall F1-Score

Lashkari [36] AE 0.57 0.41 0.66 0.51
Xu [31] Hybrid-Falcon 0.96 0.95 0.97 0.96

Zhu [37] MSerNetDroid 0.94 0.94 0.94 0.94
Our Model NT-GNN 0.97 0.97 0.96 0.97

To more visually demonstrate the efficiency of the NT-GNN model in malware classi-
fication, Figures 5 and 6 show the accuracy and loss curves of NT-GNN on the training,
testing, and validation datasets. In binary classification (2 classifiers), NT-GNN achieves an
impressive accuracy of 97.44%, 97.36%, and 97.38% in the training, testing, and validation
samples of CICAndMal2017, respectively (Figure 5a); the loss of binary classification is
1.230789423~0.200601578 in the training sample, 0.934191~0.208033 in the testing sample
and the validation sample is 1.052714944~0.202082589 (Figure 5b).

The above figures show the current model’s performance on the public datasets of
CICAndMal2017. To better verify the performance of the model in this research, we will
show the accuracy and loss curves on the AAGM datasets. In the detector, NT-GNN
achieves 97.18%, 97.13%, and 97.15% accuracy in the training, testing, and validation
samples, respectively (Figure 6a); its loss is 1.089524388~0.216055843 in the training sam-
ple, 1.059389~0.2207491 in the testing sample, and 0. 915076~ 0.219921 in the validation
sample (Figure 6b).
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Figures 7 and 8 display the ROC and PR curves to illustrate the benefits of NT-GNN.
The ROC curves of the four models are displayed in Figure 7. Where Figure 7a depicts
the ROC curves of the four models on the CICAndMal2017 datasets, and Figure 7b shows
the ROCcurves of the four methods on the AAGM datasets. AUC is the area underneath
the ROC curve. The classification is more effective the bigger the AUC. The AUC value of
NT-GNN in Figure 7a is 0.97, which is much higher than DT, RF, and CNN. In Figure 7b, the
AUC value of DT is 0.85, while the AUC score of NT-GNN is 0.97. Consequently, NT-GNN
will be a valuable classification device for malware, or at the very least, a supplement to
existing approaches. Figure 8 illustrates the link between accuracy and recall through the
PR curves of the four ML models on the CICAndMal2017 and AAGM datasets. Precision
and recall curve plots were utilized to evaluate categorization performance. When there is
little difference between positive and negative samples, the trends of the ROC curve and the
PR curve are similar; nevertheless, when several samples are negative, both curves diverge
significantly. The ROC impact still appears favorable, but the PR reflects the overall effect.
Figures 7 and 8 demonstrate that the NT-GNN model provides the optimum performance.
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Figure 7. ROC curves for the four models to detect malicious software. (a) ROC curves of the four
models on CICAndMal2017. (b) ROC curves of the four models on AAGM.
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Figure 8. PR curves for the four models to detect malware. (a) PR curves of the four models on
CICAndMal2017. (b) PR curves of the four models on AAGM.

The TP and FN rates of malware categorization form the confusion matrix value. The
anticipated categorization by the NN is shown along the axis horizontal of the matrix of
perplexity. The number on the diagonal line denotes the number of accurate classifications
made by the neural network, while the vertical coordinate denotes the actual detection.
The number that is shown outside of the diagonal indicates some discrepancies that exist
between the projected and observed classifications. This number also represents the number
of inaccurate classifications produced by the neural network. The results of the confusion
matrix analysis performed for the malware detector (NT-GNN) as well as the DT, RF, and
CNN models on the CICAndMal2017 and AAGM datasets are redisplayed in Figure 9. The
findings of the confusion matrix indicate that the NT-GNN model does a good job on the
datasets. According to the confusion matrix, we also computed the coefficient of Kappa to
assess the method’s influence on binary classification, which will help better illustrate the
model outcomes. The Kappa coefficient value for malware detection is 0.97 on both the
CICAndMal2017 datasets and the AAGM datasets.
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Figure 9. Confusion matrix performance. (a–d) are the confusion matrices of DT, RF, CNN, and
NT-GNN models on CICAndMal2017. (e–h) are the confusion matrices of DT, RF, CNN, and NT-GNN
models on AAGM.

5. Discussion and Conclusions

This paper suggests a network traffic graph-based method (NT-GNN) for detecting
Android malware. The detection performance of the present model was evaluated and
contrasted with other models using the CICAndMal2017 and AAGM datasets. Additionally,
we analyze our graph neural network model using a ten-rule cross-validation method to
reflect the model performance in this research accurately. Ten-fold in cross-validation,
the dataset is split into 10 equal parts, with each part being used alternately as training
data and test data for experiments. The results of each experiment are averaged to get the
proper rate for the datasets. The goal of cross-validation is to improve the accuracy and
reliability of the tested models. Cross-validation is used to check the predicted performance
of models, particularly trained models on new data, to develop trustworthy and stable
models. By using cross-validation, overfitting can be minimized to some extent.

Compared to other DL approaches, NT-GNN has a detection accuracy, precision, recall,
and F1 score of 0.97, 0.98, 0.97, and 0.97 for most malware, as shown in Tables 3–6. In
this study, the CICAndMal2017 and AAGM datasets were utilized to verify the detection
performance of the NT-GNN model, and positive experimental findings were achieved.

The graph representation module of the traffic network graph describes the attack
patterns of network traffic data more precisely, accurately captures the structural features of
malware network traffic, and illustrates the variety and specificity of the malware detection
challenge. Regularization is also used to accelerate the convergence of the training of
the deep model, which occurs in around 200 epochs. In conclusion, the NT-GNN model
suggested in this article successfully detects Android malware.

Following this, we shall perform experiments on the following lines of inquiry. One
of our goals for the future is to use the NT-GNN model to classify Android malware and
determine their malware classes and families. Another direction is to extract the dataset’s
static and dynamic features, use different graph representation models for malware dataset
detection, and compare them with the proposed NT-GNN model to prove its advancement.
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