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Abstract: Over the course of the last decade, the unmanned aerial vehicle (UAV) research community
has received a significant amount of attention. Emergency response operations, such as those that
follow a natural disaster, are one of the civil applications that could benefit from the use of UAVs in
disaster and crisis management. In the event of a catastrophic event, it would be extremely beneficial
for both victims and first responders to have access to a UAV network that is capable of deploying
independently and offering communication services. However, when working with complicated
situations, one of the most difficult things is coming up with exploratory paths for the networks
involved. A crisis and disaster management system using a swarm optimization algorithm (SOA)
is proposed to assist in disaster and crisis management. In this system, the UAV search and rescue
team follows the strategy called the delay tolerant network, which has the ability to explore. The
proposed approach is able to find the global maximum in the search space without ever settling for
a suboptimal solution. This work has two primary objectives: the first is to investigate a potential
disaster zone, and the second is to direct the UAV to a number of victim groups that were found
during the investigation phase. For the purpose of performing a characterization, performance
metrics such as delay, throughput, performance rate, and path loss have been analyzed. The results
show the superiority of the performance over the existing work.

Keywords: Internet of Things; edge computing; optimization; disaster management; swarm optimization
algorithm; unmanned aerial vehicles

1. Introduction

In recent times, digital technology and the Internet of Things (IoT) have spread over
the online platform, producing large data sources to use with multiple technologies, where
thousands of moving and IoT systems are linked to the Internet [1]. A subgroup of those
applications that involve the different programming of IoT operating systems is to carry
out a task differently. The IoT is a key framework that has launched an effective and
convenient entrance to the marketing of a wide variety of issues [2]. IoT devices can
recognize, process, and interact [3]. The IoT intends to provide ideal interconnection for
the tracking, control, and communication of dependable access privileges [4]. Unmanned
aerial vehicles (UAVs) could be used to expand the exposure and enhance the surface IoT
network access. UAVs could be used as an access point for floor IoT connectivity [5]. UAVs
can offer interconnection in regions where the technology is affected or the communications
infrastructure does not exist compared to standard cellular networks [6]. Thus, in a location
with few or no facilities, UAVs can suggest an alternative for collecting floor IoT data [7].
The whole implementation of UAVs and surface IoT can increase the capacity to estimate,
view effectively, and react to wildfires [8]. It would often greatly decrease disaster response
time, saving people’s lives in the surrounding areas [9]. UAVs are accessible or dependable
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in many telecommunications facilities in disaster and crisis management [10]. Disaster
situations typically affect the telecommunications infrastructure so they are unable to offer
additional standard telecommunications services [11]. Contact among rescue crews is
essential as an effective rescue attempt is often recognized as a first response [12]. First
responders face one of the main obstacles of setting up a crisis zone ad hoc network [13].
The UAV has been created as an innovation that promises crisis assistance with aid delivery
and the compilation of data, irregular interaction, and search and recovery assistance [14].

First response services in human-made or natural disaster situations were successfully
utilized in the past. Drones can play a significant role in the IoT in the current environment
and respond as individuals that can encourage, enhance, and optimize current relief
processes and activities [15]. More widely, independent and largely autonomous drones,
including those used in manufacturing inspections to promote military operations, would
then certainly strive to support people in other duties [16]. A drone system could be used
to collect large amounts of data, which could then be posted for high digital transmission
to edge devices where machine learning techniques are accessible for use [17].

In the constraints provided by motivated systems, including a natural tragedy sit-
uation, there can be an obstacle to maintain the proper operating of IoT machines even
though there are slowdowns and interference-resistant procedures in disaster and crisis
management [18]. UAVs provide interconnection, while drones’ dynamic properties are
designed to achieve a high quality of services with an intensive error [19]. There should be
a continuous and responsive option offered for centralized and dispersed methods, which
enable the edge system of an IoT device, and drones and machines in particular. UAVs can
migrate in a short period to certain places without any barrier. One of UAV mesh nodes’
principal capacities is their massive flexibility, enabling the network architecture to adapt
to scenarios to improve the intended goals. Well-established agencies such as the security,
border agent, and marine officers’ forces and healthcare services are responsible for public
security, aiming to meet citizens’ needs. We are of the opinion that the work carried out
by emergency response teams would unquestionably benefit from the existence of a UAV
network with the capabilities outlined above. This is because the UAVs would be able to
investigate the situation even before the first responders arrive at the scene of the disaster.
The main contributions of the work are as follows:

• To reduce the risk levels in a disaster scenario and to forecast a disaster risk status.
The UAV network manager monitoring mechanism uses the SOA.

• To optimize the path of UAVs that contributes to lower energy use. In assessing the
health risk using the tree classification algorithm, disasters are used to test UAV data
derived from the critical signs of people.

• To propose an approach which is able to find the global maximum in the search space
without ever settling for a suboptimal solution.

• The experimental results obtained achieve the highest performance in terms of
delay, throughput, performance rate, and path loss when compared to other exist-
ing methods.

Therefore, the purpose of this article is to decrease the risk level in a catastrophe
scenario and predict the risk status of the victims using IoT technologies. In order to follow
the UAV network team, the proposed method uses the swarm optimization algorithm
(SOA). The key objective is to optimize the UAV route, leading to reduced energy usage. In
assessing health risk status using the tree classification technique, UAV data collected from
people’s critical indicators are altered by disasters.

The remainder of the paper is organized as follows: Section 2 discusses various
background studies related to disaster and crisis management based on UAVs. Section 3
explains the proposed model to reduce the risk levels in a disaster scenario and forecast a
disaster risk status. Section 4 presents the results that verify the performance with existing
work. Finally, a conclusion with future directions is presented in Section 5.
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2. Background and Related Work

Zhenyu Na et al. [20] developed joint trajectory and power optimization (JT-PO). A
multi-user data transfer UAV relay modeling approach is developed using JT-PO. When
the interaction is disrupted between the client and the base station (BS), the BS first trans-
mits data to the UAV. The UAV serves as an intermediary to transmit the information
to consumers. The experimental results reveal that the improved adaptive method can
enhance the data transmission value similar to the benchmarking strategies, optimizing the
UAV path.

Kosei Miyano et al. [21] introduced utility-based scheduling (UBS). A potential ap-
proach for finding and rescuing missing people who vanish during disasters, such as
natural calamities, uses small- and medium-scale UAVs. UBS introduces a functionality-
centered methodology that guarantees the knowledge is continually updated with probable
data in a certain amount of time. The computation results show that the suggested control
strategy maximizes usefulness and conducts user-centered performance measures better
than a standard scheduling technique.

Tallha Akram et al. [22] proposed base station placement (BSP). BSP has double signif-
icance: the first is to define locations with high densities for lower latency and static clients
with an effective computer vision method. It is accomplished through a cross procedure,
including acquiring an image, categorization, and group concentration prediction. Next,
a computational method for jointly optimizing drone base stations’ positioning and user
tasks is used. Several realistic network models’ performance characteristics show that the
suggested method attains an efficiency equivalent to the objective function.

Nan Zhao et al. [23] discussed UAV-assisted emergency networks (UAV-AENs).
A UAV-AEN is developed for a UAV-aided emergency grid in crises. First, UAVs’ jour-
ney and programming are jointly optimized such that wireless services maintain surface
equipment that can be provided. Then, the UAV transmitter and the multi-hop floor device-
to-device interaction are designed to strengthen the UAV connectivity protection. In an
attempt to exchange data among disastrous areas outside the multi-hop, UAV transmission
is often introduced via the optimization of UAV floating locations.

Francesco Malandrino et al. [24] introduced the UAV activities model (UAV-AM).
The UAV-AM analyzes the wireless performance of the conventional infrastructure for
communications. However, UAVs in a disaster situation are necessary because it is possible
to use small and mobile base stations quickly and easily if needed. The specialization
problem identifies the best UAV exposure that optimizes user efficiency while preserving
fairness around the disaster-affected geographic area’s various regions.

Kirtan Gopal Panda et al. [25] discussed the UAV-aided post-disaster emergency
network (UAV-APDE). The UAV-APDE aims to speed up rescue activities by leading
victims to the closest evacuation campsite through a wireless emergency UAV-assisted
system. Here, Raspberry Pi’s system architecture is installed on a UAV and is regarded as a
Wi-Fi system over the catastrophe area. The study demonstrates that the prototype’s overall
hop range is 280 m and 290 m for Wi-Fi adopting IEEE 802.11n and IEEE 802.11ac standards.

Based on a survey, an SOA-based is implemented to reduce the risk level in a disaster
situation, and the network team monitoring mechanism uses SOA that contributes to lower
energy use. In assessing their health risk status using a tree classification algorithm, UAV
data from people’s vital signs are affected by disasters.

3. Proposed SOA-Based Disaster and Crisis Management Control System

In combination with UAVs and the IoT, the effects of emergency response programs
will be dramatically enhanced. UAVs can use 5G networks to gather large-scale heteroge-
neous data from disaster-affected regions. This information can be analyzed to acquire the
first responders’ information, such as the affected region’s boundaries and blocked road
infrastructures, to predict residents’ health status in that region. Hence, in this paper, an
SOA-based algorithm is proposed to reduce the risk level of a disaster scenario and predict
the disaster risk status. UAVs’ key signs for people living in crisis zones are analyzed, and
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their health risk status is established using a decision tree classification algorithm. The
danger status allows the first responders to determine the places that require urgent assis-
tance. The results of the simulation equate the efficacy of our suggested scheduling with
the conventional data collection approach. The UAVs need to be set up in our suggested
manner before analyzing information. Precise UAV operations and a good routing path
reduce energy consumption and delay dramatically. Low latency is extremely crucial since
regulators need to make decisions in a high-speed crisis rapidly.

Figure 1 shows the disaster monitoring scenario based on UAVs. In the swarm, each
particle shares its local attractions with another particle. The global best term of the
equation is the best in the whole search area. This paper describes a different approach to
the algorithm suggested in this document due to UAVs’ contact restrictions. Accordingly,
the method in which Sj

s is established as the swarm topology for particles is used. In our
case, Sj

s is the UAV community that shares its own local best knowledge with UAVj. The
UAV group that belongs to UAVj topology produces the best UAV at time S. For this

particular category of UAVs which belong to the topology Sj
s, this best neighbor is the

global best solution. In our situation, the global best is not special; however, it is the best of
many neighbors.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 16 
 

 

heterogeneous data from disaster-affected regions. This information can be analyzed to 

acquire the first responders’ information, such as the affected region’s boundaries and 

blocked road infrastructures, to predict residents’ health status in that region. Hence, in 

this paper, an SOA-based algorithm is proposed to reduce the risk level of a disaster sce-

nario and predict the disaster risk status. UAVs’ key signs for people living in crisis zones 

are analyzed, and their health risk status is established using a decision tree classification 

algorithm. The danger status allows the first responders to determine the places that re-

quire urgent assistance. The results of the simulation equate the efficacy of our suggested 

scheduling with the conventional data collection approach. The UAVs need to be set up 

in our suggested manner before analyzing information. Precise UAV operations and a 

good routing path reduce energy consumption and delay dramatically. Low latency is 

extremely crucial since regulators need to make decisions in a high-speed crisis rapidly. 

Figure 1 shows the disaster monitoring scenario based on UAVs. In the swarm, each 

particle shares its local attractions with another particle. The global best term of the equa-

tion is the best in the whole search area. This paper describes a different approach to the 

algorithm suggested in this document due to UAVs’ contact restrictions. Accordingly, the 

method in which 𝑆𝑠
𝑗
 is established as the swarm topology for particles is used. In our case, 

𝑆𝑠
𝑗
 is the UAV community that shares its own local best knowledge with 𝑈𝐴𝑉𝑗. The UAV 

group that belongs to 𝑈𝐴𝑉𝑗 topology produces the best UAV at time 𝑆. For this particular 

category of UAVs which belong to the topology 𝑆𝑠
𝑗
, this best neighbor is the global best 

solution. In our situation, the global best is not special; however, it is the best of many 

neighbors. 

 

Figure 1. Disaster Monitoring Scenario based on UAV. 

The roles of the pieces and fundamental components of the system are underlined. 

The operator may operate the complete fleet for the training of drones under difficult net-

work settings such as missions to respond to natural disasters. In these circumstances, the 

performance of failed activities usually involves robust structures. On the other side, the 

IoT-based administration layer guarantees a resilient distributed network structure, by 

tracking and estimating failures for each network segment. 

In each experience, data shared by UAVs are the following tuple: (i) maximum value 

found by the victims and (ii) the place where the maximum value has been achieved. 

Every UAV saves data about its local best and the number of UAVs it has encountered. 

Three UAVs, j, i, and 𝐿, meet, 𝑈𝐴𝑉𝑗  will make the UAV’s local best according to the 

UAV’s meetings. 𝑈𝐴𝑉𝑗 would have a neighbor greater than the nearby best of the UAVs, 

with whom it has direct meetings, measured according to this method. According to their 

meetings with one another, 𝑈𝐴𝑉𝑗 can have another neighbor superior to 𝑈𝐴𝑉𝑗. 

A new rectilinear trajectory is arbitrarily determined as a UAV crosses a scenario 

boundary. The UAV will follow the current direction before the new frontier hits, or the 

best phases start at local or neighboring areas. The second step is the local best in the 
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The roles of the pieces and fundamental components of the system are underlined.
The operator may operate the complete fleet for the training of drones under difficult
network settings such as missions to respond to natural disasters. In these circumstances,
the performance of failed activities usually involves robust structures. On the other side,
the IoT-based administration layer guarantees a resilient distributed network structure, by
tracking and estimating failures for each network segment.

In each experience, data shared by UAVs are the following tuple: (i) maximum value
found by the victims and (ii) the place where the maximum value has been achieved.
Every UAV saves data about its local best and the number of UAVs it has encountered.
Three UAVs, j, i, and L, meet, UAVj will make the UAV’s local best according to the UAV’s
meetings. UAVj would have a neighbor greater than the nearby best of the UAVs, with
whom it has direct meetings, measured according to this method. According to their
meetings with one another, UAVj can have another neighbor superior to UAVj.

A new rectilinear trajectory is arbitrarily determined as a UAV crosses a scenario
boundary. The UAV will follow the current direction before the new frontier hits, or the
best phases start at local or neighboring areas. The second step is the local best in the region.
Each UAV is drawn to its local best during this process. The local best result in the weight
of inertia is minimized. The weight of inertia and the best local weight must be equal to
one. The third step reflects the best influence of the neighbor. Each UAV is directed to its
neighbors by their superior solution candidates. Each UAV will know its best in the field
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and the best local UAVs caught at any point in the simulation. Due to the better neighbor
effect, the weight of inertia is minimized. The added weights of the strongest results on
inertia, local and neighboring, must be 1.

As mentioned, the original SOA has several versions. The inertia weight coefficient is
included in the SOA. The candidate solution to the optimization problem [26–28] lies in
any particle location. All particles of the swarm optimization update their location given
the one-dimensional search area in Equation (1):

Y(S + 1) = Yj(S) + ϑj(S + 1) (1)

As shown in Equation (1), a one-dimensional search area has been determined. S is a
current iteration of the algorithm. Yj (s) is a j current position of the particle. ϑj(S + 1) is a
velocity vector with the j th particle at time s. The vector of the particle speed normally has
three parts defined by Equation (2).

ϑj(S + 1) = µϑj(S) + D1 ϕ1

(
Qj(S)−Yj(s)

)
+ D2 ϕ2

(
Qhj(S)−Yj(s)

)
(2)

As deliberated in Equation (2) and Figure 2, the particle velocity is calculated, where
ϑj(S) is a new velocity, D1, D2 are the power of a particle’s desirability, called a local best
and global best. ϕ1 and ϕ2 denote the random values and component of diversity in this
algorithm which have a uniform distribution within range [0, 1]. Qj(S) explores the local
best particle j and Qhj(S) is the global best at particle j.
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Figure 2. Particle Velocity.

Before the new frontier is struck, the UAV will follow the existing route or the better
phases will start locally or in the vicinity. The second phase is the best locally in the area.
The best local outcome is minimized in the weight of inertia. The inertia weight and
best local weight must be the same. The third stage shows the neighbor’s finest impact.
Each UAV shall be guided by its best solution candidates to its neighbors throughout this
procedure. Every UAV knows best about the field and the best local UAVs caught in the
simulation at every moment.

Figure 3 illustrates the disaster position analysis. The SOA algorithm sees any UAV of
the network as an algorithm member. The equation explains the motions of the jth UAV
within the network as shown in Equation (3). The velocity vectors for every UAV at time
S + 1, which is ϑj(S + 1), are described according to Equation (3), by adding three vectors:
(i) the velocity vectors for the respective UAV ϑj(S), (ii) a vector directing towards the local
best place for the jth UAV, that is defined by Qj(S), and (iii) a vector directing towards
the neighboring vector best location QMj(S). The following parameters are respectively
weighted for these three vectors: D1 representing the intensity of a particle attraction in
the direction of its best locality and D2 representing the intensity of a particle attraction on
the road to its best neighbor. The maximum speed of the UAV calculates the maximum
vector amplitude, a geometry parameter determined per simulation. A fourth variable
in Equation (3) is ϕa which is the random path to the borders of the scenario followed by
the UAV.
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The term on the left represents every particle’s inertia component. A second element is
often referred to as the cognitive element, and a third element is a social feature. The value
of this instrument is lowered over time, as defined by the inertia coefficients. The particles
present more important exploratory capabilities at the start of the simulation phase as they
take greater values to investigate these search spaces thoroughly. If time goes by and the
coefficient of efficiency has lower values, the particles begin to use their best local and global
solutions to manipulate space regions. The global best is often decided on supposing that
each particle shares the best part of the algorithm locally. The original SOA uses the best
global component if a particular particle knows the best local particles. However, as UAVs
have short-range wireless networking capabilities, UAVs cannot exchange information
with other UAVs because of their communication constraints. As discussed in the paper
above, a UAV exchanges information with other UAVs via an IoT network approach. These
changes define the particle vector of the proposed algorithm in Equation (3):

ϑj(S + 1) = µϑj(S) + D1

(
Qj(S)−Yj(S)

)
+ D2

(
Qnj(S)−Yj(D)

)
+ ϕa (3)

As obtained in the modification of Equation (3), the particle vector is found, where
ϑj(S) is a new velocity, µ is a weight of the inertia component, D1 is a local best and D2 is a
global best, ϕa is a random value, and the direction of the UAV follows. Qj(S) is a local
best particle at j, Qnj(S) is a particle of the jth best neighbor.

The parameters used to characterize an algorithm include, respectively, D1 and D2.
These are referred to as inertia weight, best local weight, and the best neighbor weight.
Inertia weight µ might be requested, and the best local and neighbor, as a simplification in
some sections.

The proposed SOA provides advantages over other heuristics such as the genetic
algorithm [29]: (i) easier implementation, since small parameters are present, (ii) reduced
costs in estimation, and (iii) quicker convergence. The SOA is an excellent candidate for the
problem’s complexity and scalability.

The T search area considered is consistent with the UAV scenario. The scenario,
having two dimensions, consists of all potential locations within the scenario for UAVs. The
Cartesian coordinates in the arrangement (Y, X), in which X and Y agree in all dimensions,
reflect these locations. The bottom-left corner (X = 0, Y = 0) is taken as the source of
the coordinates without any lack of generality. The scenario’s size is determined by the
maximum values of the Y and X coordinates by the Xmax and Ymax values. The search
area is specified according to these definitions in Equation (4):

T : {Y : 0 ≤ Y ≤ Ymax}, {X : 0 ≤ X ≤ Xmax} (4)

As inferred in Equation (4), the search area is evaluated. An optimization algorithm
typically uses a fitness function to determine the accuracy. The fitness feature is described
by several ground nodes identified at C. The best way is to associate a UAV with the most
ground nodes in the SOA. This development of the SOA N is presented in (5).
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(Y, X) = C
Find

(
Y*, X*) ∈ T ⊆ S2 (5)

As calculated in Equation (5), the optimization algorithm is described. To solve
optimized issues, the SOA is the optimal solution to maximize the location-defined fit-
ness functions in the shape of X and Y coordinates when the above deployment-defined
algorithm has been pursued for a longer period (6).

Figure 4 demonstrates the UAV node operation. The job migration schema’s target
node is selected by modeling the network as a network of queues. A task can move from
the source node’s queue to the target node’s queue. With a handful of drones, this statistic
is used to explain relocation and workflow. After an estimation period of the overhead
migration delay measured according to the model outlined in the diagram, the probability
is calculated to provide productivity in the discharge process. Figure 4 demonstrates the
three agents’ task plan. Each drone receives several tasks and shifts the mission from one
place to the next. To match the overall load, the agent V2 migrates its initial S1 and S7 tasks
to drone V1 and S10 to V3.
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Figure 4. UAV Node Operation.

Figure 5 depicts the IoT-based disaster monitoring. UAV routing and the deployment
route are used for acquiring data from the network of the ground sensor. Optimum IoT
system clusters and optimal UAV deployment are defined to reduce energy use subject
to a minimal bit error rate restriction. UAV deployments in the healthcare industry from
the viewpoint of emergency response provide a wide variety of solutions, including data
transmission, transportation, and samples of blood. Consider an IoT disaster management
platform using UAVs, which consists of clusters with an IoT system, UAV M UAVs, and
network size T. As seen in Figure 5, adopting IoT architecture is based on UAVs. Ground
IoT devices are believed to be energy consuming. The monitoring center allocates UAV
tasks to collect and submit data from cluster heads to be analyzed, as seen in Figure 5. The
monitoring facility will query the L UAV for many activities. It is assumed that Sl is the
number of UAV assignments. The data gathered by UAVs are analyzed in the monitoring
center to conserve UAV resources for computationally costly data analysis. Simultaneously,
different forms of data can be gathered by UAVs, including disaster-affected area border
labeling, losses to facilities evaluation, road blocking, and disaster-affected population
health statistics.

This paper considers a disaster management IoT platform with UAVs consisting of D
clusters with M IoT units, K UAVs, and network size T. Ground IoT devices are assumed to
be clustered by UAV coverage; cluster heads are selected by residual energy. Cluster heads
will communicate information about their locations, and UAVs will share data collection
capabilities. The UAV can then be ordered by the monitoring center to collect data from
cluster heads and send them for analysis, as shown in Figure 5. This takes the data ST into
account, and the monitoring center can ask the UAV L for several tasks. It is believed that
UAV L can carry out a number of tasks. ST is supposed to be the number of tasks attributed
to UAV L. The UAV ST can gather information for task S from cluster heads to carry out
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this task in the form residual energy ρLs and area overage. This can be represented by the
following (6):

ρLs = {1 i f L UAV can gather data f or sth Task, otherwise 0} (6)

As initialized in Equation (6), residual energy is found. The UAV’s energy depends
upon its direction to secure both cluster heads and the features of radiation propagation;
coordination is the coverage of the cluster head distance. The loss of the path can be
modeled as (7):

Qk(Cl) = Qk0(C0) + 10σ log log
Cl
C0

+ Ye (7)

As found in Equation (7), Figure 6 shows the path loss that is evaluated. Qk0 is a path
loss from a reference place, Cl , C0 is the distance between UAV L and a cluster head, σ is
the exponent of path loss, and Ye is the Gaussian random exponent representing shadowed
effects [30].
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The UAV coverage with which it is possible to connect with the cluster head in the
ground IoT network can be determined as (8):

Ql =
√

Q2
l − g2

l =

√(
Ql × 10

Ql(Cl)−Qk(C0)−Ye

10ϕ

)
− g2

l (8)
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As deliberated in Equation (8), the coverage range is formulated, where gl is the UAV
L’s height above the land, and the flight time for UAV L must be as follows. Then, UAV L’s
energy consumption can be described as in Equation (9):

f UAV
l =

(
QUAV

l + QUAV
RF,l + QUAV

G,L

)
× τl (9)

As shown in Equation (9), the energy consumption of the L UAV is computed, where
UAV L’s RF module and hardware circuit power are consumed, respectively, and QUAV

RF,l
and QUAV

G,L are used.
UAV data concerning the key signs for people in a disaster will be forwarded for

analysis to the monitoring center [30]. The collected data can include various risk status ϕ
classes based on UAV-based health data, including heart rate, breathing rates, blood oxygen
saturation, etc. Each risk status class ϕ ∈ ϕ, namely: (i) HR, (ii) SpO2, and (iii) NBP, shall
carry the following vital signs. For illustration purposes, consider limited signs of vital
health conditions of individuals. The data from the IoT devices are required for statistical
analysis. The SM can take the following values: “none”, “low”, “low medium”, and “high”
for vital signs. Then, the proposed measure between each group of the cluster risk factor
�D is as in Equation (10):

�D = ∑
M

SM{Medium or High}∀M (10)

The UAV risk factor is calculated in Equation (10). The UAVs must be configured even
before the analysis of information in our proposed method. Exact UAV functions and the
optimum routing trajectory significantly decrease their energy consumption and latency.
Low latency is highly necessary because regulatory officials have to make decisions quickly
in a high-speed crisis.

The data collection center can ask for a control system and send a request packet
for the task S. The device then calculates ρLs, the functionality for collecting data using
Equation (1) for all UAVs to define each UAV’s ability. S is the task in its coverage area, and
UAV L will be scheduled for data gathering. A binary variable θl defines the scheduling of
UAV L as in Equation (11) [30]:

θl = {1 i f L UAV can collect data f or sth Task, otherwise 0} (11)

A binary variable is formulated in Equation (11). Our goal is to minimize UAV energy
use by optimizing the data gathering route. UAV coverage and radius are guaranteed. The
problem of optimization can be described as in Equation (12):

Maximize ∑l
l=1 FUAV

l
s.t.

αls = ρLsθl√
X2

l + Y2
l ≤ Q

αls = {0, 1}

(12)

The Yl , Xl Cartesian coordinates for UAV L at a particular height are G. αls determines
if UAV L may collect cluster head data as shown in Equation (11).

Figure 7 shows the proposed SOA-based disaster and crisis management control
system. The access management component, inspired by the vast majority of connected
networks, runs a network discovery protocol and a heartbeat monitoring mechanism
for monitoring live connections. Each agent can belong to several authentications and
is required in front of the contact facility. This part is responsible for managing agent
identification over multiple overlay networks and ensuring stable communication via the
transport layer safety (TLS) protocol. This component processes the replicated portion
of the database while preserving network conditions. This depends on the connection
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status, network setup, and conditions. The state cache is often used as a registry for saving
programs, such as battery use of IoT computers. It is more powerful than other text-based
notation languages to specify our object models and apply the logic of message delimitation,
serialization, and deserialization. The functions of parts and the core components of
the system are highlighted. An operator can operate the entire fleet to train drones in
challenging network conditions such as natural disaster response missions. In these cases,
resilient mission structures are often needed to perform failure activities. Through tracking
and estimating failures for each network part, on the other hand, the IoT-based management
layer ensures a robust distributed network framework. If a malfunction happens, a new
agent is allocated to tasks running or queued at the node, and the updated and expected
results are reported to the customer. Audio processing is required for disaster response;
however, edge computing applications that can benefit from this processing are not limited
to the application presented.
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In the emergency response, UAV applications in the healthcare system provide a wide
range of options including data transfer, transportation, and blood samples.

This information may be analyzed to obtain first responder information to forecast
the health of people of that region, such as the identification of the territory’s boundaries
and obstructed road infrastructure. The SOA-based disaster and crisis management control
system has been suggested in this work to lower the risk level for an emergency scenario
and to anticipate the state of a catastrophe risk. The primary data of UAVs are analyzed for
individuals living in crisis zones and the method for decision tree classification establishes
their position as a health concern. The risk rating allows the first responders to decide where
immediate assistance is needed. The findings of the simulation show the effectiveness of
our proposed programming.

The proposed system improves disaster management and reduces the disaster risk
based on average performance rate, delay throughput, and path loss.

4. Results and Discussion

Average reaction time (ART), latency, throughput, and path loss were used to assess
the performance of the proposed disaster management system. The network has been
modeled and simulated in this work using OPTNET 17.5. It features an intuitive GUI,
module import by drag-and-drop, and eye-catching effects. The simulation parameters are
presented in Table 1.
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Table 1. Simulation parameters.

Parameter Value

Simulation area 100 m × 100 m
Routing algorithm AODV
Size of packet 1024 bytes
Data transmission rate 100 mbps
Radio propagation mode Standard
Model behavior Mobile
Speed of vehicle 300 m/s
Number of nodes 100

Performance metrics: in this section, we present all the metrics which were used to
assess the performance.

Average performance rate: this can be measured as the ratio of total delay to total
time taken. The total delay includes propagation and transmission delays. Tp represents
the propagation delay while Tt represents transmission delay. T is the time consumed in
transmission while N denotes the total number of nodes. The average performance rate
can be expressed by P as shown in Equation (13).

P =
∑N

n=1 (Tp + Tt)

T
(13)

Delay: delay is the time it takes for a signal to go from the UAV to the rescue center
through the network. When evaluating the effectiveness of a communication network,
delay is a key indicator of quality. The idea is to shorten the time needed for the UAV
to reach the rescue center by establishing direct communication between the two. The
processing, queuing, and transmission delays of a network link are all included in the
end-to-end delay which is based on the processing or computing Tc, transmission delays
Tt, and propagation delay Tp. Therefore, we can find the end-to-end delay (D) for N nodes
as shown in Equation (14):

D = N
(
Tc + Tt + Tp

)
(14)

Throughput: Throughput refers to the number of successful transmissions in a commu-
nication channel per unit of time. This can be expressed as the proportion of data received
by the receiver node from the sender node within a specific time interval. The purpose of
any network is to increase throughput. The network’s average throughput evaluated based
on the proposed disaster management system can be derived as shown in Equation (15).

Throughput =
(Number of delivered packets× packet size)

Simulation Period
(15)

Path loss: an attenuation of the signal in the space. There are many variables to
consider, including range, wavelength, and output power. The amount of path loss (PLoss)
is proportional to both the distance and the wavelength. The path loss can be computed as
shown in Equation (16).

PLoss(db) = 20log
(

4π fcd
λ

)
(16)

where fc is the carrier frequency, λ is the speed of light, d is the distance between the
transmitter and receiver.

Figure 8 shows the relationship between the total number of devices with respect to
average response time measured in seconds. The total number of devices varied from
10 to 100.
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The behavior of the UAV system can vary, focusing on the meanings allocated to each
variable. The feature executed can be described as a ground-grain type, although distinct
component model parameters are required. The proposed SOA evaluates the performance
of the parameters. The performance of the proposed SOA is better than that of existing
work [30] as shown in Figure 8.

As can be seen in Figure 9, the performance of the throughput network appears to
depend on the number of devices or UAVs. It has been shown that placing UAVs inside
a coverage area of 100 m x 100 m results in a large improvement in throughput, which in
turn leads to an improvement in the performance of the network as compared to existing
work [31].
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The throughput can be increased by increasing the number of UAVs that are connected
to the network. Increasing the size of the packets that are sent across all of the nodes is one
way to obtain a higher throughput.

As shown in Figure 10, across all numbers of devices, the delay of the proposed
work [31] is affected by the number of nodes. The delay increases with the number of



Electronics 2023, 12, 1051 13 of 15

devices from 2 s to 5.8 s. However, in our work the delay is mostly fixed, from 1.5 s to 2 s,
due to the dynamic nature of proposed algorithm.
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The impact of path loss propagation on UAV and rescue center performance is another
important consideration. Due to the higher route loss and lower transmitting power of
the rescue center, interference caused by the rescue center to the UAV is negligible if
the distance between the rescue and UAV is greater than the UAV coverage. Figure 11
shows, for instance, how the route loss grows as UAVs are moved various distances. In
the proposed SOA, the path loss is from 32 dB to 59 dB at 1000 m while in the existing
method [31] the path loss is reported to be from 44 dB to 69 dB, which is higher.
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The collected responses show that disaster and crisis management in a real-time
process exceeds the given time in a disaster and crisis management event. Moreover,
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the peculiar capability of redundancy in the edge devices is the main downside of the
conventional framework beyond the incredible success of the SOA.

From a technological point of view, the existing IoT networking paradigms need to
be updated so that enhanced UAV sensing, actuation, storage, computing, and reason-
ing capabilities may be taken into consideration directly. UAV integration into the IoT
might be simplified by using the network virtualization function and software-determined
networking opportunities.

The findings indicate that the SOA-based mechanism that is proposed performs better
than the conventional architecture that is used in a crisis situation [30]. In addition, the
explanation for this astounding performance of the SOA-based emergency management
system is the utilization of dynamic inertia values that fall somewhere within the range of
[0.1, 0.7]. There is no information provided regarding the values of the algorithm’s local
or global best parameters, and there is also no characterization of the procedure executed.
Additionally, anywhere from ten to one hundred unmanned aerial vehicles (UAVs) will be
put to service.

5. Conclusions

This paper presents an SOA-based disaster and crisis management control system to
decrease the degree of risk in a disaster situation and to estimate the disaster risk status
with the IoT. The primary objective of the proposed model is to optimize the UAV route
leading to lower energy utilization. Emergency services civilian applications with greater
capacity for UAV and IoT channels. Crisis management is valuable for victims and disaster
responders to provide an independent UAV network to provide disaster data. Data of
the vital signs of people collected by a UAV are influenced by disasters. In order to carry
out a characterization, various performance measures have been examined, including
delay, throughput, performance rate, and path loss. The findings demonstrate that the
performance is superior to the work that has been carried out previously.
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