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Abstract: Global localization is one of the important issues for mobile robots to achieve indoor
navigation. Nowadays, most mobile robots rely on light detection and ranging (LiDAR) and adaptive
Monte Carlo localization (AMCL) to realize their localization and navigation. However, the reliability
and performance of global localization only using LiDAR are restricted due to the monotonous
sensing feature. This study proposes a global localization approach to improve mobile robot global
localization using LiDAR and a dual AprilTag. Firstly, the spatial coordinate system constructed
with two neighboring AprilTags is applied as the reference basis for global localization. Then, the
robot pose can be estimated by generating precise initial particle distribution for AMCL based on
the relative tag positions. Finally, in pose tracking, the count and distribution of AMCL particles,
evaluating the certainty of localization, is continuously monitored to update the real-time position
of the robot. The contributions of this study are listed as follows. (1) Compared to the localization
method only using LiDAR, the proposed method can locate the robot’s position with a few iterations
and less computer power consumption. (2) The failure localization issues due to the many similar
indoor features can be solved. (3) The error of the global localization can be limited to an acceptable
range compared to the result using a single tag.
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1. Introduction

For smart factories, the localization and navigation system of mobile robots is the
key to implementing automation logistics [1]. The system pre-configuration in the new
environment will involve a lot of labor, including creating the map for robot navigation,
setting path points, and initializing the system. With the expansion of the factory, these
operations will become more complex and costly in terms of time and labor. In addition, the
above pre-configuration is mostly regular and repetitive operations. If the pre-configuration
operations can be automated, the applicability of automation logistics can be improved.

The mobile robot localization problem can be considered as a kind of robotics co-
ordinate transformation problem. The goal is to synchronize the robot coordinates on
the cyber side with the map measured from an actual environment. In addition, using
computer vision to establish spatial coordinate relationships is a well-developed technique.
Furthermore, several studies [2–6] have applied code tags to positioning problems in many
fields, such as gait analysis for medical units, dynamic platform landing for drones, and
automatic parking assistance systems. They reported that the code tags are useful and
effective in these applications.

The automatic localization methods are broadly classified into five categories, includ-
ing distance localization, three-point localization, environmental fingerprint localization,
tag recognition localization, and map matching localization [7,8]. Each method has its pros
and cons, but almost no single category can meet all of the needs of indoor scenarios. As a
result, many new methods have developed, combining different sensors and algorithms to
approach the needs of increasingly complex scenarios.
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Robots based on light detection and ranging (LiDAR) usually use the adaptive Monte
Carlo localization algorithm (AMCL) as the localization method. AMCL uses sensor data
and known map information to infer the probability distribution of the robot’s position
on the map and then estimates the robot’s position and orientation by optimizing the
probability distribution. The AMCL optimization process starts with an initial probability
distribution, which can be generated in two ways. The first is to generate a uniform
probability distribution over the entire map by assuming that the robot can be located
anywhere, in an enumeration-like manner, for subsequent optimization. This approach can
automatically locate the robot, but the calculation takes a long time and sometimes induces
a kidnapping problem [9]. Another way is to specify the most probable initial position
directly through human observation and manual setting, which can significantly shorten
the subsequent optimization calculation time. However, with a larger factory size, manual
setup procedures’ complexity and time cost will grow significantly [10–19].

This study analyzes the main works on solving the localization issues of LiDAR-based
robots today, summarizes the localization approaches, and lists the unresolved issues in
practical applications

1. Xu et al. [14] used fingerprint localization in a WIFI environment to assist a LiDAR
robot in accomplishing global localization. However, due to the limited accuracy,
it still takes time to converge AMCL particles to achieve accurate localization. On
the other hand, localization is not reliable in factories due to high interference from
wireless signals.

2. Some studies use image feature recognition to achieve global localization [12,16,17].
First, the robot is moved around the environment to build a database with the location
data and the observed images using vision sensors. When the robot moves, it uses
image descriptors or convolutional neural networks (CNN) to solve the robot’s pose in
the environment by comparing the image similarity. The advantage of this approach
is that it does not require any additional map-related configuration. However, due to
the tedious database creation process and the high sensitivity to scene features, it is
unsuitable for factories with a quick changeover.

3. Other studies [13,15,18,19] have proposed practical solutions using code tags to
achieve the global localization of robots. For example, Hu et al. [18] attached the tags
to the floor to assist and correct the AMCL positioning. In another study [15], the tags
are attached to the room ceiling as the robot’s absolute positioning basis and solve the
cumulative error problem of the encoder. However, the above methods require many
tags placed in the environment, resulting in difficulties in installing and maintaining
them.

4. Some works have demonstrated pose estimation with code tags [13,19,20]. The
relationship between the tag location and the origin of the grid map can be first
recorded. Then, when the robot vision captures the tag, the system can infer the
relative relationship between the tag and the vision sensor. Finally, the robot’s position
on the map can be determined based on forward kinematics. The above methods
using fewer code tags can achieve global positioning with high accuracy of 1~2 cm.
However, the literature [21] report and the actual tests in this study have observed an
unstable variation in the decoded results. The range of variation increased sharply
with the distance from the tag, resulting in inaccurate localization. In the literature [9],
the error is eliminated by multiple tags, but this method requires additional settings
in the environment and has more placement limitations.

This study develops a robotic localization system and proposes an innovative global
localization approach to effectively solve both shortcomings of localization using simple
LiDAR sensing signals and the defects of the single tag localization method. This study
contains five chapters. Section 2 reviews the related works, presents the issues that remain
to be solved, and the research objectives. In Section 3, the methodology using a dual
AprilTag is explained. Section 4 illustrates the experimental methods and discusses the
results. Finally, the conclusions and future research directions are presented in Section 5.
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2. Related Works
2.1. Mobile Robot

Mobile robots use the information collected by sensors to create a digital map and
achieve autonomous localization and navigation while moving. The main control processes
of a mobile robot in an unfamiliar environment contains several parts. In the process
of perception, the robot uses the onboard sensors, such as LiDAR, camera, encoder, and
inertial measurement unit, to extract environmental data and convert them into information
required for movement. Localization is to identify the robot’s position on the digital map
according to the available sensing information. Then, the system can plan the robot’s
possible path with its location and map information. Finally, the robot can decide the
movement path through sensing, positioning, and mapping calculations.

2.2. Simultaneous Localization and Mapping (SLAM)

The technique to solve the problem of modeling the digital map of a robot in an
unknown environment is known collectively as “simultaneous localization and mapping
(SLAM)”. The reason for the simultaneous implementation of map modeling and localiza-
tion is that the robot needs to know its location to build a map, but it also needs to obtain
its location from the map. Therefore, the robot’s movement must be continuously tracked
while building the map. In practice, the robot will store the constructed digital map and
use it for subsequent navigation, equivalent to directly making the factory map a known
reference.

2.3. Adaptive Monte Carlo Localization (AMCL)

From a mathematical viewpoint, the robot’s localization can be expressed as a state
estimation problem, mainly due to the error of the sensor values. Hence, it is necessary to
collect and evaluate the information from the environment and the robot and compensate
for the bias error using statistical methods. AMCL is today’s most popular robot local-
ization algorithm, which adds an adaptive mechanism to particle filter and Monte Carlo
localization to properly deal with the robot pose tracking issue.

2.3.1. Particle Filter

The particle filter generates many hypothetical particles representing an arbitrary
probability distribution of states. In the absence of any positional information, the possible
robot poses can be represented by particles with a uniform distribution; that is, the robot
can be in any position. Then, when the robot is moving around, the positional probability
of the state can be updated by comparing the sensor data with the digital map.

The state of a group of particles carries can be represented with two parameters:

X =
{
〈x[j], w[j]〉

}
j=1,2,. . . ,J

(1)

• State hypothesis x[j]: the physical meaning and state represented by each particle j.
• Importance weight w[j]: the probability that the state represented by the particle j is true.

After normalizing the weights w of all particles, the probability of the discrete particles
can be approximated to a continuous function by the kernel density estimation (KDE)
method. The form is expressed as:

p(X) = ∑J
j=1 w[j]δx[j](X) (2)

where δx[j](X) is the Gaussian distribution with the mean value of x for particle j. By
reassigning the original particle weight and resampling the particle distribution according
to the new weight value, the proposed function can be effectively modified to a new
target function for resampling. Therefore, the particle filter is a recursive Bayesian filter
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that continues the iterative prediction and correction process. It is also a non-parametric
approach. To summarize the nature of the particle filter:

• Modeling: Using discrete particles to simulate an arbitrary continuous distribution;
• Prediction: Using known information to predict the next state of particle distribution;
• Correction: Corrects the particle distribution by calculating the weight of the particles.

The fitting needs continuous approximation functions determined based on the dis-
crete particles. As a result, the number of particles will affect the performance of the
approximation model.

2.3.2. Monte Carlo Localization

Monte Carlo localization (MCL) is the application of the particle filter to the robot
localization problem. The physical implications of applying all the participating variables
of the particle filter to robot localization are listed:

• State hypothesis: The robot pose, including position and orientation.
• Importance weight: The probability that the hypothetical state represents the truth of

the particle.
• Proposed particle distribution: The distribution of the proposed particles of the robot

in the map and usually provided by sensed features or the previous distribution.
• Target particle distribution: The new particle distribution obtained after updating the

proposed particle weights.

In continuous positioning, i.e., iterative particle filtering, the proposed particle distri-
bution is used as a reference for motion control. The proposed particle positions can be
defined by the previous state xt−1 and the motion command ut:

x[j]t ∼ p(xt || xt−1,ut) (3)

The weight used to correct the particle distribution, in the case of a robot using
LiDAR for localization, is determined by observing the surrounding information zt. The
mathematical equation is described as follows:

w[j]
t ∝ p(zt || xt,m) (4)

The estimation optimization process of AMCL can be divided into initialization,
observation, measurement, weight updating, and resampling. Initialization is based on
a specified method to generate an initial particle distribution. The observation step is to
collect environmental information in situ or after moving. The difference between the
environmental information and the digital map is calculated in the measurement step,
and the particle weights are updated accordingly. Finally, in the resampling step, the new
particle distribution is generated based on the distribution of the updated weights.

2.3.3. Short Review of AMCL

To solve the robot positioning problem, AMCL is a common approach. It provides the
following features.

(1) ProvidING a possible solution to the robot kidnapping problem: In robot localization,
if the robot misestimates its actual position, such as a temporary failure of the LiDAR
or loss of signal caused by environmental noise, the traditional MCL cannot detect and
solve the kidnapping problem. Therefore, AMCL adds a mechanism by monitoring
the average weight of all particles in time and re-scattering some particles globally
when the average weight value drops.

(2) Solving the problem of a fixed number of particles: AMCL can detect the distribu-
tion dispersion in real-time and change the total number of particles required, thus
reducing redundant iterations.
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Although the AMCL method using LiDAR solves most of the robot positioning
problems, the method still has the following three drawbacks:

(1) Positioning failure with similar features in geometry: The sensing signal of the LiDAR
is composed of the distance from the obstacle and the reflection strength. Therefore,
if there are many similar spaces in a field, it is difficult for the robot to recognize
its position.

(2) Limitation to solving the robot kidnapping problem: The mechanism of AMCL to
solve the kidnapping problem is to randomly scatter the points in space again, so
a certain chance of failure will exist. However, this approach does not guarantee to
solve the kidnapping problem anytime.

(3) With the increased power consumption and convergence time of the map size: As
the factory map becomes large, more particles are needed for initialization to ensure
coverage. Because of the probability calculation by points, the number of particles on
the map significantly affects the performance of AMCL global localization.

2.4. AprilTag

AprilTag [22,23] is a code tag positioning technology that captures a specific 2D tag
through the camera. After calculation, the coordinate transformation of the tag relative
to the camera can be extracted for further localization or applications. The system has
excellent features and is widely used in various applications, such as augmented reality
(AR), robot localization, and camera calibration. The following is a brief description of the
system’s key features:

• Low decoding complexity: AprilTag decoding is simpler and more efficient than
QRcode coding. It meets the real-time requirements.

• High reliability: Compared to other 2D codes, the AprilTag algorithm can automat-
ically detect and locate tags over longer distances, with lower fractional variation,
uneven illumination, large rotations, or background clutter [22].

• Multi-tag detection: The system can simultaneously detect and locate multiple tags on
a single shot.

AprilTag can be used to find the coordinates of tags in space, including rotation and
translation, and was therefore applied to solve robot positioning problems in this study.

2.5. Gaps and Research Objective

Suppose mobile robots can quickly perform pose estimation and global localization,
especially find the working locations of production equipment autonomously. In that case,
this will help to improve the flexibility of the automation logistics system to respond to
changes. However, the past works did not consider the partnership between mobile robots
and production equipment. This study proposes the tag-based localization method by
attaching two AprilTags to the front side of production equipment. Once the positions of
the equipment are changed, the mobile robots can still move to the correct positions for
loading or interaction.

3. Methodology

This chapter first describes the robot localization system designed using LiDAR and a
dual AprilTag. Then, the innovative approach to the global localization problem is detailed.
Finally, after analyzing the effects of localized errors using the single tag localization
method, the advantages using a dual AprilTag to eliminate errors are explained.

3.1. Robotic Positioning System Process

The procedure of the localization system in this study is shown in Figure 1. First, the
global localization problem is solved by finding the initial position through the code tags
method proposed in this study when the robot starts, as shown in Figure 2a. Then, the
initial pose is used to determine the particle distribution required for AMCL to perform
pose tracking. Next, the particle weights are continuously updated by comparing the
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odometry data and LiDAR information with the map profile while the robot is moving.
After that, the particle distribution is updated with the new weights to realize the pose
tracking, as in Figure 2b. Finally, during the positional tracking, the resampled particle
distribution data are analyzed, and the variance of the distribution is used to determine
whether a kidnapping problem happens. If the variance exceeds a specific domain value,
the system will perform the repositioning based on the code tags again, as in Figure 2c. In
this process, one of the contributions of this study is the use of dual tag vision to assist
global localization.
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3.2. Pose Estimation Using a Dual AprilTag

Figure 3 is a schematic diagram of the proposed pose estimation concept. Figure 3a
shows the situation before global localization. In this situation, the digital map is block A,
while the robot observes the environment, marked as contour B. Since the localization is
not yet successful, the two are not aligned. The proposed pose estimation tries to align the
two entities so that the digital map can act as a digital twin of the physical field and provide
navigation information to the mobile robot. Hence, a reference mechanism is needed to
regulate the degrees of freedom between the two. If only one common reference point is
given, there will exist a rotation between the two, which cannot guarantee their alignment,
as shown in Figure 3b. The innovative approach proposed in this study is to generate two
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common reference points through a pair of neighboring tags, called dual AprilTags, which
provides sufficient restrictions to estimate robot pose, as shown in Figure 3c. Another
alignment approach is based on the position and orientation of the reference point, using a
single AprilTag, but the uncertainty of decoding may cause errors. Therefore, the paired
neighboring tags attached to equipment are suitable to assist pose estimation and guide
the boarding of mobile robots.
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The robot pose estimating problem using the dual AprilTag in a factory map can
be simplified as shown in Figure 4. OM and (XM and YM) are the original point and
coordinates of the factory map. There are other positions in the factory map, including
AprilTags T2 and T3 and Robot R. If the robot is not localized well, the value of the robot
position is incorrect and is denoted as Rm, and the AprilTags will be observed in positions
of T2,m and T3,m. Here, both triangles of ∆T3,mORiT2,m and ∆T3ORT2 are congruent triangles.
The objective of the simplified problem is to find the robot’s exact position R.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 18 
 

 

 

  
(a) (b) 

 
 

(c) (d) 

Figure 4. Approaches to determine robot position using the dual AprilTag; (a) localization problem; 
(b) shift; (c) rotate; (d) result. 

The relationship between the evaluated and true position of the robot is shown in 
Figure 4a and can be expressed as: 𝑂 �⃑� = 𝑂 𝑅 ⃑ + 𝑅 𝑅  (5)

Pose estimation can be achieved after eliminating the error denoted by 𝑅 𝑅, which 
cannot be achieved by using simple LiDAR information directly. Therefore, AprilTag pro-
vides geometric correlations for reference. As the camera in the robot observes the AprilT-
ags, AprilTag technology will provide the geometric relationship from the camera to the 
tags. Since the actual locations of AprilTags, T  and T , are ready on the grid map, the 
first reference point can be one of the tags, for example, using T . Then, the evaluation 
position of the robot 𝑂 𝑅 ⃑  observed through the reference point is shown in Figure 4b 
and can be expressed as: 𝑂 𝑅 ⃑ = 𝑂 𝑇⃑ + 𝑇 𝑇 , ⃑ + 𝑇 , 𝑅 ⃑  (6)

By subtracting 𝑇 𝑇 , ⃑ in both sides of the equation, i.e., letting 𝑇 ,  coincide with 𝑇 , as 
shown in Figure 4c, the first evaluation position of the robot can be obtained: 𝑂 𝑅 ⃑ = 𝑂 𝑅 ⃑ − 𝑇 𝑇 , ⃑ = 𝑂 𝑇⃑ + 𝑇 , 𝑅 ⃑  (7)

The observation error of the rotation causes the 𝑇 , 𝑅 ⃑ to be inconsistent with the actual 𝑇 𝑅. Here, another tag, e.g., 𝑇 , is used to eliminate the rotational error in the observation. 
Let �̂� and �̂�  be the unit vectors of 𝑇 𝑇⃑ and 𝑇 , 𝑇 , ⃑, respectively, and the angle be-
tween the two vectors is 𝜶. Then, their relationship is: �̂� = 𝑹 𝛼  �̂�  (8)

where the rotation matrix is: 

Figure 4. Approaches to determine robot position using the dual AprilTag; (a) localization problem;
(b) shift; (c) rotate; (d) result.



Electronics 2023, 12, 1023 8 of 18

The relationship between the evaluated and true position of the robot is shown in
Figure 4a and can be expressed as:

−−−⇀
OMR =

−−−−⇀
OMRm +

−−⇀
RmR (5)

Pose estimation can be achieved after eliminating the error denoted by
−−⇀
RmR , which

cannot be achieved by using simple LiDAR information directly. Therefore, AprilTag
provides geometric correlations for reference. As the camera in the robot observes the
AprilTags, AprilTag technology will provide the geometric relationship from the camera
to the tags. Since the actual locations of AprilTags, T2 and T3, are ready on the grid map,
the first reference point can be one of the tags, for example, using T2. Then, the evaluation

position of the robot
−−−−⇀
OMRm

0

observed through the reference point is shown in Figure 4b
and can be expressed as:

−−−−⇀
OMRm

0

=
−−−−⇀
OMT2 +

−−−−⇀
T2T2,m +

−−−−⇀
T2,mRm (6)

By subtracting
−−−−⇀
T2T2,m in both sides of the equation, i.e., letting T2,m coincide with T2, as

shown in Figure 4c, the first evaluation position of the robot can be obtained:

−−−−⇀
OMRm

1

=
−−−−⇀
OMRm

0

−
−−−−⇀
T2T2,m =

−−−⇀
OMT2 +

−−−−⇀
T2,mRm (7)

The observation error of the rotation causes the
−−−−⇀
T2,mRm to be inconsistent with the actual

−−−⇀
T2,mR . Here, another tag, e.g., T3, is used to eliminate the rotational error in the observation.

Let t̂ and t̂m be the unit vectors of
−−⇀
T2T3 and

−−−−−⇀
T2,mT3,m , respectively, and the angle between

the two vectors is α. Then, their relationship is:

t̂m = R(α) t̂ (8)

where the rotation matrix is:

R(α) =

[
cosα −sinα
sinα cosα

]
(9)

and the value of α is:
α = cos−1(t̂m·t̂

)
(10)

Then, the relationship between
−−−−⇀
T2,mRm and

−−⇀
T2R is:

−−⇀
T2R = R(−α)·∆

−−−−⇀
T2,mRm (11)

Therefore, the final evaluation pose of the robot is shown in Figure 4d and can be ex-
pressed as:

−−−−⇀
OMRm

2

=
−−−⇀
OMT2 + R(−α)·∆

−−−−⇀
T2,mRm =

−−−⇀
OMT2 +

−−⇀
T2R =

−−⇀
OMR (12)

After the above steps, the robot’s position and orientation on the map can be found by the
dual AprilTag.

3.3. Performance Analysis Using AprilTag

Next, Figure 5 illustrates the performance of AprilTag coordinate transformation. The
coordinates transformation TOT,a

OM
from the map system to an AprilTag can be expressed as:
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TOT,a
OM

=

cos θM,Ta −sin θM,Ta xM,Ta
sin θM,Ta cos θM,Ta yM,Ta

0 0 1

 (13)

Here, xM,Ta, yM,Ta, and θM,Ta are the relative distances and angle from the map system to
the AprilTag. The coordinate transformation from the measured tag coordinates system to
the initial robot coordinates system TORi

OT,m
is:

TORi
OT,m

=

cos θTm,Ri −sin θTm,Ri xTm,Ri
sin θTm,Ri cos θTm,Ri yTm,Ri

0 0 1

 (14)

Here, xTm,Ri, yTm,Ri, and θTm,Ri are the relative distances and angle from the tag to the robot.
Therefore, the transformation using the single AprilTag can be expressed as:

TOR
OM

= TOT,a
OM

TORi
OT,m

(15)
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Figure 5. Schematic diagram of the inaccuracy of the single tag global positioning algorithm due to
observation error.

This equation indicates that the coordinate transformation of the measured tag for
the map origin is derived from the coordinate transformations from the map origin to the
robot and from the robot to the tag. When inferring robot positioning, the coordinates
conversion from map origin to the tag and the coordinates conversion from the tag to a
robot is used. If this relationship is completely correct, Equation (15) can lead to the correct
spatial localization result.

However, there are usually translation errors
(
εx and εy

)
and rotation errors εθ be-

tween the measured tag OT,m and the ideal tag OT,m,ideal . Therefore, Equation (14) can be
modified to:

TORi
OT,m

=


cos(θTm,Ri + εθ) −sin(θTm,Ri + εθ) xTm,Ri + εx + r(1− cosεθ)

sin(θTm,Ri + εθ) cos(θTm,Ri + εθ) yTm,Ri + εy + rsinεθ

0 0 1

 (16)

where the actual distance between the tag and the robot is r′ and the ideal distance is r. The
ideal and actual positioning results of the robot are (x, y, θ) and (x′, y′, θ′), respectively. The
relationship between the actual and theoretical positioning results of the robot is:
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∆OR =


∆xR

∆yR

∆θR

 =


x′ − x

y′ − y

θ′ − θ

 =


(εx + r′(1− cosεθ))∆cosθM,Ta

−
(
εy + r′sinεθ

)
∆sinθM,Ta

εθ

 (17)

In Equation (17), as the distance between the tag and the robot becomes large, the rotational
error has more influence on the positioning result. The relationships are plotted in Figure 6.
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Figure 6. The relationship between the observed distance and translation and rotation error under
εx = εy = 1, k = 100, θM,Ta = 30◦.

With the above derivation, the robot localization method with a single code tag is
unreliable enough for practical applications. Therefore, this study proposed the dual
AprilTag approach to solve the problems. Furthermore, the rotation parameter of the tags is
not used in Equation (12), so the interference of the observed rotation error can be avoided.

4. Experiments and Results

This chapter describes the experimental procedure and method to verify the theory in
Section 3, which is divided into the following parts: concept validation, global localization
performance evaluation, and single and two tag global localization accuracy and stability study.

4.1. Experimental Devices

This study used FESTO’s Cyber-Physical Factory (CP Factory) as the main experimen-
tal environment. The mobile robot used is FESTO Robotino, equipped with SICK-S300
LiDAR and Logitech C920 Pro camera (Figure 7). Please refer to Tables 1 and 2 for the
specifications. The robot operating system (ROS) middleware is built on the hardware of
Robotino to control the motion, execute algorithms and collect sensing information.
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Table 1. Specification of SICK-S3000S300.

Target Specification

Scan angle 270◦

Protective field range 2 m

Reflectivity Reflectors 1.8% . . . > 1000%

Response time 80 ms

Resolution 30 mm, 40 mm, 50 mm, 70 mm, selectable

Angular resolution 0.5◦

Protective field supplement 100 mm

Warning field range 8 m (at 30% reflectivity)

Distance measuring range 30 m

Number of multiple samplings 2 . . . 16, configurable vis CDS

Reset time 2 s . . . 60 s, configurable

Table 2. Specification of Logitech C920 Pro.

Target Specification

Max resolution 1080 p/30 fps–720 p/30 fps

Focus type Autofocus

Lens type Glass

Built-in mic Stereo

Diagonal field of view(dFoV) 78◦

4.2. Prof of Concept

The feasibility of the proposed method in the real environment was verified. First, a
digital map and a tag database of the factory were constructed, as shown in Figure 8. Then
the global localization algorithm of this study was executed at several random locations to
observe the localization results.
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For when the robotic camera captures two neighboring tags, the before/after particle
distribution using the proposed method is shown in Figure 9. This result shows the
convergence of the particle distribution and proves the method’s feasibility. In addition,
this method can also be applied to more than two tags, as shown in Figure 10. The algorithm
will pair the tags separately and then find the optimal solution by the least square method.
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4.3. Global Localization

In this experiment of dynamic global positioning, the robot moves and locates simulta-
neously using two methods. The first is the classic method that performs AMCL only using
LiDAR sensing information. The other is the proposed method in this study, performing
AMCL using LiDAR and a computer vision approach with the dual AprilTag. The test
fields consist of a factory case with significant differences in features and a trap case with
similar features in geometry, as shown in Figures 11a and 12a, respectively. Furthermore,
the robot’s paths are shown in Figures 11b and 12b, and the particle states of AMCL are
recorded at specific locations in the path points. Finally, the performance difference be-
tween the two methods is compared in terms of the variance of particle distribution and
the total number of particles.

4.3.1. Factory Case

In the factory case, the particle distributions at different path points are shown in
Figure 13, when the classic and the proposed methods are implemented. The result using
the classic method shows that a huge number of the particles must be distributed over
the map at the beginning for the robot to determine its position. Then, the particles are
converged by AMCL until the positioning is completed. In contrast, the proposed method
allows the robot to obtain a precise position at the beginning with a limited number of
particles on the map. Observing the particle variance of the two methods in the X and Y
directions in Figure 14, the proposed method can achieve global localization directly at the
beginning and omit the particle convergence steps of the classic method.
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Figure 13. Particle distributions in path points during global localization in the factory case study.
(a) Classic; (b) proposed.
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On the other hand, since the classic method needs to exhaust all the locations on
the map, many particles are required in the initial stage to ensure that the entire map is
covered. The larger the map area is, the more particles are required, which means the
required computing power is high and the computation time is long. In contrast, the
initial conditions are given by a dual AprilTag in the proposed method, so that the initial
number of particles used in the AMCL algorithm is not related to the map area. Figure 15
shows the number of particles of the two methods at each path point. Compared with the
global localization by simple LiDAR, the proposed method requires only a small number of
particles to complete the localization and subsequent pose tracking, and the performance
is almost the same as that of the manual assignment. Thus, the computing power the
proposed method requires to generate and evaluate particles is less than what the classic
method needs.
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4.3.2. Trap Case

The particle distribution recorded at the eight path points in the trap case using the
classic method is shown in Figure 16a. It is observed that the particles are still not fully
converged after several iterations using AMCL. According to the variation of particle
distribution in the X and Y directions shown in Figure 17, the particles do not converge
definitely. Furthermore, similar edge profiles are observed in the two dense particle-swam
at the positions of T > 4, as shown in Figure 16a, resulting in the difficulty for the robot
to localize with high similarity of geometric features. In contrast, the particle distribution
using the proposed method is initially close to convergence, as in Figure 16b. Benefiting
from the suitable initial conditions, the robot can quickly and effectively perform positional
tracking and localization in environments with high geometric similarity.
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Figure 16. Particle distributions in path points during global localization in the trap case study.
(a) Classic; (b) proposed.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 18 
 

 

 

distribution in the X and Y directions shown in Figure 17, the particles do not converge 
definitely. Furthermore, similar edge profiles are observed in the two dense particle-swam 
at the positions of T > 4, as shown in Figure 16a, resulting in the difficulty for the robot to 
localize with high similarity of geometric features. In contrast, the particle distribution 
using the proposed method is initially close to convergence, as in Figure 16b. Benefiting 
from the suitable initial conditions, the robot can quickly and effectively perform posi-
tional tracking and localization in environments with high geometric similarity. 

 
(a) 

 
(b) 

Figure 16. Particle distributions in path points during global localization in the trap case study. (a) 
Classic; (b) proposed. 

  
(a) (b) 

Figure 17. Convergence of particle state in path points during global localization in the trap case 
study. Particle variance on (a) tje X-axis and (b) the Y-axis. 

4.4. Stability of a Single Tage and Two Tags 
This experiment evaluates the stability of the global localizations using a single tag 

and a dual tag. The latter is proposed in this study. First, the overall experimental 

0.500
0.535

0.290
0.251 0.247

0.013

0.075
0.030

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8

Va
ria

nc
e(

m
)

Path Point Id

LiDAR only
0.670

0.800 0.794

0.053 0.084

0.245 0.275

0.060

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8

Va
ria

nc
e(

m
)

Path Point Id

LiDAR only

Figure 17. Convergence of particle state in path points during global localization in the trap case
study. Particle variance on (a) tje X-axis and (b) the Y-axis.



Electronics 2023, 12, 1023 16 of 18

4.4. Stability of a Single Tage and Two Tags

This experiment evaluates the stability of the global localizations using a single tag and
a dual tag. The latter is proposed in this study. First, the overall experimental environment
is schematically set up, as shown in Figure 18. Then, the global localization algorithm of the
two methods is executed at five different distances. Finally, the previous step is repeated
several times, and the measured results are recorded.
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Figure 19 shows the error situations of the results after repeatedly executing the global
localizations at five positions. The horizontal axis indicates the distance between the robot
and the tags, and the vertical axis indicates the error amount. The accuracy and stability of
the single tag method decrease as the robot is far away from the tag. Figure 19b,d shows
that the positioning error using a single tag is highly correlated with the rotation error
of the tag. However, the proposed dual tag method can maintain a small error variation.
Therefore, it can be confirmed that the proposed dual tag method is better than a single
tag approach. On the other hand, it is possible for a mobile robot to observe several tags
simultaneously. The mobile robot can process the tags, pair by pair, and use statistical
methods to accurately identify its position.
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5. Conclusions

This study designs an integrated vision and LIDAR ROBOT localization method using
two AprilTag tags for the robot pose estimation, which can effectively solve the factory’s
global localization and kidnapping problem. After practice and experiment, the following
contributions were obtained from this study:

1. The method proposed in this study can complete mobile robot localization as long
as the camera captures more than two AprilTag tags. This feature is also helpful in
solving the kidnapping problem caused by multiple similar features.

2. Compared with the classical method, only using LiDAR and AMCL, the proposed
method can effectively reduce the particle distribution variability and the number of
particles used in AMCL. This feature can enhance the efficiency of pose estimation
and improve the performance of global localization.

3. This study avoids using AprilTag rotation information with variation errors and
successfully prevents its impact. The translation and rotation errors in the test en-
vironment are within the acceptable range. The proposed method is helpful for the
precise mobile robot localization.

Besides logistics in factories, the proposed method using two AprilTags can potentially
apply in other applications with trap issues to mobile robots, especially for a workspace
within many similar scenes, such as large warehousing, rows of horticultural plantations,
hospital automation, and restaurant services. The proposed method allows mobile robots
to quickly estimate their positions to an object through the two neighbor tags on the object
and solve the trap issues.

Although this study establishes various testing scenarios, the reliability and practicality
of the proposed method for industrial application are still worthy of further investigation.
Two suggestions are listed for future works: (1) to investigate the causes of the defective
AprilTag identification tags and to solve the fundamental tag identification problem; and
(2) to use faster response cameras to deal with dynamic positioning issues due to the image
quality in dynamic shots.
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