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Abstract: The techniques for forecasting meteorological variables are highly studied since prior
knowledge of them allows for the efficient management of renewable energies, and also for other
applications of science such as agriculture, health, engineering, energy, etc. In this research, the
design, implementation, and comparison of forecasting models for meteorological variables have
been performed using different Machine Learning techniques as part of Python open-source software.
The techniques implemented include multiple linear regression, polynomial regression, random
forest, decision tree, XGBoost, and multilayer perceptron neural network (MLP). To identify the
best technique, the mean square error (RMSE), mean absolute percentage error (MAPE), mean
absolute error (MAE), and coefficient of determination (R2) are used as evaluation metrics. The most
efficient techniques depend on the variable to be forecasting, however, it is noted that for most of
them, random forest and XGBoost techniques present better performance. For temperature, the best
performing technique was Random Forest with an R2 of 0.8631, MAE of 0.4728 ◦C, MAPE of 2.73%,
and RMSE of 0.6621 ◦C; for relative humidity, was Random Forest with an R2 of 0.8583, MAE of
2.1380RH, MAPE of 2.50% and RMSE of 2.9003 RH; for solar radiation, was Random Forest with
an R2 of 0.7333, MAE of 65.8105 W/m2, and RMSE of 105.9141 W/m2; and for wind speed, was
Random Forest with an R2 of 0.3660, MAE of 0.1097 m/s, and RMSE of 0.2136 m/s.

Keywords: machine learning; forecasting models; meteorological variables; Python

1. Introduction

Since the 17th century, meteorological variables have been of great interest throughout
history, with the creation of the first instruments for measuring meteorological variables
aiming to accurately predict the weather. For this purpose, mathematical and statistical
methods and computer programs are used, most of which are of a non-linear nature [1].
Nowadays, climatic conditions change under various influences. For example, atmospheric
pollution is increasing, so climate change is occurring and threatening the planet [2], which
is why the measurement of meteorological variables has grown in importance as the
information provided by the meteorological stations is important for monitoring climate
change [3].

Climate is defined by the grouping of meteorological phenomena that are related to
each other; although each of them is studied separately, it must be taken into account that a
change in one produces a variation in the others [4]. The actual weather is characterised
by the wind, temperature, and humidity variables forced by radiative fluxes and surface
latent and sensible heat fluxes. The local climate usually denotes the mean state of the
atmosphere over a 20–30-year period for a given location and day (or season) of the year.
For this reason, meteorological variables are usually modeled by means of computational,
numerical, and statistical techniques, most of which are nonlinear [5]. Forecasting certain
climatic variables is a great challenge due to the variable behavior of the climate, which
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makes it impossible to optimally manage renewable energies and obtain a greater benefit
from them.

There are multiple scientific studies of modeling and prediction in order to forecast
future conditions of phenomena in various fields; among the most prominent are ARIMA,
Chaos Theory, and Neural Networks [6]. Forecasting models have evolved in recent
decades, from smart systems with formal rules and logical theories, to the emergence of
artificial intelligence techniques that allow us to propose alternatives in the treatment of
information [7].

Currently, forecasting models have a high impact and are used for several applica-
tions, such as management of energy units for renewable resources microgrids [8,9], load
estimation methods for isolated communities that do not receive energy or only receive it
for a limited time each day [10,11], the operation of energy systems [12,13], in agriculture
to predict the water consumption of plants and plan the irrigation sheet [14], in agriculture
4.0 for the prediction of variables that affect the quality of crops, for micronutrient analysis
and prediction of soil chemical parameters [15], optimization of agricultural procedures
and increasing productivity in the field, forecasting of SPI and Meteorological Drought
Based on the Artificial Neural Network and M5P Model Tree [16], and in controllers based
on forecasting models and predictive controllers. They are also used in the health field to
predict the solar radiation index and to obtain a correct assessment in people with skin
cancer [17], therefore, all the applications mentioned above need forecasting models that
have the lowest error rate for their effective operation.

Having a forecasting model system is costly because computer packages are used
in which licensing costs can be significant. On the other hand, free software is an option
to reduce costs. This research proposes a system based on free software (Python), which
is currently used at industrial level for its reliability, for example in applications such as
the following: Advanced Time Series: Application of Neural Networks for Time Series
Forecasting [18], Machine Learning in Python: main developments and technological
trends in data science, Machine Learning and artificial intelligence [19], Development of
an smart tool focused on artificial vision and neural networks for weed recognition in rice
plantations, using Python programming language [20], etc.

In this research, different prediction techniques were evaluated and compared—among
them, multiple linear regression, polynomial regression, random forest, decision tree, XG-
Boost, and multilayer perceptron neural network—in order to identify the best performing
strategy, using evaluation metrics such as the root mean square error (RMSE) and the
coefficient of determination (R2). The variables to be predicted are temperature, relative
humidity, solar radiation, and wind speed, from data taken from the weather station located
in Ecuador, Tungurahua province, Baños. The predicted variables will be the inputs for a
smart irrigation system and used for an energy management system of a microgrid based
on predictive control, therefore, models with high approximation to online measurements
are required.

The contributions of this work are as follows: (i) To design, validate, and compare
different machine learning techniques, and with them select the best technique that adapts
to climate variables for agriculture and energy applications, (ii) To develop a forecast system
for climate variables of low cost based in free software (Python), (iii) To generate forecasting
models that can be replicated for other types of variables applied to smart control systems
based on forecasting models.

2. Design of Forecasting Models for Meteorological Variables

This section describes the prediction techniques used and their design. In this research,
the following meteorological variables are studied and predicted: temperature, relative
humidity, wind speed, and solar radiation.

The techniques designed, evaluated, and compared are the following: multiple linear
regression, polynomial regression, random forest, decision tree, XGBoost, and neural
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network—multilayer perceptron. To obtain the forecast of meteorological variables, the
design methodology shown in Figure 1 is implemented.
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variables.

2.1. Obtaining the Database

For the implementation of the forecasting models, information was obtained from
the page of the Tungurahua hydrometeorological network, where there are several me-
teorological stations, including the Baños family park, located in Ecuador, Tungurahua
province, Baños, coordinates X = 9, 845, 439, Y = 791, 471 that counts the parameters of
precipitation (mm), temperature (◦C), relative humidity (%), wind speed (m/s), wind
direction (◦), solar radiation

(
W/m2), and evapotranspiration (mm). For the design of the

models, only the values of temperature, solar radiation, relative humidity, and wind speed
were taken, since after a previous analysis of correlation between meteorological variables,
the variables with lower correlation with the variable to be predicted are discarded. It is
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important to note that the values of temperature, solar radiation (net solar radiation at
surface), and relative humidity were measured at a distance of 2 m, while the wind speed
was measured at 10 m.

2.2. Data Preprocessing

From the database obtained, 1 year of information was available (from 23 July 2021
to 15 June 2022), which was preprocessed to take data every 5 min for each variable
(temperature, relative humidity, wind speed, and solar radiation). To make a forecast, it is
important to verify that there are no missing data in the measurements or to implement a
data filling method; in this case, a Python algorithm was implemented, which calculates
the average of the existing list of data and automatically fills in the missing data.

2.3. Dataset Division

To verify that the models work correctly, the available database is divided into
three groups: training set, test set, and validation set. As its name indicates, the first
one will be used to train the forecasting models, the second one will be used to evaluate
the test set, and the third one to validate each of the implemented models [17,21].

After data preprocessing, a total of 93,780 data were obtained for each variable, where
80% of the database (75,024 data) is used to train the models, 20% (18,756 data) to test the
models, and 2 days (576 data) were used for the validation of the models.

2.4. Design of the Forecasting Models
2.4.1. Multiple Linear Regression

It is a technique that allows modeling the relationship between a continuous variable
and one or more independent variables by adjusting a linear equation. It is called simple
linear regression when there is one independent variable, and if there is more than one,
it is called multiple linear regression. In this context, the modeled variables are called
dependent or response variables (y); and the independent variables are called regressors,
predictors, or features (X) [22]. Multiple linear regression is defined by Equation (1)

y = a + b1X1 + b2X2 + · · ·+ bnXn (1)

where: X1, X2, . . . Xn : are the predictor or independent variables, b1, b2, . . . bn : coefficients
of the predictor variables, a : constant of the relationship between the dependent and
independent variable, and y : predicted or dependent variable.

After performing different heuristic tests and using sensitivity analysis for this fore-
casting technique, it is deduced that the best parameters for tuning are those described
in Table 1.

Table 1. Tuning parameters for the multiple linear regression techniques.

Multiple Linear Regression

Predicted Variable Inputs Variables

Temperature Solar radiation, relative humidity, wind speed
Solar radiation Temperature, relative humidity, wind speed

Wind speed Temperature, solar radiation, relative humidity
Relative Humidity Temperature, solar radiation, wind speed

2.4.2. Polynomial Regression

A linear regression with polynomial attributes that uses the relationship between the
dependent (y) and independent (X) variables to find the best way to draw a line through
the data points. This technique is used when the data are more complex than a simple
straight line [23], and is defined by Equation (2).

y = a + b1Xi + b2Xi
2 + b3Xi

3 + . . . + bnXi
n (2)
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where: X1, X2, . . . Xn : are the predictor or independent variables, b1, b2, . . . bn : coefficients
of the predictor variables, a : constant of the relationship between the dependent and
independent variable, and y : predicted or dependent variable.

After performing different heuristic tests and using sensitivity analysis for this fore-
casting technique, it is deduced that the best parameters for tuning are those described
in Table 2.

Table 2. Tuning parameters for polynomial regression technique.

Polynomial Regression

Predicted Variable Inputs Variables Degree of the
Polynomial

Temperature Solar radiation, relative humidity, wind speed 4
Solar radiation Temperature, relative humidity, wind speed 5

Wind speed Temperature, solar radiation, relative humidity 6
Relative Humidity Temperature, solar radiation, wind speed 4

2.4.3. Decision Tree

Values by learning decision rules derived from features and can be used for classifica-
tion, regression, and multi-output tasks. Decision trees work by dividing the feature space
into several simple rectangular regions, divided by parallel divisions of axes. To obtain
a prediction, the mean or mode of the responses of the training observations, within the
partition to which the new observation belongs, is used [23]. This is defined by Equation (3).

Gi = 1−
m

∑
k=1

(Pi,k)
2 (3)

where: Pi,k : is the radio of class k instances among the training instances in the ith node,
m : number of class labels, and Gi (Gini impurity): represents the measure for constructing
decision trees.

After performing different heuristic tests and using sensitivity analysis for this forecast
technique, it is deduced that the best parameters for tuning are those described in Table 3.

Table 3. Tuning parameters for the decision tree technique.

Decision Tree

Predicted Variable Inputs Variables Max_Depth Min_Samples_Leaf

Temperature Solar radiation, relative humidity, wind speed 10 18
Solar radiation Temperature, relative humidity, wind speed 10 7

Wind speed Temperature, solar radiation, relative humidity 19 6
Relative Humidity Temperature, solar radiation, wind speed 9 16

2.4.4. Random Forest

A supervised learning algorithm that uses an ensemble learning method for regression
that combines predictions from several machine learning algorithms (decision trees) to
make a more accurate prediction than a single model [23]. Figure 2 shows that the random
forest algorithm is composed of a collection of decision trees, and each tree in the set is
composed of a sample of data extracted from a training set (DATASET); for a regression task,
the individual decision trees are averaged (Average) until the predicted value (Prediction)
is obtained.

In general, deep decision trees tend to overfit, while random forests avoid this by
generating random subsets of features and using those subsets to build smaller trees.
The generalization error for random forests is based on the strength of the individual
constructed trees and their correlation [24].
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This technique has several parameters that can be configured, such as the following:
N◦ estimators: the number of trees in the forest. Max leaf nodes: the maximum

number of leaf nodes, this hyperparameter sets a condition for splitting the tree nodes and
thus restricts the growth of the tree. If after splitting there are more terminal nodes than the
specified number, the splitting stops and the tree does not continue to grow, which helps to
avoid overfitting. And Max features: the maximum number of features that are evaluated
for splitting at each node, increasing max_features generally improves model performance,
since each node now has a greater number of options to consider [23].

After performing different heuristic tests and using sensitivity analysis for this forecast
technique, it is deduced that the best parameters for tuning are those described in Table 4.

Table 4. Tuning parameters for the random forest technique.

Random Forest

Predicted Variable Inputs Variables N◦ Estimators Max Leaf Nodes Max Features

Temperature Solar radiation, relative humidity, wind speed 100 3000 0.1

Solar radiation Temperature, relative humidity, wind speed 100 3000 0.1

Wind speed Temperature, solar radiation, relative humidity 100 2000 0.3

Relative Humidity Temperature, solar radiation, wind speed 100 2000 0.2

2.4.5. Extreme Gradient Boosting (XGboost)

The XGBoost algorithm is a scalable tree-boosting system that can be used for both
classification and regression tasks. It performs a second-order Taylor expansion on the
loss function and can automatically use multiple threads of the central processing unit
(CPU) for parallel computing. In addition, XGBoost uses a variety of methods to avoid
overfitting [25].

Figure 3 shows the XGBoost algorithm; decision trees are created sequentially (De-
cision Tree-1, Decision Tree-2, Decision Tree-N) and weights play an important role in
XGBoost. Weights are assigned to all independent variables, which are then entered into
the decision tree that predicts the outcomes (Result-1, Result-2, Result-N). The weights of
variables incorrectly predicted by the tree are increased and these variables are then fed
into the second decision tree (Residual error). These individual predictors are then grouped
(Average) to give a strong and more accurate model (Prediction).
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After performing different heuristic tests and using sensitivity analysis for this forecast
technique, it is deduced that the best parameters for its tuning are those described in Table 5.

Table 5. Tuning parameters for the XGboost technique.

XGBoost

Predicted Variable Inputs Variables Max Depth N◦ Estimators

Temperature Solar radiation, relative humidity, wind speed 2 100

Solar radiation Temperature, relative humidity,
wind speed 2 20

Wind speed Temperature, solar radiation,
relative humidity 5 19

Relative Humidity Temperature, solar radiation,
wind speed 7 19

2.4.6. Neural Network—Multilayer Perceptron

It is an effective and widely used model for modeling many real situations. The
multilayer perceptron is a hierarchical structure consisting of several layers of fully inter-
connected neurons, which input neurons are outputs of the previous layer. Figure 4 shows
the structure of a multilayer perceptron neural network; the input layer is made up of r
units (where r is the number of external inputs) that merely distribute the input signals to
the next layer; the hidden layer is made up of neurons that have no physical contact with
the outside; the number of hidden layers is variable (u); and the output layer is made up of
l neurons (where l is the number of external outputs) whose outputs constitute the vector
of external outputs of the multilayer perceptron [26].

The training of the neural network consists of calculating the linear combination
from a set of input variables, with a bias term, applying an activation function, generally
the threshold or sign function, giving rise to the network output. Thus, the weights
of the network are adjusted by the method of supervised learning by error correction
(backpropagation), in such a way that the expected output is compared with the value of
the output variable to be obtained, the difference being the error or residual. Each neuron
behaves independently of the others: each neuron receives a set of input values (an input
vector), calculates the scalar product of this vector and the vector of weights, adds its own
bias, applies an activation function to the result, and returns the final result obtained [26].
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In general, all weights and biases will be different. The output of the multilayer
perceptron neural network is defined by Equation (4). Where: yk is the output, fk activation
function of output layer, θ′k bias of the output layer, Wij hidden layer weights, y′j output of
the hidden layer, f ′j activation function of the hidden layer, Xi neuron inputs, W ′jk output
layer weights, θj bias of hidden layer, r is the number of inputs for the neuron j from the
hidden layer, and u is the number of inputs for the neuron k from the output layer [27].

y′j = f ′j

(
r
∑

i=1
XiWij − θj

)
yk = fk

(
u
∑

j=1
y′jW

′
jk − θ′k

) (4)

For this research, backpropagation was used as a training technique. After performing
different heuristic tests and using sensitivity analysis for this forecasting technique, it is
deduced that the best parameters for its tuning are those described in Table 6.

Table 6. Tuning parameters for the multilayer perceptron neural network technique.

Neural Network—Multilayer Perceptron

Predicted
Variable Inputs Variables Input Layer

Neurons N◦ Epoch Batch
Size

Hidden Layer
Neurons

Activation
Function

Temperature Solar radiation, relative
humidity, wind speed 3 5000 128 32 Hidden: ReLU

Out: Sigmoid

Solar radiation Temperature, relative
humidity, wind speed 3 5000 128 32 Hidden: ReLU

Out: Sigmoid

Wind speed Temperature, solar radiation,
relative humidity 3 3000 128 32 Hidden: ReLU

Out: Sigmoid

Relative
Humidity

Temperature, solar radiation,
wind speed 3 5000 128 32 Hidden: ReLU

Out: Sigmoid
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3. Results
3.1. Indicators for Assessing the Performance of Weather Forecasting Models

To measure the performance of the forecast techniques for each of the variables de-
scribed above, two types of metrics were used: to evaluate the forecast accuracy, the mean
square error RMSE is used, which allows comparing their results and defining the technique
with the lowest error, and therefore, the best method for each variable to be predicted. In
addition, to determine if the implemented models perform well in their training and to
define their predictive ability, the coefficient of determination is R2.

3.1.1. Coefficient of Determination (R2)

R2 or coefficient of determination can be in the range of [−∞, 1] it is used to determine
the ability of a model to predict future results. The best possible result is 1, and occurs when
the prediction coincides with the values of the target variable, while the closer to zero, the
less well-fitted the model is and, therefore, the less reliable it is. R2 can take negative values
because the prediction can be arbitrarily bad [28]. It is defined as Equation (5), described
by 1 minus the sum of total squares divided by the sum of squares of the residuals.

R2 = 1− ∑ (yc − ŷc)
2

∑ (yc − y)2 (5)

where: yc: are the values taken by the target variable, ŷc: are the values of the prediction,
and y: is the mean value of the values taken by the target variable.

3.1.2. Mean Square Error (RMSE)

The root mean square error, also known as root mean square deviation, measures the
amount of error between two sets of data. That is, it compares the predicted value with the
observed or known value [28]. It is given by Equation (6):

RMSE =

√
1
o

o

∑
c=1

(yc − ŷc)
2 (6)

where: yc: are the values taken by the target variable, ŷc: are the values of the prediction,
and o: is the sample size.

3.1.3. Mean Absolute Percentage Error (MAPE)

Mean absolute percentage error is an evaluation metric for regression problems; the
idea of this metric is to be sensitive to relative errors. MAPE is the mean of all absolute
percentage errors between the predicted and actual values [29]. It is given by Equation (7):

MAPE =
1
o

o

∑
c=1

∣∣∣∣yc − ŷc

yc

∣∣∣∣ ∗ 100% (7)

where yc: are the values taken by the target variable, ŷc: are the values of the prediction,
and o: is the sample size.

Equation (7) helps to understand one of the important caveats when using MAPE,
since to calculate this metric, you need to divide the difference by the actual value. This
means that if you have actual values close to 0 or at 0, the MAPE score will receive a
division error by 0 or will be extremely high. Therefore, it is recommended not to use
MAPE when it has real values close to 0 [30].

3.1.4. Mean Absolute Error (MAE)

Mean absolute error is a common metric to use for measuring the error of regression
predictions. The mean absolute error of a model is the mean of the absolute values of the
individual prediction errors on over all instances in the test set. Each prediction error is
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the difference between the true value and the predicted value for the instance [16,31]. It is
given by Equation (8):

MAE =
1
o

o

∑
c=1
| yc − ŷc| (8)

where: yc: are the values taken by the target variable, ŷc: are the values of the prediction,
and o: is the sample size.

3.2. Case Study

For the implementation of the forecast techniques for meteorological variables (tem-
perature, wind speed, solar radiation, and relative humidity), the Python programming
language was used. Information was obtained from the Parque de la Familia Baños
meteorological station, located in Ecuador, Tungurahua province, Baños, coordinates
X = 9, 845, 439, Y = 791, 471. From the database obtained, 1 year of information was
available (from 23 July 2021 to 15 June 2022) with a sampling time of 5 min having a total
of 93,780 data for each variable, where 80% of the database (75,024 data) is used to test the
models, 20% (18,756 data) to test the models, and 2 days (576 data) were used for validation.
To obtain the values of the evaluation metrics (RMSE, MAE, MAPE y R2) the validation
data corresponding to the days 10 June 2022 and 11 June 2022 were used.

The forecast techniques implemented for all variables are the following: multiple linear
regression, polynomial regression, decision tree, random forest, XGboost, and multilayer
perceptron neural network.

To identify which of the models is more efficient, evaluation metrics such as root mean
square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error
(MAE) are used over the entire validation range, while to evaluate whether the forecasting
algorithms fit correctly, the R2 metric is used. It is important to note that these metrics
evaluate different aspects; the RMSE, MAPE, and MAE evaluate the forecasting error, while
R2 allows to analyze how well a regression model fits the real data.

3.2.1. Temperature Forecasting

Table 7 shows the results of the evaluation metrics: root mean square error (RMSE),
mean absolute percentage error (MAPE), mean absolute error (MAE), and coefficient
of determination (R2) for each of the techniques used for temperature forecasting. The
calculation of the root mean square error, mean absolute percentage error, and mean
absolute error was obtained by averaging the errors of the validation data (576 data), while
the calculation of the coefficient of determination (R2) used the data from the training set
and the test set (93,780 data).

Table 7. Evaluation metrics for temperature forecasting.

Technique Coefficient of
Determination (R2)

Mean Absolute
Error (MAE) [◦C]

Mean Absolute Percentage
Error (MAPE) [%]

Mean Square Error
(RMSE) [◦C]

Multiple linear
regression 0.8244 0.6597 3.71 0.8453

Polynomial regression 0.8406 0.6097 3.51 0.8146

Decision tree 0.8593 0.5097 2.95 0.7333

Random forest 0.8631 0.4728 2.73 0.6621

XGboost 0.8599 0.5335 3.09 0.7565

Multilayer perceptron 0.8226 0.9124 5.51 1.2498

Table 7 shows that R2 obtained from the implemented algorithms converge to appro-
priate values, i.e., there is a correct approximation between the real temperature and the
predicted temperature, thus guaranteeing the good performance of the algorithm, which
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allows a comparison of the performance in terms of forecast error. Comparison of the root
mean square errors (RMSE), mean absolute percentage errors (MAPE), and mean absolute
errors (MAE), and analysis of the coefficient of determination R2 of the different techniques
implemented show that the best performing technique for forecasting the temperature
variable is Random Forest, with an R2 of 0.8631, MAE of 0.4728 ◦C, MAPE of 2.73%, and
RMSE of 0.6621 ◦C. This is followed by XGBoost, with an R2 of 0.8599, MAE of 0.5335 ◦C,
MAPE of 3.09%, and RMSE of 0.7565 ◦C.

Figure 5 shows the real (red) and prediction (blue) profiles using the different Machine
Learning techniques to predict the temperature variable: (a) Multiple linear regression
technique, (b) Polynomial regression technique, (c) Decision tree technique, (d) Random
Forest technique, (e) XGboost technique, (f) Multilayer perceptron neural network tech-
nique. Figure 5c,d, validate that the best performance corresponds to the Decision tree and
Random forest techniques.

3.2.2. Relative Humidity Forecasting

Table 8 shows the results of the evaluation metrics: root mean square error (RMSE),
mean absolute percentage error (MAPE), mean absolute error (MAE), and coefficient of
determination (R2) for each of the techniques used for relative humidity forecasting. The
calculation of the root mean square error, mean absolute percentage error, and mean
absolute error was obtained by averaging the errors of the validation data (576 data), while
the calculation of the coefficient of determination (R2) used the data from the training set
and the test set (93,780 data).

Table 8. Evaluation metrics for relative humidity forecasting.

Technique Coefficient of
Determination (R2)

Mean Absolute
Error (MAE) [RH]

Mean Absolute Percentage
Error (MAPE) [%]

Mean Square Error
(RMSE) [RH]

Multiple linear
regression 0.7815 3.0900 3.56 3.7475

Polynomial regression 0.8420 2.2816 2.68 3.0163

Decision tree 0.8547 2.2685 2.65 3.2083

Random forest 0.8583 2.1380 2.50 2.9003

XGboost 0.8597 2.2907 2.67 3.1444

Multilayer perceptron 0.8013 4.6055 5.64 5.5759

Table 8 shows that R2 obtained from the implemented algorithms converge to appro-
priate values, i.e., there is a correct approximation between the real relative humidity and
the predicted relative humidity, thus guaranteeing the good performance of the algorithm,
which allows a comparison of the performance in terms of forecast error. Comparison
of the root mean square errors (RMSE), mean absolute percentage errors (MAPE), and
mean absolute errors (MAE), and analysis of the coefficient of determination R2 of the
different techniques implemented show that the best performing techniques for forecasting
the relative humidity variable are Random Forest, with an R2 of 0.8583, MAE of 2.1380 RH,
MAPE of 2.50%, and RMSE of 2.9003 RH; and XGBoost, with an R2 of 0.8597, MAE of
2.2907 RH, MAPE of 2.67%, and RMSE of 3.1444 RH.

Figure 6 shows the real (red) and prediction (blue) profiles using the different Machine
Learning techniques to predict the relative humidity variable: (a) Multiple linear regression
technique, (b) Polynomial regression technique, (c) Decision tree technique, (d) Random
forest technique, (e) XGboost technique, (f) Multilayer perceptron neural network technique.
Figure 6d and Figure 6c validate that the best performance corresponds to the Random
forest and Decision tree techniques.
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3.2.3. Solar Radiation Forecasting

Table 9 shows the results of the evaluation metrics: root mean square error (RMSE),
mean absolute error (MAE), and coefficient of determination (R2) for each of the techniques
used for solar radiation forecasting. The calculation of the root mean square error, and
mean absolute error was obtained by averaging the errors of the validation data (576 data),
while the calculation of the coefficient of determination (R2) used the data from the training
set and the test set (93,780 data).

Table 9. Evaluation metrics for solar radiation forecasting.

Technique Coefficient of Determination
(R2)

Mean Absolute Error (MAE)
[W/m2]

Mean Square Error (RMSE)
[W/m2]

Multiple linear regression 0.6689 106.9741 164.7435

Polynomial regression 0.7394 76.6667 129.1836

Decision tree 0.7253 75.8177 127.3530

Random forest 0.7333 65.8105 105.9141

XGboost 0.7075 87.6137 145.0170

Multilayer perceptron 0.7423 88.5897 140.0681

Table 9 shows that R2 obtained from the implemented algorithms converge to appro-
priate values, i.e., there is a correct approximation between the real solar radiation and
the predicted solar radiation, thus guaranteeing the good performance of the algorithm,
which allows a comparison of the performance in terms of forecast error. Comparison of
the root mean square errors (RMSE), and mean absolute errors (MAE), and analysis of the
coefficient of determination R2 of the different techniques implemented show that the best
performing techniques for forecasting the solar radiation variable are Random Forest with
an R2 of 0.7333, MAE of 65.8105 W/m2, and RMSE of 105.9141 W/m2; and Decision Tree
with an R2 of 0.7253, MAE of 75.8177 W/m2, and RMSE of 127.3530 W/m2.

Figure 7 shows the real (red) and prediction (blue) profiles using the different Machine
Learning techniques to predict the variable solar radiation: (a) Multiple linear regression
technique, (b) Polynomial regression technique, (c) Decision tree technique, (d) Random
forest technique, (e) XGboost technique, (f) Multilayer perceptron neural network technique.
Figure 7d validates that the best performance corresponds to the Random forest technique.

3.2.4. Wind Speed Forecasting

Table 10 shows the results of the evaluation metrics: root mean square error (RMSE),
mean absolute error (MAE), and coefficient of determination (R2) for each of the techniques
used for wind speed forecasting. The calculation of the root mean square error and mean
absolute error was obtained by averaging the errors of the validation data (576 data), while
the calculation of the coefficient of determination (R2) used the data from the training set
and the test set (93,780 data).

Table 10 shows that R2 obtained from the implemented algorithms converge to appro-
priate values, i.e., there is an acceptable approximation between the real wind speed and
the predicted wind speed, thus guaranteeing the good performance of the algorithm, which
allows a comparison of the performance in terms of forecast error. Comparison of the root
mean square errors (RMSE) and mean absolute errors (MAE) and analysis of the coefficient
of determination R2 of the different techniques implemented show that the best performing
techniques for forecasting the wind speed variable are Random Forest with an R2 of 0.3660,
MAE of 0.1097 m/s, and RMSE of 0.2136 m/s; and XGBoost with an R2 of 0.3866, MAE
of 0.1439 m/s, and RMSE of 0.3131 m/s. It should be taken into account that due to the
high variability of wind speed, the implemented techniques have a lower coefficient of
determination compared to the other variables; however, forecasts with acceptable errors
were obtained. In this case, the value of the mean absolute percentage errors (MAPE) is
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not taken into account because it is used only when it is known that the quantity to be
predicted remains well above 0.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 20 
 

 

XGboost 0.7075 87.6137 145.0170 
Multilayer perceptron 0.7423 88.5897 140.0681 

 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Solar radiation forecast techniques: (a) Multiple linear regression, (b) Polynomial regression,
(c) Decision tree, (d) Random forest, (e) XGboost, (f) Multilayer perceptron neural network.



Electronics 2023, 12, 1007 16 of 19

Table 10. Evaluation metrics for wind speed forecasting.

Technique Coefficient of Determination
(R2)

Mean Absolute Error
(MAE) [m/s]

Mean Square Error
(RMSE) [m/s]

Multiple linear regression 0.3428 0.1614 0.3354

Polynomial regression 0.3770 0.1428 0.3159

Decision tree 0.2142 0.1256 0.2705

Random forest 0.3660 0.1097 0.2136

XGboost 0.3866 0.1439 0.3131

Multilayer perceptron 0.3270 0.1654 0.3616

Figure 8 shows the real (red) and prediction (blue) profiles using the different Machine
Learning techniques to predict the wind speed variable: (a) Multiple linear regression
technique, (b) Polynomial regression technique, (c) Decision tree technique, (d) Random
forest technique, (e) XGboost technique, (f) Multilayer perceptron neural network technique.
Figure 8d validates that the best performance corresponds to the Random forest technique.

Electronics 2023, 12, x FOR PEER REVIEW 17 of 20 
 

 

  
(a) (b) 

  
(c) (d) 

   

  

(e) (f) 

Figure 8. Techniques for wind speed forecast: (a) Multiple linear regression, (b) Polynomial regres-
sion, (c) Decision tree, (d) Random forest, (e) XGboost, (f) Multilayer perceptron neural network. 

Figure 8. Cont.



Electronics 2023, 12, 1007 17 of 19

Electronics 2023, 12, x FOR PEER REVIEW 17 of 20 
 

 

  
(a) (b) 

  
(c) (d) 

   

  

(e) (f) 

Figure 8. Techniques for wind speed forecast: (a) Multiple linear regression, (b) Polynomial regres-
sion, (c) Decision tree, (d) Random forest, (e) XGboost, (f) Multilayer perceptron neural network. 
Figure 8. Techniques for wind speed forecast: (a) Multiple linear regression, (b) Polynomial regression,
(c) Decision tree, (d) Random forest, (e) XGboost, (f) Multilayer perceptron neural network.

4. Conclusions

For the forecasting of meteorological variables in this research, information obtained
from the Parque de la Familia Baños meteorological station located in Ecuador was used
and the following prediction techniques were tested: multiple linear regression, polynomial
regression, decision tree, random forest, XGBoost, and multilayer perceptron neural net-
work. For forecasting the temperature variable, a better result is obtained by using Random
Forest with an R2 of 0.8631, MAE of 0.4728 ◦C, MAPE of 2.73%, and RMSE of 0.6621 ◦C.
In addition, XGBoost also performed well with an R2 of 0.8599, MAE of 0.5335 ◦C, MAPE
of 3.09%, and RMSE of 0.7565 ◦C. For forecasting the relative humidity variable, a better
result is obtained by using Random Forest with an R2 of 0.8583, MAE of 2.1380 RH, MAPE
of 2.50%, and RMSE of 2.9003 RH. In addition, XGBoost also performed well with an R2

of 0.8597, MAE of 2.2907 RH, MAPE of 2.67%, and RMSE of 3.1444 RH. For forecasting
the solar radiation variable, a better result is obtained by using Random Forest with an
R2 of 0.7333, MAE of 65.8105 W/m2, and RMSE of 105.9141 W/m2. In addition, Deci-
sion Tree also performed well with an R2 of 0.7253, MAE of 75.8177 W/m2, and RMSE
of 127.3530 W/m2. For forecasting the wind speed variable, a better result is obtained by
using Random Forest, with an R2 of 0.3660, MAE of 0.1097 m/s, and RMSE of 0.2136 m/s.
In addition, XGBoost also performed well, with an R2 of 0.3866, MAE of 0.1439 m/s, and
RMSE of 0.3131 m/s.

It can be observed that wind speed has the highest variability compared to the other
predicted variables, therefore, the results of the techniques implemented show that the
coefficient of determination R2 of this variable has a lower value. This is due to the type of
signal we are trying to predict; however, acceptable predictions were obtained.

The prediction of meteorological variables (temperature, solar radiation, wind speed,
and relative humidity) will allow future projects to be implemented in the study area, such
as intelligent agriculture to support food problems in that area and the implementation
of a microgrid based on renewable resources where prediction models will support the
planning and operation of the microgrid in real time, allowing clean energy to this locality,
contributing to the reduction in the use of fossil resources, which is the goal that different
countries have set as part of their policies.
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