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Abstract: In this paper, the solution to the problem of robust control of the phase shift during
rotation at a given speed of the unbalanced rotors for a two-rotor vibratory machine is presented.
The solution to this problem is relevant for the development of vibration technologies (for example, a
vibro-transportation of bulk materials). The proposed controller includes two proportional-integral
(PI) rotor speed controllers with a cross-coupling, which receive signals with opposite signs from the
phase shift controller. Unlike previous works, where a PI controller for phase shift control was also
taken, including the adaptive controller with an implicit reference model (IRM), in the present paper,
a relay-type signal controller with an integral component without a parametric adaptation is used.
This approach allows, while maintaining robustness, to increase the operation speed and accuracy of
the control process, avoiding at the same time the possible divergence of the tunable parameters due
to the influence of noises and disturbances caused, among other things, by vibrations of the setup’s
structural elements and measurement errors. For the control law design, the speed-gradient method
was employed. For various types of reference phase-shift signals (constant, harmonic, chaotic), the
results of extensive experimental studies performed on the mechatronic vibration setup and the
simulations accomplished based on the results of identifying the parameters of the stand drive model
are presented in the paper. The obtained results confirm the efficiency and robustness of the proposed
algorithm and allow one to reveal the system performance properties.

Keywords: vibration machine; unbalanced rotors; mechatronics; phase shift; speed-gradient; relay
control; robustness; nonlinear control

1. Introduction

Vibration technologies are used in many areas of industry and production: in the
processing, metallurgical, machine-building, and chemical industries, in the production
of building materials, and in machines for grinding, fine grinding, or surface treatment of
various parts. Vibratory machines have found applications for a huge range of tasks, for
example, in the construction and production of building materials for compacting concrete
mix, soil and road surfaces for the formation of reinforced concrete products, immersing
piles in the ground; in mechanical engineering, the mining industry for drilling, loading,
and delivery of rock mass, screening; in transport for unloading packed materials, bulk
materials; in agriculture as separators, vibratory pumps, and tillage devices. The property
of self-synchronization of the speeds of rotation of several kinematically and electrically
unbalanced rotors is used in machines such as conveyors, feeders, screens, crushers, and
mills; see [1–7] and the references therein.
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The control of the phase shift between the two rotors of a vibrating machine in order
to obtain various types of trajectories of movement of the working platform is essential
in vibration technology and technologies built on its basis. Directed, on average, the
movement of a particle along an oscillating rough surface is the asymmetry of the form of
oscillations due to the inequality of the time intervals between the acceleration extrema,
known as the temporal asymmetry of the oscillations of the working surface; see [5,6,8].
The results obtained are important for the design of vibro-transporters. Changing the
vibro-transportation parameters is traditionally carried out using the settings of the vibra-
tion drives, for example, by the hand-made adjustment of the eccentric masses positions.
An advanced step in the implementation of intelligent technological systems is the use of
the principles of mechatronics by the creation of computer-controlled vibratory systems
with feedback; see [9–12]. In [9], the experimental results obtained at the Multi Resonance
Mechatronic Laboratory Setup (MMLS) SV-2M are presented, showing the efficiency of
the proposed approach. In a recent paper, Andrievsky and Zaitceva [12] demonstrated an
application of the phase-shift control for the chaotization of the platform vibrations. The
approach of [9,10] has been extended by implementing simple adaptive control (SAC) with
an implicit reference model (IRM) in [11], where the possibility of efficiently applying the
SAC method to a real technical system is shown. The algorithm obtained in [11] refers to
the velocity gradient (SG) algorithms, cf. [13–17] and Section 2.2 below, with the imple-
mentation of the controller parameters tuning. However, in real problems, in the presence
of unmodeled dynamics, disturbances (for example, caused by the platform vibrations),
noises, measurement errors, and data sampling, the parameters of the adjustable controller
can leave the allowable zone. Reducing the gain of the adaptation algorithm in combination
with parametric feedback in it, as well as anti-windup correction, reduces the achievable
speed of the system and its accuracy in the tracking mode. Therefore, in this work, another
type of SG algorithm is developed and studied, namely, a robust signal algorithm, where
adjustment of the controller parameters is not employed. This approach allows, while
maintaining robustness, to increase the speed and accuracy of the control process while
avoiding a possible divergence of the controller parameters.

In this paper, we also use new results that simplify the stability analysis and eliminate
some demanding continuity conditions that are usually considered to be necessary for
the stability of the system under analysis. Although most publications base their stability
analysis on Barbalat’s Lemma, which seems to make continuity the necessary condition,
recent publications present a new theorem of stability, which is a direct extension of the
original Lyapunov theorem of stability for the case when the Lyapunov derivative is only
negative semidefinite, and they managed to show that continuity is not needed for stability.

The remainder of the paper is organized as follows. The mathematical preliminaries
are given in Section 2, where the stability analysis is discussed and the Speed-Gradient
(SG) design method in the form used for the phase-shift control law design is presented.
Section 3 presents a brief description of the laboratory setup SV-2M used for carrying out the
experimental research. The control law for synchronization and phase-shift control of the
two-rotor vibration machine is presented in Section 4. Section 5 gives a detailed exposition
of the numerical examination and experimental results for SV-2M control. Concluding
remarks and the future work intentions in Section 6 finalize the paper.

2. Mathematical Preliminaries
2.1. Stability Analysis

To describe the dynamics of the controlled plant, the following equations in the state-
space form are used

ẋ(t) = f (x, θ, t), (1)

where x(t)∈ Rn is the plant state vector; θ(t)∈ Rm denotes control vector (the input vector).
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Important Note: Like almost all publications and as a result of using Barbalat Lemma,
until now, we used to write: “ f (·) is a vector-function continuous in x, θ, t, continuously
differentiable in θ.”

Barbalat Lemma was the result of some counterexamples that seem to show that
a function may reach a finite limit as time tends to infinite, and yet, its derivative may
keep going up-and-down forever. Therefore, at its time, Barbalat’s Lemma was important
because it allowed some analysis of system stability.

It is useful to reproduce the Lemma, which in one of its formulations says: if the
function f (t) has a finite limit as time tends to infinite and if its derivative ḟ (t) is uniformly
continuous, then ḟ (t) tends to a zero limit as time tends to infinity.

As we already mentioned, this was important at the time, as it allowed one to have
some proof of stability. However, these continuity conditions raise doubts about the
guarantee of stability of real-world systems, which contain nonlinearities, because strict
continuity cannot be guaranteed in real-world applications, and therefore, this condition
seems to imply that any occasional discontinuity may negatively affect the stability of
the system.

Fortunately, some late results of LaSalle [18] seemed to mitigate these conditions.
However, any transient term that may affect the strict negativity of the Lyapunov deriva-
tive seems to also affect the stability analysis. Furthermore, using the contribution of
Arzstein [19] to this topic and further developing those first contributions, new results
(see [20–26]) allow to eliminate these tough continuity conditions and thus add to the guar-
antee of stability of applications. Furthermore, a careful review of such delicate concepts
as limit and derivative limit shows that the presumed counterexamples were using com-
mon derivative formulas and were extending them to infinity, even in cases where those
common formulas do not represent derivatives there anymore. An ultimate representative
result of the new analysis is that if a function tends to a finite limit as time tends to infinity,
its derivative must also tend to a zero limit, no matter how the function behaves for finite
argument values.

As new results show, all that is needed from the nonlinear system under analysis is the
guarantee that bounded trajectories cannot pass an infinite distance in finite time. As the
references show, if this condition is satisfied (and it is usually satisfied), then the differential
equation may contain discontinuities and even Dirac impulses.

We reproduce here the new theorem of stability, as formulated by Barkana [24], for the
general nonlinear non-autonomous system

ẋ(t) = f(x, t) (2)

because it greatly simplifies the stability analysis and also ends up being more conclusive
about the ultimate behavior of system trajectories.

The new theorem is based on a simple assumption.

Assumption 1.
β∫

α
‖ f (x(τ), τ)‖dτ is bounded along any bounded trajectory x(t) and for any

finite time interval p = β− α.

Of course, this is only an assumption that must be checked along the bounded trajec-
tories of the system. However, as it only implies that bounded trajectories cannot pass an
infinite distance in finite time, it totally eliminates the need to even mention continuity in
the context of stability, and it is satisfied in most cases. The system function f(x, t) can even
contain impulses and even an infinite impulse sequence, and the only “limitation” is that it
should not contain an infinite number of impulses in any finite time interval.

In order to formulate the new theorem of stability in its most general form, let us
assume that the Lyapunov derivative has the form

V̇(x, t) = W1(x, t) + W2(x, t). (3)
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The first term is negative semidefinite, W1(x, t)60, while the second term, W2(x, t), is a
transient, not necessarily negative term, which is bounded for bounded x and lim

t→∞
(W2(x, t))=0.

We now define the domain Ωi as

Ωi =
{

x
∣∣ lim

t→∞
(W1(x, t)) ≡ 0

}
. (4)

Now, we can write the new theorem of stability in the following simple formulation:

Theorem 1. (The new Theorem of Stability) Let V(x) be a one-to-one differentiable function
bounded from below. Assume that its derivative V̇(x, t) along the trajectories of (2) satisfies
the conditions defined in (3). Then, if Assumption 1 is satisfied, all limit points of any bounded
trajectory x(t) belong to the domain Ωi, cf. [24].

Remark 1. Note that, in order to cover more general nonlinear systems, V(x) is not required to be
positive definite. Furthermore, it only has to be differentiable in the sense of Dini. In other words, as
long as the Lyapunov derivative satisfies condition (3), it does not have to be continuous or bounded,
and it can contain δ-functions or other unbounded functions.

It is worth emphasizing again that, besides the mere existence of solutions, the only
condition that the new Theorem of Stability 1 requires is that bounded trajectories cannot
pass an infinite distance in finite time.

Moreover, and maybe even more importantly, it is worth mentioning that all previous
methodologies, including LaSalle’s, end with the same conclusion, namely, that “V̇ tends to
zero as time tends to infinity.” Therefore, the customary conclusion for the stability analysis
of adaptive control methodologies has been “we don’t know what the ultimate behavior of
the adaptive gains is, yet at least we know that the following error vanishes as time tends
to infinity.”

However, according to early LaSalle’s own observation and, much more so, to Ma-
trosov’s school approach [27], this does not seem to be necessarily true. Actually, as they
observed, the mere conclusion “V̇ tends to zero as time tends to infinity” does not guarantee
much because V̇ may reach zero only to leave it and go through other, nonzero, values in
order to come back and leave again and then keep coming and leaving forever.

Although the system trajectories could still end at the origin or at other equilibrium
points or along some limit cycle, there is no way to know it from the mere result “V̇ tends
to zero as time tends to infinity.”

As this result actually does not promise more than mere stability, which already was
there in Lyapunov’s original Theorem, Matrosov’s school [27] suggests devising and using
a few Lyapunov functions and their derivatives for the same system in an attempt to reach
more satisfactory conclusions regarding the ultimate behavior of trajectories.

Instead, the new theorem of stability 1 simply states that if the derivative of the
Lyapunov function is negative semidefinite (and an eventual temporary non-negative
additional term is also allowed), all bounded trajectories end within the domain defined by
V̇(t) ≡ 0 (note: identically equal zero, rather than simply equal zero). Therefore, according
to the new theorem of stability 1, all state variables and adaptive gains are bounded, and
the system ultimately ends within the domain defined by V̇(t) ≡ 0. In the adaptive control
case, although V̇(t) is only negative semidefinite as it does not contain the adaptive gains,
it still is negative definite in x(t), and the new theorem of stability 1 shows that the system
ends with x(t) ≡ 0. In other words, x(t) not only ultimately reaches zero but also stays zero
thereafter, and the adaptive control system indeed demonstrates asymptotic convergence of
the state and boundedness of the adaptive gains. Moreover, V̇(t) ≡ 0 not only implies that
V̇(t) ends up being zero but also that all its consecutive derivatives end up being zero, and
this provides sufficient relations to determine the ultimate behavior of all state variables,
even if they do not show in V̇(t).
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2.2. Speed-Gradient Method

At the end of 1970s, it turned out to be possible that a unification of various control
algorithms could be achieved if the gradient of the rate of objective function change along
the trajectories of the controlled plant was employed; see [13]. The resulting algorithms
were called Speed-Gradient (SG) algorithms.

A fairly complete exposition of the SG method can be found in [13–17]. This method
is employed in this paper for the nonlinear robust control law design.

Let, for plant model (1), it be required to obtain “admissible control laws” (algorithms)
having the form

θ(t) = Θ
({

x(s)t
s=0
}

,
{

θ(s)t
s=0
})

(5)

with some operator Θ such that the solutions of the system (1), (5) exist and are unique for
t > 0 for any initial values x0, θ0.

When synthesizing the algorithm, a control goal is considered given, expressed by the
asymptotic relation

lim
t→∞

Qt = 0. (6)

or inequalities

Qt 6 ∆ ∀ t > t∗, (7)

where Qt = Q
({

x(s)t
s=0
}

,
{

θ(s)t
s=0
})

is a given objective functional, t∗ < ∞.
Two types of functionals are considered [16]:

1. Local objective functional Qt = Q
(
x(t), t

)
, Q(·)∈ R, (8)

2. Integral objective functional Qt =

t∫
0

q
(
x(s), θ(s), s

)
ds. (9)

In specific tasks, the control goal may contain some additional conditions. For example,
for the integral objective functional, an additional objective goal is also used

lim
t→∞

q
(
x(s), θ(s), s

)
= 0. (10)

The SG algorithm in its “differential form” is the vector θ law of variation, given by
the following differential equation, cf. [13]:

dθ

dt
= −Γ∇θω(x, θ, t), θ(0) = θ0, t > 0, (11)

where ω(x, θ, t) is the derivative of the objective functional due to the system (1); Γ = ΓT > 0
is a positive-definite m×m-matrix of algorithm gains. The Γ matrix is often chosen to be
diagonal (Γ = diag{γ1, . . . , γm}) or scalar (Γ = γIm). Under sufficiently general conditions,
algorithm (11) ensures that system (1) achieves the goal (6). The exact formulation is
given in [13]. Further development of the SG method led to the appearance of more
general algorithms [14–16], in which the derivative of the anti-gradient of the rate of change

in the objective functional is introduced into control law (11):
dθ

dt
= −Γ2∇θω(x, θ, t)−

Γ1
d
dt
∇θω(x, θ, t), where Γ1, Γ2 are symmetric positive-definite gain matrices. Algorithms

of such a structure correspond to the “classical” Proportional Differential (PD) controllers if
θ(t) is taken as the control signal u(t).
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This approach leads to the following algorithm:

θ(t) = −Γ
t∫

0

∇θω(x, θ, τ) dτ − ψ(x, θ, t) + θ0, (12)

where Γ = ΓT > 0 stands for m × m-matrix of algorithm gains; ω(x, θ, t) denotes the
derivative of the objective functional along system (1) trajectories; ψ(x, θ, t) is a certain
vector-function satisfying the following “pseudogradient condition”:

ψ(x, θ, t)T∇θω(x, θ, t) > 0. (13)

For example, as ψ(x, θ, t) one can take

ψ(x, θ, t) = Γ1∇θω(x, θ, t), (14)

ψ(x, θ, t) = Γ2 sign
(
∇θω(x, θ, t)

)
, (15)

where Γi = ΓT
i >0 – m×m-matrices (i = 1, 2), and Γ2 is diagonal.

2.3. SG Algorithms in Finite-Differential Form

Consider algorithm (12)

θ(t) = −Γ
∫ t

0
∇θω(x, θ, τ) dτ − ψ(x, θ, t) + θ0, (16)

where, as above, ω(x, θ, t) is the derivative of the objective functional due to the system (1);
ψ(x, θ, t) is a vector function satisfying the condition (13). Let us extend the class of
algorithms (12), assuming that instead of the condition of positive definiteness of the gain
matrix Γ, a more general condition of non-negative definiteness is satisfied: Γ = ΓT > 0.
Thus, the degeneracy of this matrix is allowed. As shown later in the paper, this allows
one to obtain a wider class of speed gradient algorithms in the finite-differential form. In
such combined algorithms, the parametric adjustment of the controller is joined with the
introduction of a signal component into the control law.

The following condition for the applicability of algorithm (16) with a degenerate
matrix Γ and a local objective functional (8) is derived.

Theorem 2 ([14]). Let:
— For all v∈ Rm, there is a unique solution θ = κ(x, v, t) to equations θ+ ψ(x, θ, t) = v,
— Functions f (x, θ, t), ∇xQ(x, t), ψ(x, θ, t), ∇θω(x, θ, t) bounded in any bounded set{

‖x‖+ ‖θ‖ 6 β, t > 0
}

;
— The growth condition inf

t>0
Q(x, t)→ ∞ as ‖x‖ → ∞;

— Function ω(x, θ, t) is convex in θ;
— There exists a vector θ∗∈ Rm and a function ρ(Q) (ρ(Q) > 0 for Q > 0) such that for all

x, t is valid:

ω(x, θ∗, t) 6 −ρ(Q). (17)

is valid. Then, all the system trajectories with initial conditions belonging to set Ω0 =
{
(x, θ) :

(Im − Γ†Γ)(θ0 − θ∗) = 0
}

are bounded and lim
t→∞

Qt = 0, i.e., the control goal (6), is achieved.

(here Γ† denotes a matrix that is pseudo-inverse to matrix Γ.)

Unlike [14], in the present paper, Theorem 2 is proved without employing the Barbalat
Lemma but is based on the new theorem of stability 1, which eliminates the apparently
necessary continuity conditions.
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Proof. Introduce the Lyapunov function

V(x, θ, t) = Q(x, t) + 1
2‖θ − θ∗ + ψ(x, θ, t)‖2

Γ†Γ (18)

Calculating its time derivative due to the system (1) and (16), we obtain

V̇t = ω(x(t), θ(t), t) + vT
t Γ∇θω(x(t), θ(t), t), (19)

where ω(x, θ, t) is given by (16), vt = θ(t) − θ∗ + ψ(x(t), θ(t), t). According to the con-
dition, v0 ∈ L(Γ), where L(Γ) is the linear span columns of matrix Γ. Algorithm (16),
dvt
dt ∈ L(Γ). Consequently, v0 ∈ L(Γ) for all t > 0, so that Γ†Γvt = vt (Γ†Γ is projector

onto the set L(Γ)). Therefore, (19) becomes V̇t = ω(x(t), θ(t), t) + vT
t∇θω(x(t), θ(t), t). Ap-

plying now the convexity conditions and reachability, we obtain V̇t 6 −ρ
(
Q(x(t), t)

)
6 0.

Hence V(x(t), θ(t), t) 6 V(x0, θ0, 0), which proves the boundedness of the trajectories of

system (1) and (16). So
∞∫
0

ρ
(
Q(x(t), t)

)
dt < ∞, whence using the new theorem of stability 1,

one deduces that lim
t→∞

Q(x(t), t) = 0. This completes the proof.

An important special case of (16) is the finite form of the SG algorithm, which can be
written as (16) for Γ = 0:

θ = θ0 − γψ(x, θ, t), (20)

where γ > 0 is the algorithm parameter (the “gain factor”).
The SG method extension to time-varying nonlinear plants is presented in [28].

2.4. Combined Algorithms for Adaptive Control with Implicit Reference Model

Following [15–17], let us introduce the following signal-parametric adaptation algo-
rithms in systems with the Implicit Reference Model (IRM).

Consider a controlled plant whose output signal directly represents the “error” (dis-
crepancy) σ(t) as follows;

ẋ(t) = Ax(t) + Bu(t), σ(t) = gTx(t), (21)

where x(t)∈ Rn, u(t)∈ Rm, σ(t)∈ R1

Let us pose the control goal in the form of the limit relation lim
t→∞

x(t) = 0, and following

the SG design method, let us pick up the objective function as Qt =
1
2

σ(t)2 and introduce
the auxiliary control goal as ensuring the finite-time convergence of Qt to zero: Qt = 0 for
all t > t∗, where 0 < t∗ < ∞. Note that such an auxiliary goal is also typical for systems
with the variable structure on sliding modes [29–36].

Following the SG scheme, one obtains

Q̇t = ω(x, θ, t) = gTx
(

gT Ax + gTBu(t)
)
. (22)

Let the control law in the main feedback loop be taken as

u(t) = K(t)x(t) + us(t), (23)

where θ(t) = col{K(t), us(t)} denotes the vector of adjustable parameters.
Then, one obtains

∇Kω(x, θ, t) =
(

gTB
)

gTxxT,
∇us ω(x, θ, t) =

(
gTB

)
gTx.

(24)
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Then the SG algorithm of adaptive control in finite form (20) takes the form

u(t) = K(t)x(t)− γsign(gTB)σ(t),
K(t) = −γ1(gTB)σ(t)x(t)T.

(25)

Let us note that in the system (21), (25) a sliding mode occurs on the surface gTx = 0; there-
fore, to achieve the control goal lim

t→∞
gTx(t) = 0, transfer function W(s) = gT

(
sI− A

)−1B

from control input u to measured output σ should be strictly minimal phase [15,16,37].
The control algorithm with the IRM using only output σ(t) measurements can be

derived as the SG algorithm in the finite form (20), which in the considered case takes the
form of a relay control law:

u(t) = −γsign(gTB)σ(t), σ(y) = gTy, γ > 0. (26)

The algorithm can be considered as a particular case of (25), where K(t) ≡ 0.
In the present paper, this form of the control law is used for robust control of the phase

shift between the revolving rotors of the two-rotor vibration machine.

3. Experimental Setup: Two-Rotor Mechatronic Vibration Machine
3.1. Setup Description

The vibration complex used for experiments in this work has ample opportunities
for research. The complex can be used to study such problems of dynamics as vibra-
tional rotation, braking and starting of an unbalanced rotor, the Sommerfeld effect, self-
synchronization of vibration exciters, synchronization control, and vibration isolation from
disturbances. This complex, see Figure 1, consists of a vibration stand with electric drives of
unbalanced rotors, an electronic unit of an amplifier converter for powering electric motors,
a sensor system with a special signal processing controller for measuring the parameters of
the stand, a personal computer with interface devices with physical equipment, software
for real-time control algorithms and processing of received information; see [38]. The setup
is described in many details in [9–11]; therefore, in the present paper, only a brief exposition
is given. All devices of the complex are interconnected in a single closed system in which
mechanical processes and control processes take place.

1 – AC motors, 2 – vibration actuators, 3 – support frame, 4 – helical springs, 5 – vibrating platform

Figure 1. Axonometric view of mechanical part (left) and control board photo (right) of laboratory
mechatronic setup MMLS SV-2M.

The basis of the mechanical part of the complex is a pair of unbalanced vibration
exciters, each of which consists of three-phase induction motors (IM) (1) with a controlled
speed, rigidly connected through a shaft with vibration actuators (2), which are unbalanced
rotors, revolving on the shaft in a vertical plane on the stand body at 2760 rpm, and the
rated electromagnetic torque is 0.04 Nm. The operating speed range of the rotors is from
20 to 120 rad/s. The imbalance of the rotor is achieved by an eccentrically located load
and can be installed in three positions. Anti-vibration helical springs (4) are used to reduce
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the transmission of vibrations of the bench table to support frame (3) and the base under
it. The working platform is attached to base 5. The complex is powered by a single-phase
alternating current with a frequency of 50 Hz and a voltage of 220 V and is turned on
through the electronics-computer facility (Figure 1, right).

Figure 2 shows the functional electrical diagram of the setup. Power frequency
converters (FC) are used to control right (RM) and left (LM) electric motors. The FCs are
connected to the computer via the RS-485 interface and analog control.

The stand is equipped with a system of sensors for eight linear and angular displace-
ments of the platform. Each platform has three linear optical sensors and three optical
angular displacement sensors.

3.2. Servo System Model

The mechanical part of setup SV-2M, pictured in Figure 1, contains two oscillatory
platforms with two groups of springs and has seven degrees of freedom (DoF). Its kinemat-
ics is represented in Figure 2 of [39]. The corresponding dynamics model can be derived
from Equations (1) and (2) of [39], based on the standard Lagrangian formalism. However,
in [39], it is assumed that the control actions are input torques. However, the torques cannot
be directly controlled by the outer equipment or even measured for the existing setup.
These torques are applied from the pair of computer-controlled Induction Motors (IM). The
dynamics of MI are known to be very complex; the complexity of the overall dynamics of
the system also increases dramatically due to the cross-coupling of the mechanical part
and the electrodynamics of the IM. Moreover, the influence of platform vibrations on the
rotation of unbalanced rotors also leads to the mutual cross-coupling of the rotors’ move-
ment, which for the case of pendulum systems was described by Christian Huygens [40].
For multi-rotor machines, this phenomenon is known as self-synchronization of the rotors
and was observed by I.I. Blekhman as the revolving of the electric drive rotor, which is
not switched on to the power circuit. The interaction of rotating rotors at sufficiently
high frequencies leads to the phenomenon of self-synchronization, which is difficult (or
even impossible) to overcome by changing the electrical control signal. The rotor self-
synchronization phenomena were deeply investigated in [1,7,10,41–45]. It also should
be taken into account that, in the system, the industrial frequency converters (Altivar
12 Schneider Electric) are used with their own local controllers, the algorithm for which
is not revealed by the manufacturer. The Coulomb friction, which inevitably exists in the
drives and mechanical transmission of the system, also leads to effects that are difficult to
model accurately, cf. [46–48].

Control Signals

Angular Measurements

PC

CS

FC

FC

LD

RD

CS

Platform

SensorsL.Rotor

R.Rotor

R
S

R
S

R
S

R
S

ϕl , ϕr

ul

ur

Figure 2. Functional electrical diagram for setup control.

Although the dynamics of the system are very complex, since we are interested here
in the revolving of the rotors and not the vibrations of the platform, it is advisable to use
a simplified model for certain conditions assumed for this study that reflects the motor
gains and main time constants with suitable accuracy, using the [10] approach. For SV-
2M, a significant influence of the gravitational (“ pendulum”) torque of the engine is
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observed at low frequencies (up to 5 Hz), which cannot be ignored for the design of the
regulator (cf. [39,49]. However, in the middle and high-frequency ranges (5–20 Hz), the
so-called “averaging property”, i.e., when fast oscillatory components are averaged, and
for rotating rotors, only “slow” movements can be taken into account; see [1]. In addition,
since the induction motors have their local feedback controllers, the dynamics of the drive
systems, including the induction motor and the frequency converter with the feedback
local controller, can be approximately described by the second-order transfer function from
the control signal to angular velocity ω, cf. [50–52] as follows:

Wd(s) =
{ω

u

}
=

b0

a0s2 + a1s + 1
=

kd
T2s2 + 2ξTs + 1

, (27)

where b0, a0, a1 stand for the drive model parameters, where b0 = kd corresponds to the
drive system static gain; T =

√
a0 is the time constant; ξ = a1(2T)−1 denotes the damping

ratio; s ∈ C stands for the Laplace transform variable. Note that the case of ξ 6 1 is also pos-
sible. Then the denominator of (27) can be rewritten as T2s2 + 2ξTs + 1 = (Ts + 1)(τs + 1),
where T1τ = T2, T1 + τ = 2ξT. Model (27) is used in this work at the stage of the controller
design and for the preparatory simulations before providing the real-world experiments in
the SV-2M setup.

3.3. Identification of Motor Model Parameters

The standard non-recursive least squares (LSE) method was used to identify the
parameters of the drive model, cf. [53]. To achieve this, in [10], the drive systems were
excited to obtain data for the identification procedure by applying offset input signals of a
rectangular shape ul , ur, providing a change in the angular velocities of the drive systems
up to about 10 rad/s around the “base” speed ω0. The excitation waveform period of 10 s
and value ω0 = 60 rad/s were set.

To this end, the sampled-data version of model (27) is transformed into the linear
regression form

y[k] = ζ[k]Tθ + v[k], (28)

see [53] for details.
For the considered case, model (27) is represented as

ω(t) = θ1u(t)− θ2ω̈(t)− θ3ω̇(t), (29)

where θ1 = b0, θ2 = a0, θ3 = a1. Since the angular velocity ω is not explicitly measured, at
the stage of parameter estimation, it is replaced by its zero-hold approximation ω̃(t) = ω̃[k]
for t ∈ [tk, tk+1], where tk = kT0, T0 is the sampling interval, k = 0, 1, . . . , and ω̃[k] is
an output of the finite impulse response (FIR) digital differentiator ω̃[k] = (ϕ[k]− ϕ[k−
1])/T0, ϕ[k] = ϕ(tk) is a measured value of ϕ(t) at instant tk. The resulting noise caused
by quantization of ϕ(t) by the optical sensors is then suppressed by the Least-Square
Estimation (LSE) procedure. Three third-order low-pass filters are introduced as

W f (s) =
µ3

s3 + 3µs2 + 3µ2s + µ3 , (30)

where µ > 0 stands for the filter bandwidth. Signals ω̃(t), u(t) are fed to the corresponding
filters (30). Finally, in (28), one has m = 3, ζ ∈ R3, y[k] = ω̃ f (tk), ζ1[k] = −u f (tk),
ζ2[k] = ¨̃ω f (tk), ζ3[k] = ˙̃ω f (tk), where subscript f is referred to the corresponding output of
the state filters, cf. [53–55]. This procedure leads to the estimate θ̂ for θ as θ̂ = Φ†Y, where
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Φ =

 ζ1[1] ζ2[1] ζ3[1]
...

...
...

ζ1[N] ζ2[N] ζm[N]

, Y =

 y[1]
...

y[N]

. (31)

In (31), Φ† denotes the pseudo-inverse matrix to Φ. The pseudo-inverse operation is
made by the standard MATLAB routine pinv.

4. Synchronization and Phase Shift Control of Vibration Setup Actuators

In [9], the following “bidirectional” control law was proposed:

eωl = ω∗l −ωl , eωr = ω∗r −ωr, (32)

δ̇ωl = eωl , uωl = Kiωl δωl + Kpωl eωl , (33)

δ̇ωr = eωr , uωr = Kiωr δωr + Kpeωr , (34)

ψ = ϕr − ϕl , (35)

eψ = ψ∗ − ψ, (36)

σ̇ψ = sin eψ, uψ = −Ki,ψσψ + Kp,ψ sin eψ, (37)

ul = satumax
0 (uωl + uψ), ur = satumax

0 (uωr − uψ), (38)

where ω∗r , ω∗l ; eωl , eωr are the engine speed errors; the PI speed controllers of the left and
right motors are described, respectively; see [9] for more detail. Function satumax

0 (·) in (38)
corresponds to the natural saturation of the FC inputs: ul , ur are non-negative and should
not exceed some maximum value umax. Due to hardware features umax = 216− 1, but out of
caution in this work, umax = 40000 is set. Controller (32)–(38) consists of three PI controllers
with symmetrical cross-coupling between them. The phase shift control law (35)–(37), as
a part of the common control Algorithm (32)–(38), is used to ensure the prescribed phase
shift ψ∗ between the rotors.

The adaptive sampled-data variant of the control law (32)–(38) is proposed and studied
in [11] for the multiply-synchronization case. In the present study, the phase shift control
algorithm (32)–(38) (and its adaptive variant of [11]) is replaced by the non-tunable robust
controller, following from (26). Namely, to avoid the steady state error and, at the same
time, keep the level γ of the relay term in (26) as small as possible, the integrator is added
to the plant input, controlled by another relay component of the control action.

In summary, instead of (32)–(38), the following control law is proposed:

eωl = ω∗l −ωl , eωr = ω∗r −ωr, (39)

δ̇ωl = eωl , uωl = Kiωl δωl + Kpωl eωl , (40)

δ̇ωr = eωr , uωr = Kiωr δωr + Kpeωr , (41)

ψ = ϕr − ϕl , (42)

eψ = ψ∗ − ψ, (43)

∆ω = ωl −ωr, (44)

σ = eψ + τM∆ω, (45)

v̇ = γI sign(σ), (46)

uψ = satūψ

(
v + γ sign(σ)

√
|σ|
)

, (47)

ul = satumax
0 (uωl + uψ), ur = satumax

0 (uωr − uψ), (48)

The “square-root” term in (47) is inspired by the super-twisting method of
Levant [30], Bartolini et al. [35]. By the analogy with (37), also the “sine-modification”
can be used, where (45) is replaced by
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σ = sin eψ + τM sin(∆ω). (49)

This modification is based on the fact that from the point of view of the phase mismatch
of the rotors for vibration systems, the difference in the total number of revolutions does
not matter, and at the same time, at the initial stage of rotors revolving, they do not move
synchronously; therefore, a significant phase shift accumulates, which can lead to large
values of the control signal uψ. This circumstance turned out to be significant for PI
controllers in the phase control loop, especially in their adaptive version. Comparative
analysis based on experimental data (see Section 5) showed, however, that this effect is
of minor importance in the proposed relay control, and therefore a “linear” discrepancy
signal σ(t) in the form of (45) can be used.

The algorithm represented by equations belongs to algorithms of the IRM type (with
an implicit reference model, see). In the case under consideration, this model is expressed
by the identity σ(t) ≡ 0, and the applied control law, according to the SG method, ensures
the decrease in |σ(t)| (see Section 2.2, Equation (10)). Since signal σ of the form (45) can be
rewritten as σ = eψ + τM∆ω = ψ∗ − ψ + τM(ωl −ωr) = ψ∗ − ψ− τMψ̇, then equivalence
σ(t) ≡ 0 means fulfillment of equation τMψ̇ + ψ = ψ∗, which can be called “the reference
equation” by the analogy with the habitual reference model in Model Reference Adaptive
Control (MRAC), cf. [56]. The difference to the MRAC approach is that the reference model

τMψ̇M(t) + ψM(t) = ψ∗(t) (50)

is not a part of the system but implicitly represented by parameter τM of the algorithm.
Based on this property, this method is called the “IRM method”. Although signal ψM is not
used in the control law (32)–(48), it is shown, for clarity, together with ψ(t) time histories in
the experimental part; see Section 5.

Remark 2. As we already wrote, Assumption 1 is satisfied in all cases when bounded trajectories
cannot pass an infinite distance in finite time. How could this assumption be violated? Even if the
differential equation contains impulses, they would only lead to bounded jumps of the trajectories.
Could a sequence of impulse functions make these bounded jumps sum to an infinite distance in
finite time? It is easy to see that this could occur only if there is an infinitely dense sequence of
impulse functions in a finite interval. As this is improbable in any realistic plant, Assumption 1 is
usually satisfied.

5. Numerical Examination and Experimental Results

In this section, the simulation and experimental results for the phase shift control are
presented. All the experiments have been carried out on the mechatronic vibrational setup
MMLS SV-2M, as described in Section 3. The desired rotation frequency ω∗ = 60 rad/s
was set to both rotors. The PI-controller gains for rotational frequency were taken as
kI = 240 s, kP = 1680, both for right and left motor loops. Control law (39)–(49) parameters
were taken as γ = 1000, γI = 500. The controller sampling interval Ts was 0.02 s. For
the simulations, applying the LSE identification procedure of Section 3.3, the following
parameters of the left and right drive system models (27) were found: b0 = 0.0042 s−1,
a0 = 0.119 s2, al = 0.811 s, which gives kdl

= 0.0042 s−1, Tl = 0.62 s, τl = 0.19 s (for the
left drive); b0 = 0.0043 s−1, a0 = 0.1185 s2, a1 = 1.2195 s, which gives kdr = 0.0043 s−1,
Tl = 1.11 s, τl = 0.11 s (for the right drive). The IRM (50) time constant τM = 1 s was taken.
In (47), ūψ = 5000.

As results of experiments and simulations, the responses of the system to a constant,
harmonic and chaotic reference signal on the phase shift ψ∗ between the rotors were obtained.
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5.1. Case of Constant Reference Phase Shift

The results for the case of the constant reference phase shift ψ∗ ∈ {0, π/2, π} rad are
pictured in Figures 3–8.
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Figure 3. Experiment. ωl(t), ωr(t), ω∗(t) (upper plot) and control actions ul(t), uψ(t) (lower plot)
time histories for ψ∗ = 0. Linear error (left column), sine-modification (right column).

The experimental results for ψ∗ = 0 are shown in Figures 3–5. It is seen from Figure 3
that after some transient with the settling time approximately equal to 5 s, both the left and
the right rotor velocities ωl(t), ωr(t) are closed to the reference value ω∗ = 60 s−1. The
sine-modification of the algorithm with (49) leads to smaller control actions ul (the control
signal for the left drive) and uψ (the “phase” control signal) than the usage of the “linear
error” (45), but the difference in the control actions’ magnitudes is not significant. As is
seen from the time histories depicted in Figure 8, the settling time of the phase shift ψ is
about 7 s, and the phase shift state error is small for practice. It should be noted that the
sinusoidal modification can lead to a deviation of the steady-state phase shift from the
specified one by an integer number of revolutions (in this case, by one revolution, angle
2π), which is seen from the phase shift ψ(t) plot in the right column of Figure 4. The
overshoot of the phase shift is explained as a result of the difference between the left and
right rotors’ accelerations due to the different physical properties of the drives. Actually,
the regulation problem is considered in this experiment; therefore, the “reference model”
output ψM(t) ≡ 0. This is a case when the customary MRAC systems [56] “go blind”.
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Figure 4. Experiment. ψ(t), ψ∗, ψM(t) (upper plots) and IMR discrepancy signal σ(t) (lower plots)
time histories for ψ∗ = 0. Linear error (left column), sine-modification (right column).

As stated above, signal σ, see (26) and (45), can be treated as the discrepancy between
the desired and actual system action so that identity σ ≡ 0 corresponds to the reference
model (50) output ψM(t). Equation (50), however, is not a part of the control algorithm.
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For illustration, the time histories of εψ(t) = ψM(t)− ψ(t) are also plotted for the cases of
“linear” discrepancy (45) and the sine-modification (49); see Figure 5.

Similar experimental results for case ψ∗ = π are demonstrated in Figures 6–8. The
plots show that after some transient time of about 10 s, the phase shift ψ(t) reaches the
desired value. The settling time for σ(t) is about 7 s. The chattering of σ(t) is visible,
which is caused by the action of platform vibration to rotors motion, time sampling, FIR
differentiation, and unmodeled dynamics. This chattering, however, does not make a
serious impact on controlled variables ψ, ωl , ωr time histories.
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Figure 5. Experiment. IMR output error εψ(t) = ψM(t)− ψ(t) time history for ψ∗ = 0. Linear error
(left plot), sine-modification (right plot).
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Figure 6. Experiment. ωl(t), ωr(t), ω∗(t) (upper plot) and control actions ul(t), uψ(t) (lower plot)
time histories for ψ∗ = π. Linear error (left column), sine-modification (right column).
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Figure 8. Experiment. IMR output error εψ(t) = ψM(t)− ψ(t) time history for ψ∗ = π. Linear error
(left plot), sine-modification (right plot).

5.2. Case of Harmonic Reference Phase Shift

The case of harmonic reference signal ψ∗(t) is demonstrated by Figures 9–11. For
ψ∗ = π sin(0.1t), the simulation and experimental results can be compared by considering
Figures 9 and 10. As can be seen from the plots, the processes in the systems have similar
characters, but the simulation results, as is usually the case, show better system performance
than the experiment. For our system, this phenomenon can be explained, first of all, by the
influence of unmodeled setup dynamics and the Coulomb friction between the moving
parts. Due to friction, the starting of the right engine is delayed, and as a result, as with
a constant reference action, a significant deviation of the rotation speeds of the engines
occurs during start-up and, consequently, a large overshoot in phase.

The experimental results for ψ∗ = π sin(0.2t), presented in Figure 11, show that after
a transient process lasting about 10 s, the system behavior is close to the reference one (with
accuracy in 3 revolutions in the case of sin-modification).
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Figure 9. Simulation (left column) and experiment (right column). ωl(t), ωr(t), ω∗(t) (upper plot)
and control actions ul(t), uψ(t) (lower plot) time histories for ψ∗ = π sin(0.1t). Sine-modification.

5.3. Case of Chaotic Reference Phase Shift

Andrievsky and Zaitceva [12] used the Lorentz system as a source of the reference
phase shift. The Lorentz generator is represented by (see [57–61]):

ẋ1(t) = mt
(
28x3(t)− x1(t)− x2(t)x3(t)

)
,

ẋ2(t) = mt
(

x1(t)x3(t)− 2.666x2(t)
)
,

ẋ3(t) = 10mt
(
x1(t)− x3(t)

)
,

ψ∗(t) = cx1(t), (51)

where mt and c denote the time and output scaling factors, respectively. The corresponding
time histories of ωl(t), ωr(t), ω∗(t), ul(t), uψ(t), ψ(t), ψ∗(t), ψM(t), σ(t) for chaotic ψ∗(t)
as an output of system (51) with mt = 0.1, c = 0.125 are depicted in Figure 12.
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Experimental results with chaotic reference actions, in addition to the direct purpose
for the chaotization of the movement of platforms, as in [12], are also helpful for establishing
the properties of the system in a wide frequency range, cf. Bucolo et al. [62].
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Figure 10. Simulation (left column) and experiment (right column). ψ(t), ψ∗(t), ψM(t) (upper plot)
and IMR discrepancy signal σ(t) (lower plot) time histories for ψ∗ = π sin(0.1t). Sine-modification.
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Figure 11. Experiment. Left column: ωl(t), ωr(t), ω∗(t) (upper plot) and control actions ul(t), uψ(t)
(lower plot) time histories; right column: ψ(t), ψ∗(t), ψM(t) (upper plot) and IMR discrepancy signal
σ(t) (lower plot) for ψ∗ = π sin(0.2t). Sine-modification.
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5.4. Limitations of the Proposed Solution

In Section 3.2, the model of mechatronic stand dynamics is discussed. Its complexity,
the difficulties in its complete description are outlined, and simplifying assumptions that
were used in the synthesis and numerical study (computer simulation) of the proposed
control algorithm are mentioned. Actually, in a real system, the efficiency of the proposed
algorithm is limited, and these limitations cannot be revealed by the simplified model
used. The effect of these restrictions is manifested depending on the operating speeds of
the drives.

1. At rotor speeds of about 23 rad/s, there is a lower resonant frequency of movement
of the main stand platform. In this case, “destructive” oscillations of the platform appear,
which come into collision with the stand supports. Naturally, imparting the required con-
stant speed and phase of the rotors’ rotation is impossible due to the significant mechanical
connection between the movements of the platform and the rotors revolving.

2. The rotation speed must be high enough to ensure the averaging property specified
in Section 3.2 , cf. [1,39,49]. If this is not the case, then the gravitational (“pendular”) torque
acting on the unbalanced rotors is not averaged during rotation but leads to significant
fluctuations in the speed of the rotors revolving. This effect cannot be smoothened by
the rotor speed control algorithm used, and respectively, it is not possible to provide the
required phase shift between the rotors’ angles. As shown in [49], and confirmed by the
present study, the lower frequency bound where the averaging property manifests itself is
about 30 rad/s. The experimentally obtained time histories of ωl(t), ωr(t), ψ(t), ψ∗(t) for
ω∗ = 10 rad/s, ψ∗ = 0 are shown in Figure 13.

0 5 10 15 20 25 30
t, s

0

5

10

15

20

l, 
r, 

*,
 r

a
d
/s

l r *

0 5 10 15 20 25 30
t, s

-200

-100

0

100

200

, 
*,

 r
a
d *

Figure 13. Experiment. Left plot: ωl(t), ωr(t), ω∗(t); right plot: ψ(t), ψ∗(t) time histories for
ω∗ = 10 rad/s, ψ∗ = 0.

3. If the revolving speed of the rotors is sufficiently high, then the phenomenon of
self-synchronization of their rotation acquires a significant influence. This effect is essential
for oscillatory systems and was first noticed by C. Huygens. It was described in detail
in the works by I. Blekhman and his colleagues, cf. [1,7,10,41–45]. Revolving imbalanced
rotors are subject to mutual influence through “pushes” transmitted between the rotors by
the stand structure parts. Despite the fact that the proposed algorithm is able to provide
the given rotation speeds of each rotor, it is not possible to obtain the required phase shift
between their angles. An experimental study of this phenomenon is presented in [49]
and confirmed by the present research. For the high-frequencies, starting from 75 rad/s,
the achievable phase shift range is narrowed, but if the frequency is 125 rad/s, then the
desired phase shift up to ±π/2 rad can be ensured. This property is demonstrated by the
experimental results shown in Figure 14, where the time histories of ωl(t), ωr(t), ψ(t) for
ω∗ = 80 rad/s, ψ∗ = π are plotted. It is seen that ψ(t) does not tend to the desired value π
but demonstrates slow oscillations around it with those close to π radians magnitude.

4. At the rotation frequency close to 125 rad/s, the Sommerfeld effect [1] takes place.
Its appearance prevents a further increase in the speed of the rotors revolving, and special
measures are required to overcome this effect. The proposed algorithms do not work under
these circumstances.
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Figure 14. Experiment. Left plot: ωl(t), ωr(t), ω∗(t); right plot: ψ(t), ψ∗(t) time histories for
ω∗ = 80 rad/s, ψ∗ = π.

Thus, for this stand, the operating range of using the proposed algorithm is 30–75 rad/s.
Note that the low-frequency region is not typical for vibration technologies; the main inter-
est is in the upper frequencies.

From the point of view of the authors, these limitations are inevitably inherent in
the physical system under consideration; therefore, the use of more complex models,
as, for example, in [63], for designing a controller can hardly lead to an expansion of
control capabilities, since it is intuitively clear that feedback over the control loop is rather
“soft” due to transients in electromagnetic circuits of controller equipment, whereas a
direct rigid mechanical connection between the rotors is provided by the expense of
structural interrelation.

5.5. Robustness Analysis

The proposed control algorithm (39)–(48) was positioned as a robust one. This property
is provided in it by the presence of relay components, in contrast to the control law of [11],
where robustness is carried out by adaptive adjustment of the controller parameters. This
property is numerically examined by simulations.

The following objective functions are chosen: (1) the control error settling time t∗e , that
is, the moment from which the error eψ(t) falls into the 3% zone from its initial value eψ(0)
and remains in it; (2) time t∗σ taken for discrepancy signal σ(t) in (45) finally entering the
3%-zone of σ(0). This criterion is reasonable since, as noted above, for systems with IRM,
the proximity of σ(t) to zero indicates that the closed-loop system dynamics are close to
the reference ones.

Below, the examination results of the deviating plant model parameters on±50% from
the initial ones, which can be called “nominal”, are derived by the identification procedure
of Section 3.3 as b0 = 0.0042 s−1, a0 = 0.119 s2, al = 0.811 s. Control law (39)–(48) gains
were taken as γ = 1000, γI = 500.

The dependence of quality indices t∗e , t∗σ on the control law gains γ ∈ [0, 2000],
γI ∈ [0, 1000] is studied for the fixed (nominal) plant model parameters. This study is
aimed not only at establishing the robustness of the control algorithm but also at indicating
how sensitive the system performance is to the choice of controller parameters during
the design.

Throughout the studies, the parameters of the PI speed controllers (39)–(41) were
taken from [10] as kI = 240 s, kP = 1680, for both right, and left, velocity controllers. The
calculations were carried out for a fixed reference frequency ω∗ = 60 rad/s and a reference
phase shift as ψ∗ = π rad, and the sampling interval was set to Ts = 0.02 s.

5.5.1. Robustness with Respect to Plant Model Parameters

The numerical study results as dependencies of t∗e , t∗σ on plant model parameters a1, b0
are demonstrated by the 3D plot and the contour chart in Figures 15 and 16, respectively. It
is seen that the plant parameter variations in the wide range do not lead to a drastic change
in the close-loop system behavior and, therefore, confirm its robustness. Furthermore, the
simulation results show a characteristic property of systems with the IRM: the decay time
t∗σ of the discrepancy signal σ(t) in the control algorithm turns out to be significantly less
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than the time of the transient process t∗e in the main control loop, that is, the dynamics of
the controlled variable reach the desired one even during the transients.
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Figure 15. Simulations results. Dependence of t∗e on plant model parameters a1, b0, varying on±50 %;
γ = 1000, γI = 500, ω∗ = 60 rad/s, ψ∗ = π. Left: 3D plot, right: contour plot; asterisk ? is for
“nominal” parameters.
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5.5.2. Robustness with Respect to Controller Parameters

The results of the numerical analysis of the system robustness with respect to controller
coefficients are shown in Figures 17 and 18 in the form of a 3D plot and a contour chart.
It can be seen that the surfaces of indices t∗e , t∗σ are rather “flat”; thus, the procedure for
controller design does not require a deep analysis of the model and calculations, as it is
enough to choose them, as it did do, based on reasonable grounds based on a preliminary
acquaintance with the properties of the object under consideration as a result of several
experiments. The graphs also show a sharp increase in quality indicators at some borders.
It is associated with the sensitivity of the selected criteria to the phenomenon of chattering,
which manifests itself in the region of small values of the coefficient γ of direct (relay-
proportional) connection compared to the relay-integral gain γI . The chattering amplitude
itself is small (and is less for system output compared with auxiliary signal σ), but in this
region, it may be outside the 3% zone for which the process durations are calculated.
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6. Conclusions

In the paper, the problem of robust control of the phase shift during rotation at a given
speed of the unbalanced rotors for a two-rotor vibratory machine is presented by designing
the controller, including two proportional-integral (PI) rotor speed controllers with a cross-
coupling, and a relay-type signal controller with an integral component. For the control law
design, the speed-gradient method was employed. For various types of reference phase
shift signals (constant, harmonic, chaotic), the results of extensive experimental studies,
performed on the mechatronic vibration setup and the simulations, accomplished based
on the results of identifying the parameters of the stand drive model are presented in the
paper. The obtained results confirm the efficiency of the proposed algorithm and allow one
to reveal the system performance properties. The main results of the paper are consolidated
in Table 1.

In future works, we will use the new stability analysis results to prove that the other
parameters do not just “remain bounded”, which may also imply that they may keep
moving around at their free will but that they actually end at finite values. In the future, it
is also planned to consider the possibility of replacing PI speed controllers with relay ones
similar to those used in this work in the phase control loop. It seems possible to circumvent
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the need to measure the angular acceleration and the difficulties associated with this by
using a parallel feedforward compensator (a “shunt”).

Table 1. Main results.

# Content Comment

1 Simplification of stability analysis for eliminating certain
continuity conditions Section 2.1, Theorem 1

2 Relay phase-shift control law with IRM Equations (39)–(41)
3 Sine-modification of phase-shift controller Equation (49)
4 Algorithm for parameteric identification of drive systems Section 3.3

5 Analysis of the limiting possibilities of feedback synchronization
control for two-rotor vibrating machines Section 5.4

6 Robustness analysis of relay phase-shift control Section 5.5
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Abbreviations

The following abbreviations and notations are used in this manuscript:
DoF Degrees of Freedom
FC Frequency Converter
FIR Finite Impulse Response
IM Induction Motor
IRM Implicit Reference Model
LSE Least-Square Estimation
MMLS Multi-Resonance Mechatronic Laboratory Setup
MRAC Model Reference Adaptive Control
PD Proportional-Differential
SAC Simple Adaptive Control
SG Speed Gradient
SGA Speed-Gradient Algorithm
Γ† pseudo-inverse to matrix Γ
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