
Citation: Guo, X.; Kong, D.; Lian, R.;

Liu, Y.; Xia, M. A Study on

Characteristic Mode Equations of

Radiation Problems Contrasted with

Scattering Problems for Dielectric

Bodies. Electronics 2023, 12, 704.

https://doi.org/10.3390/

electronics12030704

Academic Editor: Giovanni Leone

Received: 30 October 2022

Revised: 19 January 2023

Accepted: 28 January 2023

Published: 31 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Study on Characteristic Mode Equations of Radiation
Problems Contrasted with Scattering Problems
for Dielectric Bodies
Xingyue Guo 1,* , Dehua Kong 2 , Renzun Lian 3, Yuanan Liu 1 and Mingyao Xia 2,*

1 School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
2 School of Electronics, Peking University, Beijing 100871, China
3 School of Electronic Engineering, Xidian University, Xi’an 710071, China
* Correspondence: gxy4010@126.com (X.G.); myxia@pku.edu.cn (M.X.)

Abstract: This paper is concerned with the extractions of electromagnetic characteristic modes (CMs)
for lossless dielectric bodies, for which spurious modes are prone to generate using the traditional
definition of CMs based on the Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT) equations.
It is found that the impedance matrix of PMCHWT equations cannot distinguish (i) which domain is
the dielectric body and which domain is the background and (ii) from which domain the excitation
source was applied. If the system is taken as a scattering problem, the spurious modes are solutions
to a reverse media problem, i.e., exchanging the media of the dielectric body and the background
space. However, if the system is taken as a radiation problem, no appropriate CMs that meet the
specified boundary conditions are obtained. These phenomena indicate that CMs developed from
scattering systems are not suitable for radiation systems. To clarify the issue, four cases with reverse
media and with excitation sources in either domain are examined. The four cases are distinct in
essence, but the PMCHWT equations cannot distinguish them. As a result, definitions of CMs for the
four cases should be given along with their specific boundary conditions. Especially, the CMs for the
radiation problems we consider here show that the excitation source inside the material object should
be properly defined in order to be distinguished from scattering problems.

Keywords: characteristic modes; dielectric bodies; spurious modes; radiation problems; reverse
media; scattering problems

1. Introduction

The theory of characteristic modes (TCM) based on the electric field integral equation
(EFIE) for a perfectly electric conductor (PEC) was proposed by Harrington and Mautz
in 1971 [1]. The resulting characteristic modes (CMs) are not dependent on the excitation
source but on the structure and material of the object. Due to this superior property, it
has been employed as a great potential analysis tool for antenna design [2], such as in the
reduction of the cross-sections of radar antenna [3], the improvement of multiple-input-
multiple-output antenna [4], etc.

Subsequently, TCM was generalized to material objects by employing a volume
integral equation (VIE) [5] and a surface integral equation (SIE) [6]. Unfortunately, the SIE-
based TCM was reported to generate spurious modes [7]. In order to remove these spurious
modes, there are some valuable formulations [8–13], including building a dependent
relationship between equivalent electric and magnetic currents [8–14] and making the
right-hand side of the generalized eigenvalue equation (GEE) related to only radiated
power [11–13]. Thus far, the spurious modes have almost been suppressed.

However, few researchers have discussed why the spurious modes appear when using
SIE-based TCM, especially the traditional TCM based on the symmetric PMCHWT by
Chang and Harrington [6] (CH-sPMCHWT-TCM). Miers and Lau [15] think that internal
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resonance may partly explain this phenomenon because sPMCHWT could not remove
internal resonance. However, the spurious modes still exist when sPMCHWT is changed to
asymmetric PMCHWT (CH-PMCHWT-TCM). Thus, the internal resonance should not be
responsible for the spurious modes [16]. As a remedy, some researchers [8,10,16] found that
the spurious (non-physical) modes do not obey the dependent relationship of equivalent
electric and magnetic currents, while the physical modes do. Namely, the dependent
relationship can be taken as a post-process technology to separate the physical and non-
physical modes. Bernabeu-Jiménez et al. [17] pointed out that the spurious modes can be
excited by an internal source for the infinite lossless dielectric cylinder, which means that
the spurious modes may exist in reality and are renamed as non-radiation modes. However,
the spurious modes of lossless material objects are found to be coincident with the CMs
of the reverse problem, where the material parameters of the object and the background
are swapped [18].

The CMs for material objects are independent of the excitation source, so they are
expected to be applicable to analyses of both scattering and radiation problems. It is noted
that existing SIE-based formulations are essentially established in the scattering system
framework. Therefore, the formulations are suitable for scattering problems indisputably.
It is uncertain whether the resulting CMs include those of radiation problems, especially
when the sources are inside the objects. Recently, our previous work [19] revealed that
EFIE-based TCM [1] is not appropriate for wave-port-fed transmitting PEC structures.

There are some existing works that apply TCM to deal with real antenna systems;,
mainly by using a mixed potential integral equation with the spatial domain Green’s
functions of multilayer mediums [20,21] or volume and surface integral equations [22,23],
other than the forementioned SIE-based TCM. It is worth mentioning that the radiation
problem we will consider is that the source is inside the material object.

In this paper, we will discuss four physical models with reverse media and with the
excitation source in either domain in order to demonstrate the reason why CH-PMCHWT-
TCM is prone to generate spurious modes. We find that the impedance operator of the
PMCHWT equation mixes the two different media without specified excitation and is also
the same whether the excitation is inside or outside. For this reason, we define the CMs of
the four cases by using specified boundary conditions.

2. Traditional Theory for Four Physical Problems

It is known that the PMCHWT equation solves a mixed problem with two different
media and gives a unique solution for a specified excitation. However, for a characteristic
mode problem that is independent of the excitation, if improperly defined, the generalized
eigenvalue equation (GEE) may not be able to distinguish (i) the two domains if their media
are reversed and (ii) the excitation from inside or outside. Let us start with the four cases,
as shown in Figure 1. Cases (A) and (B) are scattering problems to be excited from the
outside, but the media are reversed. Cases (C) and (D) are radiation problems to be excited
from the inside.
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For the scattering problem (A), in terms of the extinction theorem, the surface equiva-
lent currents (Js, Ms) would generate (−Einc,−Hinc) in V1 if V1 were filled with the same
medium as in V2, while (−Js,−Ms) would generate zero fields in V2 if V2 were filled with
the same medium as in V1, i.e.,

− η2L2(Js) +K2(Ms) = −Einc, r ∈ V1 (1)

− ζ2L2(Ms)−K2(Js) = −Hinc, r ∈ V1 (2)

− η1L1(−Js) +K1(−Ms) = 0, r ∈ V2 (3)

− ζ1L1(−Ms)−K1(−Js) = 0, r ∈ V2 (4)

where ηi = 1/ζi =
√

µi/εi, and the operators are defined as

Li(X) = jki

∮
S

[
Gi(R)X(r′) +

1
ki

2∇Gi(R)∇′·X(r′)
]

dS′ (5)

Ki(X) =
∮
S

X(r′)×∇Gi(R)dS′. (6)

When the observation points approach the surface S from the inside and outside,
respectively, we would recognize that K2(X) = K̃2(X)− 1

2 n̂× X and K1(X) = K̃1(X) +
1
2 n̂× X, with K̃i(X) being the principal-value part of Ki(X). After the discretization of
(1)–(4) by the Galerkin method with the RWG basis functions {fn(r), n = 1, · · · , N} and
singularity treatment [24], we can obtain[

η2L2 −K̃2 +
1
2C

K̃2 − 1
2C ζ2L2

][
J
M

]
=

[
Einc

Hinc

]
(7)

[
η1L1 −K̃1 − 1

2C
K̃1 +

1
2C ζ1L1

][
J
M

]
= 0 (8)

where the matrix elements are

[Li]m,n =
〈
fm(r),Li(fn(r′))

〉
(9)

[Ki]m,n =
〈
fm(r),Ki(fn(r′))

〉
(10)

[C]m,n = 〈fm(r), n̂× fn(r)〉. (11)

By denoting

Z̃i =

[
ηiLi −K̃i
K̃i ζiLi

]
,D =

[
0 C
−C 0

]
(12)

F =

[
J
M

]
,V =

[
Einc

Hinc

]
(13)

we may rewrite (7)–(8) compactly as

Z̃+
2 F = V (14)

Z̃−1 F = 0 (15)

with
Z̃±i = Z̃i ±

1
2
D, i = 1, 2. (16)
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Adding (15) to (14), one obtains the classical PMCHWT equation

Z̃ F = V (17)

where Z̃ = Z̃−1 + Z̃+
2 = Z̃1 + Z̃2. Make Z̃i = R̃i + jX̃i, with

R̃i =
1
2

(
Z̃i + Z̃H

i

)
, X̃i =

1
2j

(
Z̃i − Z̃H

i

)
(18)

in which the superscript “H” denotes the Hermitian transpose. As one of the traditional
ways, the GEE is defined by Z̃Fn = (1 + jλn)

(
R̃1 + R̃2

)
Fn, i.e.,(

X̃1 + X̃2

)
Fn = λn

(
R̃1 + R̃2

)
Fn. (19)

which is the so-called CH-PMCHWT-CM [6,16]. Unfortunately, this formulation would
generate many spurious modes, as reported in [7–12].

To identify the reason, we may check the solutions with the boundary condition (15)
and find that these spurious modes do not observe it, as reported in [16]. This means that
these modes are not physical solutions to scattering problem (A). Then, what boundary con-
dition do these spurious modes satisfy? There exist problems (B), (C) and (D), as displayed
in Figure 1, all of which can obtain a GEE similar to (19) if following the conventional way,
as discussed below.

For the scattering problem (B) in Figure 1, the corresponding equations to (14)–(15) are

Z̃+
1 F = V (20)

Z̃−2 F = 0. (21)

Adding these two equations, one obtains the same PMCHWT equation as (17), and
then the same GEE as (19), but the boundary condition (BC) needing to meet is (21), not (15).

For the radiation problem (C) in Figure 1, by using the same procedure as described
for problem (A), we can obtain the corresponding equations to (14)–(15) as

Z̃−1 F = −V (22)

Z̃+
2 F = 0. (23)

Again, the addition of these two equations gives the same PMCHWT equation as (17)
and the same GEE as (19), but the BC needing to meet is (23).

Finally, for radiation problem (D), the corresponding equations to (14)–(15) are

Z̃−2 F = −V (24)

Z̃+
1 F = 0. (25)

It is apparent that the PMCHWT and GEE equations for this problem are also (17) and
(19), respectively; however, the BC needing to be met becomes (25).

In summary, the PMCHWT Equation (17) and the GEE (19) cannot distinguish the
four cases in Figure 1. One must use one of the boundary conditions (BCs) of (15), (21), (23),
or (25) to select suitable modes.

Referring to (8), the solution of (15) is

J = ζ1S+1 M, or M = −η1S+1 J (26)

with
S±i = (Li)

−1(K̃i ±
1
2
C), i = 1, 2. (27)
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Similarly, solutions of (21), (23), and (25) can also been obtained, respectively,
as follows:

J = ζ2S+2 M, or M = −η2S+2 J (28)

J = ζ2S−2 M, or M = −η2S−2 J (29)

J = ζ1S−1 M, or M = −η1S−1 J. (30)

There are two schemes to judge which one of the four problems the modes Fn solved
from GEE (19) satisfy. One way is to submit the found characteristic modes Fn into (15), (21),
(23), or (25) and then see whether the corresponding error of matrix-vector multiplication
[Z±k ][Fn], k = 0, 1 is sufficiently small. The error is defined as

error =

√√√√ 2N
∑

i=1

∣∣∣∣∣ 2N
∑

j=1
[Z±k ]i,j[Fn]j

∣∣∣∣∣
2

√
2N
∑

j=1

∣∣∣[Fn]j

∣∣∣2 , k = 0, 1 (31)

Another way is to calculate the correlation coefficient of the known and new charac-
teristic electric and magnetic currents as in [16], where the known characteristic modal
electric and magnetic currents (Jn, Mn) are constructed by Fn, and the new modal electric
J′n are obtained by submitting the known characteristic magnetic currents Mn into (26), (28),
(29) or (30), i.e., J′n = J′n(Mn). Analogously, the new magnetic currents M′n(M′n = M′n(Jn))
are obtained from the known Jn. For brevity, the resulting new modal currents computed
from (26), (28)–(30) are denoted as ((J′n)K, (M′n)K) with symbol ‘K’ = ’A’, ’B’, ’C’ or ’D’,
respectively. For instance, if the n-th mode is the solution of problem (A), ((J′n)A, (M′n)A)
should be the same as (Jn, Mn). A similar scheme applies to other problems. In order to
judge the equality, we can define the correlation coefficients as

K−ρJ
(
Jn,
(
J′n
)

K

)
=

|〈J′n, (J′n)K〉|√
〈Jn, (J′n)K〉

√
〈(J′n)K, (J′n)K〉

·min
{

〈Jn, Jn〉
〈(J′n)K, (J′n)K〉

,
〈(J′n)K, (J′n)K〉
〈Jn, Jn〉

}
(32)

K−ρM
(
Mn,

(
M′n
)

K

)
=

|〈(M′n)K, (M′n)K〉|√
〈Mn, Mn〉

√〈
(M′n)Kn, (M′n)K

〉 ·min
{

〈Mn, Mn〉
〈(M′n)K, (M′n)K〉

,
〈(M′n)K, (M′n)K〉
〈(M′n)K, (M′n)K〉

}
(33)

One mode is identified to satisfy one of the four problems if both of its correlation coeffi-
cients K−ρJ and K−ρM are close to 1 for ‘K’ = ’A’, ’B’, ’C’ and ’D’.

One example is given to observe which one of the four cases the modes solved
from GEE (19) satisfy. A cubic dielectric resonator (DR) (a = b = c = 25.4 mm) in [15] is
considered since it has been frequently applied as a verified example [11–14]. Its constitutive
parameters are εr1 = 9.4 and µr1 = 1.0, and the background is the air, i.e., εr2 = 1.0 and
µr2 = 1.0. The cubic DR is meshed as 528 triangular patches.

The real part of characteristic eigenvalues solved from GEE (19) is displayed in Figure 2,
with a frequency range from 2.0 GHz to 4.5 GHz. Good agreements can be observed with
the results in [18]. The solid red lines represent the so-called physical characteristic modes
of scattering problem (A), and the black lines denote the spurious modes of scattering
problem A.

In order to understand the underlying physical meaning of these spurious modes, we
apply the BCs of the four problems (A), (B), (C), and (D). The errors and correlation coeffi-
cients of the first 70 lower-order modes at a frequency point of 2.0 GHz are demonstrated in
Figure 3. It is noted that the evaluated standard is less than 1 × 10−6 for the error scheme,
while the standard is bigger than 0.95 for the correlation coefficient scheme. It is obviously
observed that some modes of the first 70 modes satisfy the BC of scattering problem (A),
but some modes satisfy the BC of scattering problem (B). For instance, the correlation coef-
ficients

(
A−ρJ , A−ρM

)
of modes 1–11 are close to zero, and its error is more than 1 × 10−6,
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which means these modes truly do not satisfy the BC of problem (A). Thus, these modes are
not the solutions to problem (A) and are indeed spurious modes. However, their correlation
coefficients

(
B−ρJ , B−ρM

)
are bigger than 0.95, and the corresponding error is less than

1 × 10−6. This implies that these spurious modes may be solutions to problem (B). On the
contrary, modes 12–14 are solutions to problem (A) due to A−ρJ ≈ 0.998, A−ρM ≈ 0.998
and A−ρJ ≈ 0.998. The further comparison of visualized electric and magnetic currents
can lead to the same conclusion as discussed below.
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Herein, we can select any one physical mode and spurious mode from Figures 2 and 3
to demonstrate their current distributions. For convenience, modes 1 and 13 are considered,
where mode 1 is the first spurious mode in Figure 2 and mode 13 is the first physical
mode in Figure 2 for scattering problem (A). The corresponding characteristic electric and
magnetic currents are displayed in Figures 4 and 5, compared with the new ones from the
boundary conditions (BCs) of the four cases. Symbols J and M represent known electric and
magnetic currents obtained from Equation (19), while symbols J’(M) and M’(J) represent
new currents by submitting M and J into one BC of the four problems. The prefixes A, B,
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C and D represent the BCs of problems (A), (B), (C), and (D). As previously mentioned,
original currents should be matched with the resulting new currents if this mode satisfies a
relevant BC. In Figure 4, it is apparently observed that the original currents (J, M) of mode
1 agree well with the new currents (B-J’(M), B-M’(J) from the BC of problem (B), which
demonstrates mode 1 obeys the BC of problem (B). Similarly, mode 13 obeys the BC of
problem (A), as displayed in Figure 5.
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Furthermore, the modal powers of the first 70 lower-order modes are demonstrated in
the bottom sub-figure of Figure 3. Here, P2 = FH

n R̃2Fn means the radiated power of the
n-th mode for problem A or dissipated power for problem B, and P1 = FH

n R̃1Fn indicates
the dissipated power of the n-th mode of problem (A) or radiated power of problem (B).
We can find that the physical modes are modes with a unitary radiated power of problem
(A), and the spurious modes are modes with zero radiated power of problem (A). Thus,
these spurious modes are non-radiation modes for problem (A). However, the normalized
radiated power of these modes are equal to one for problem (B).

The discussions above explain from the perspective of boundary conditions why
the spurious modes are indeed solutions to problem (B), as found in [18], for lossless
materials. However, the interesting phenomenon is that none of these modes satisfies the
BCs of radiation problems (C) or (D). The characteristic modes are often considered to be
source-free since GEE (19) does not contain an excitation source. Does this mean that the
characteristic modes are appropriate for both scattering problems and radiation problems?
Obviously, problems (A) and (C) are, respectively, the scattering and radiation problems.
However, no one mode is found to satisfy the BC of problem (C). The characteristic modes of
scattering problem (A) are not suitable for radiation problem (C). In other words, scattering
systems and radiation systems are distinct. In a word, CH-PMCHWT-TCM indeed does
not identify the boundary or object media for an external source scattering problem and
also does not extract characteristic modes of an internal source radiation problem. The
proper definitions are needed for the four cases.

3. Definition of Radiation Characteristic Modes

It is clear that the problems (A), (B), (C), and (D) are different with specific boundary
conditions (15), (21), (23), and (25), although with the same PMCHWT Equation (17).
Therefore, we understand that (i) the scattering problem (A) is to solve (17) subject to (15),
(ii) the scattering problem (B) is to solve (17) subject to (21), (iii) the radiation problem (C) is
to solve (17) subject to (23), and (iv) the radiation problem (D) is to solve (17) subject to (25).

In addition, our previous work [11,14] has addressed scattering problem (A) and
proposed adequate formulations. The boundary condition is truly one of the key points.
Another key point is the proper definition of the GEE, i.e., the right-hand side of the GEE
should be related to radiation power [11–13]. These two points are taken into account in the
following. Actually, we are chiefly concerned about scattering problem (A) and radiation
problem (C) in engineering applications. Thus, we first derive the characteristic mode
formulation of radiation problem (C) and then extend it to other problems.

For radiation problem (C), we substitute the solution of (17) to (23). Applying (29) to
(17) and multiplying both sides by 1

2F
H , we obtain

1
2
JHZCJ =

1
2
MHYCM =

1
2
FHV (34)

in which
FH =

[
JH MH] = JH

[
I −η∗1 (S

+
1 )

H
]
= MH

[
ζ∗1(S

+
1 )

H I
]

(35)

ZC =
[
I −η∗2 (S

−
2 )

H
]
Z̃
[

I
−η2S−2

]
(36)

YC =
[
ζ∗2(S

−
2 )

H I
]
Z̃
[

ζ2S−1
I

]
(37)

and I is an identity matrix. It should be noted that (34) is the total power of the system.
In this paper, we adopt the GEE form as in [11–13], where the right-hand side of the

equations should be related to radiated power in order to obtain the maximal radiation
characteristic. Therefore, the GEE is defined by

ZCJn = (1 + jλn)RCJn or YCMn = (1 + jλn)GCMn (38)
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with radiated power operators

RC =
[
I −η∗2 (S

−
2 )

H
]
R̃2

[
I

−η2S−2

]
(39)

GC =
[
ζ∗2(S

−
2 )

H I
]
R̃2

[
ζ2S−1
I

]
(40)

which are proved in Appendix A.
Following the same process, GEEs for case (D) in Figure 1 can be given as

ZDJn = (1 + jλn)RDJn or YDMn = (1 + jλn)GDMn. (41)

with the following operators:

ZD =
[
I −η∗1 (S

−
1 )

H
]
Z̃
[

I
−η1S−1

]
(42)

YD =
[
ζ∗1(S

−
1 )

H I
]
Z̃
[

ζ1S−1
I

]
(43)

RD =
[
I −η∗1 (S

−
1 )

H
]
R̃1

[
I

−η1S−1

]
(44)

GD =
[
ζ∗1(S

−
1 )

H I
]
R̃1

[
ζ1S−1
I

]
. (45)

Alternatively, due to FHZ̃+
2 F = 0 by (23), which would give − 1

2F
HDF = FHR̃2F and

FHX̃2F = 0, we may replace Z̃ with Z̃1 + R̃2 for problem (C). In the same way, we may
replace Z̃ with Z̃2 + R̃1 for problem (D).

Similarly, GEEs for scattering problems (A) and (B) are shown as follows:

ZAJn = (1 + jλn)RAJn or YAMn = (1 + jλn)GAMn, (46)

ZBJn = (1 + jλn)RBJn or YBMn = (1 + jλn)GBMn. (47)

in which ZA, RA, YA and GA can be obtained by replacing S−2 in ZC, RC, YC and GC with
S+2 . Similarly, ZB, RB, YB and GB can be obtained by replacing S−1 in ZD, RD, YD and GD

with S+1 . Due to FHZ̃−1 F = 0, which would give 1
2F

HDF = FHR̃2F and FHX̃2F = 0, we
may replace Z̃ with Z̃1 +

1
2D for problem (A). Likewise, we may replace Z̃ with Z̃2 − 1

2D
for problem (B). Specifically, we may replace Z̃ with Z̃1 for problem (A) and with Z̃2 for
problem (B) when the material is lossless.

4. Numerical Results
4.1. Cubic DR

We continue to consider the aforementioned cubic DR to compare scattering and
radiation systems. The real parts of the characteristic eigenvalues of the first 150 lower-
order modes are illustrated in Figure 6 using (46), (47), (38) and (41). In Figure 6a, the CMs
of problem (A) and problem (B) are matched well with physical modes and spurious modes
of CH-PMCHWT-TCM, as presented in Figure 2, just as in [18]. This also illustrates that
spurious modes are solutions to problem (B) rather than problems (A), (C) and (D), for this
case. The real parts of the characteristic modes of problem (A) are almost opposite to those
of problem (B). The same phenomenon can be found for problem (C) with problem (D).
The concerned resonant frequency points can be obtained from Figure 7, which shows the
magnitudes of characteristic eigenvalues versus frequency range from 2.0 GHz to 4.5 GHz.
In this frequency range, there are three, four, three and five resonant frequency points
for problems (A), (B), (C), and (D), respectively, as listed in Table 1. Particularly, these
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four problems all have three frequency points close to 3.0 GHz, 4.0 GHz and 4.28 GHz,
respectively. In order to figure out their relationships, we will demonstrate their currents
and patterns in the following part.
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Figure 6. The real parts of characteristic eigenvalues with frequency range from 2.0 GHz to 4.5 GHz
for four different problems. (a) Problems (A) and (B); (b) problem (C); (c) problem (D).
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Figure 7. Magnitudes of characteristic eigenvalues in the frequency range from 2.0 GHz to 4.5 GHz
for the four different problems. (a) Problems (A) and (B); (b) problem (C); (c) problem (D).

Table 1. Resonant Frequency (GHz) for Four Different Problems.

Mode 1 2 3 4 5 6

Problem (A) – 3.08 – 3.88 – 4.18

Problem (B) – 2.98 3.92 3.98 – 4.30

Problem (C) – 3.05 – 4.18 – 4.35

Problem (D) 2.62 2.98 – 4.05 4.15 4.28

Firstly, the resonant modes near 3.0 GHz are denoted as ‘mode 2’. The resulting char-
acteristic electric and magnetic currents are shown in Figure 8. We can see that the currents
for the four problems are different. Nevertheless, the normalized scattering/radiation pat-
terns of problems (A), (B), and (C) look similar, except their maximal scattering/radiation
directions are different, as shown in Figure 9. However, the pattern of problem (D) is
apparently different from the others. Two similar patterns do not mean that the two modes
are the same, while two modes with the same currents must lead to the same patterns. Ref-
erences [10–12] have evaluated the characteristic modes of a cylindrical DR for problem (A),
wherein there exist two different modes, i.e., TE01 and TM01, whose currents are different,
but the patterns look similar. Therefore, we should judge whether the two modes are the
same or not according to their characteristic electric and magnetic current distributions
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rather than their patterns. For other resonant modes near 4.0 GHz and 4.28 GHz, i.e., ‘mode
4’ and ‘mode 6’, the characteristic currents and patterns of the four problems are different,
whose patterns are displayed in Figures 10 and 11, respectively.
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In a word, the CMs of the four problems are different, even in spite of having several
adjacent resonant frequency points. Actually, we have tested the remaining characteristic
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modes of the four problems and found that their currents are indeed different, which are
not shown to save space.

4.2. Spherical DR

In Section 4.1, we have demonstrated that the CMs of scattering problems are distinct
from those of radiation problems. Specifically, the spurious modes of CH-PMCHWT-TCM
for a lossless medium are indeed solutions to problem (B), as reported in [18]. In other
words, these modes are not solutions to problem (C) such that they could not be excited
inside the object. Nevertheless, [17] excited one spurious mode for a two-dimensional
infinity cylinder. To find this possibility, we need to choose a suitable object in order to
find one mode, which is a solution to problem (B) and whose currents are very similar to
problem (C), so that it may be excited approximately for problem (C). For this reason, we
will consider a spherical symmetrical construct.

Thereupon, a spherical DR with a radius of 15.71 mm is considered in this subsection,
whose material parameters are the same as the cubic DR. The real parts of the characteristic
eigenvalues of the first 150 lower-order modes are shown in Figure 12 using (38), (41), (46)
and (47). Specifically, the results for problems (A) and (B) agree well with those in [18], as
plotted in Figure 12a. The resonant frequency points of four problems can be obtained by
observing the magnitudes of characteristic eigenvalues, as displayed in Figure 13. There
are three resonant frequency points for problem (C) and two for problem (D), which are
listed in Table 2 compared with those of problems (A) and (B).

Electronics 2023, 12, x FOR PEER REVIEW 14 of 17 
 

 

   
(a) (b) (c) 

Figure 12. The real parts of characteristic eigenvalues of the first 150 lower-order modes in the fre-

quency range from 2.0 GHz to 4.5 GHz for the four different problems. (a) Problems (A) and (B); (b) 

problem (C); (c) problem (D). 

   
(a) (b) (c) 

Figure 13. Magnitudes of characteristic eigenvalues of the first 150 lower-order modes in the fre-

quency range from 2.0 GHz to 4.5 GHz for the four different problems. (a) Problems (A) and (B); (b) 

problem (C); (c) problem (D). 

Table 2. Resonant Frequency (GHz) for Four Different Problems. 

Mode 1 2 3 

Problem (A) 2.96 3.88 4.27 

Problem (B) 2.97 4.05 4.10 

Problem (C) 2.95 4.28 4.30 

Problem (D) 2.95 -- 4.35 

For this case, the first resonant frequencies are almost consistent, i.e., ‘mode 1’. The 

resulting characteristic electric and magnetic currents of problem (B) seem to be the dual 

ones of problem (A), as shown in Figure 14. Here, ‘dual’ means the electric current of 

mode 1 of problem (A) is similar to the magnetic current of mode 1 of problem (B), and 

vice versa. Additionally, the currents of problem (C) are almost the same as those of prob-

lem (A). The currents of problem (D) are completely different from the others. The result-

ing patterns of problems (A), (B), and (C) are nearly the same, which are different from 

the ones of problem (D), as presented in Figure 15. The orders of CMs of problem (D) are 

also higher than other problems. For the other resonant modes near 4.0 GHz, i.e., ‘mode 

2’ and ‘mode 3’, the differences of the four problems will be increased. Specifically, the 

characteristic electric and magnetic currents of mode 3 resonating at 4.3 GHz for problem 

(C) look the same as those of mode 1 resonating at 2.97 GHz for problem (B), which must 

lead to a similar pattern, as shown in Figure 16. 

Therefore, there probably exists approximately the same mode for the scattering and 

radiation of a dielectric object only when the object is a special structure and at a special 

2.0 2.5 3.0 3.5 4.0 4.5

-100

-80

-60

-40

-20

0

20

40

60

80

100

 Problem (A)

 Problem (B)

R
ea

l(


n
)

Freq,GHz

2.0 2.5 3.0 3.5 4.0 4.5
-40

-20

0

20

40

60

80

100

R
ea

l(


n
)

Freq,GHz

2.0 2.5 3.0 3.5 4.0 4.5
-100

-80

-60

-40

-20

0

20

40
R

ea
l(


n
)

Freq,GHz

2.0 2.5 3.0 3.5 4.0 4.5
0.001

0.01

0.1

1

10

100

1,000

10,000

 Problem (A)

 Problem (B)

lo
g

1
0
|

n
|

Freq,GHz

2.0 2.5 3.0 3.5 4.0 4.5
0.01

0.1

1

10

100

1,000

10,000

lo
g

1
0
|

n
|

Freq,GHz

2.0 2.5 3.0 3.5 4.0 4.5

0.01

0.1

1

10

100

1,000
 Lower order modes

 Higher order modes

lo
g

1
0
|

n
|

Freq,GHz

Figure 12. The real parts of characteristic eigenvalues of the first 150 lower-order modes in the
frequency range from 2.0 GHz to 4.5 GHz for the four different problems. (a) Problems (A) and (B);
(b) problem (C); (c) problem (D).
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Figure 13. Magnitudes of characteristic eigenvalues of the first 150 lower-order modes in the fre-
quency range from 2.0 GHz to 4.5 GHz for the four different problems. (a) Problems (A) and (B);
(b) problem (C); (c) problem (D).
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Table 2. Resonant Frequency (GHz) for Four Different Problems.

Mode 1 2 3

Problem (A) 2.96 3.88 4.27

Problem (B) 2.97 4.05 4.10

Problem (C) 2.95 4.28 4.30

Problem (D) 2.95 – 4.35

For this case, the first resonant frequencies are almost consistent, i.e., ‘mode 1’. The
resulting characteristic electric and magnetic currents of problem (B) seem to be the dual
ones of problem (A), as shown in Figure 14. Here, ‘dual’ means the electric current of mode
1 of problem (A) is similar to the magnetic current of mode 1 of problem (B), and vice versa.
Additionally, the currents of problem (C) are almost the same as those of problem (A). The
currents of problem (D) are completely different from the others. The resulting patterns
of problems (A), (B), and (C) are nearly the same, which are different from the ones of
problem (D), as presented in Figure 15. The orders of CMs of problem (D) are also higher
than other problems. For the other resonant modes near 4.0 GHz, i.e., ‘mode 2’ and ‘mode
3’, the differences of the four problems will be increased. Specifically, the characteristic
electric and magnetic currents of mode 3 resonating at 4.3 GHz for problem (C) look the
same as those of mode 1 resonating at 2.97 GHz for problem (B), which must lead to a
similar pattern, as shown in Figure 16.
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Therefore, there probably exists approximately the same mode for the scattering and
radiation of a dielectric object only when the object is a special structure and at a special
frequency. There also exists one mode of problem (B) that has almost the same currents
as those of one mode of problem (C). On the one hand, this phenomenon may explain
the possibility in [17]. It should be noted that this is just a special case. On the other
hand, this also explains why some CMs extracted under the scattering framework may be
approximately applicable to the analysis of some special radiation systems. Generally, the
resonant modes are different for scattering and radiation problems for an arbitrary object.

5. Conclusions

In this paper, we investigate four physical problems and find the underlying reason
why CH-PMCHWT-TCM is prone to generate spurious modes. The key point is that
the impedance matrix of the PMCHWT equation cannot differentiate the two different
media without the assistance of a dependent relationship between equivalent electric
and magnetic currents or the boundary conditions. The conventional CMs are essentially
constructed in the scattering framework. When they are applied to radiation problems, their
dependent relationships are different, although they have the same impedance operator.
In other words, the CMs in the scattering framework are not appropriate for a radiation
system, and they are independent of a scattering excitation source rather than any excitation
source. Then, we put forward new characteristic mode formulations for the two radiation
problems. After numerical analysis, we find that the resonant modes of the four problems
are essentially distinct in general. Nonetheless, there may exist some modes for which their
resonant frequencies and characteristic electric and magnetic currents are similar for both
the scattering and radiation problems in some special cases, such as a lossless spherically
symmetric DR. This may explain why some CMs extracted under the scattering framework
may be applicable to the analysis of some special radiation systems.
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Appendix A

For radiation problem (C), the total field in the background medium can be written as{
Etot = −η2L2(Js) +K2(Ms)
Htot = −ζ2L2(Ms)−K2(Js)

(A1)
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The radiated power is defined as

Prad = 1
2

((
1
2

∮
S
[(Etot ×H∗tot)·(n̂)]dS

)
+

(
1
2

∮
S
[(E∗tot ×Htot)·(n̂)]dS

))

= 1
2

((
− 1

2

∮
S
[J∗·Etot]dS

)
+

(
− 1

2

∮
S
[M∗·Htot]dS

)) (A2)

By submitting (A1) into (A2), we can obtain

Prad =
1
4
〈J∗s , η0L0(Js)−K0(Ms)〉+

1
4
〈M∗s , ζ0L0(Ms) + η0L0(Js)〉 (A3)

This can be written as a discrete form

Prad =
1
4
FHZ−2 F =

1
4
FH
(
R̃2 + jX̃2 −

1
2
D
)
F (A4)

Due to FHZ̃+
2 F = 0 by (23), which would give − 1

2F
HDF =FHR̃2F and FHX̃2F = 0,

(A2) can be simplified as

Prad =
1
4
FH(2R2)F =

1
2
FHR2F (A5)
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