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Abstract: Light Detection and Ranging (LiDAR) is widely used in the perception of physical en-
vironment to complete object detection and tracking tasks. The current methods and datasets are
mainly developed for autonomous vehicles, which could not be directly used for roadside perception.
This paper presents a 3D point cloud stitching method for object detection with wide horizontal
field of view (FoV) using roadside LiDAR. Firstly, the base detection model is trained by KITTI
dataset and has achieved detection accuracy of 88.94. Then, a new detection range of 180◦ can be
inferred to break the limitation of camera’s FoV. Finally, multiple sets of detection results from a single
LiDAR are stitched to build a 360◦ detection range and solve the problem of overlapping objects. The
effectiveness of the proposed approach has been evaluated using KITTI dataset and collected point
clouds. The experimental results show that the point cloud stitching method offers a cost-effective
solution to achieve a larger FoV, and the number of output objects has increased by 77.15% more than
the base model, which improves the detection performance of roadside LiDAR.

Keywords: point cloud stitching; 3D object detection; roadside LiDAR; detection FoV; KITTI dataset

1. Introduction

Three-dimensional (3D) data play an important role in autonomous driving, domestic
robots, and remote sensing [1,2]. Multiple data types such as point clouds, depth images,
and polygon meshes are included in 3D data [3]. As a commonly used format, point clouds
are generated by LiDAR, which has the capability to provide more accurate and valuable
spatial information at 360◦. LiDAR is insensitive to different light conditions and can
perform stable work even under weak light environments [4–6].

Recently, point clouds have received much attention [7], and several studies of onboard
LiDAR for 3D object detection have been proposed. The 3D object detection aims to perceive
the location, size, and class of surrounding objects, and draw a bounding box to provide
descriptions of shape and heading angle [8,9]. With the development of deep learning
technology, existing approaches have been applied to autonomous vehicles to get accurate
information and make effective predictions [10]. To build a real-time cooperative system,
LiDAR has a new application that was installed on roadside infrastructures to obtain long-
term trajectory data of all road users and serve autonomous vehicles [11–13]. Each road
user can be scanned and shared with traffic facilities and autonomous vehicles by roadside
LiDAR, which provides a solution to fill the data gap for intelligent transportation systems
(ITS) [14,15].

However, such corresponding deep learning algorithms rely increasingly on bench-
mark datasets that are crucial for model training and evaluation [16]. In the case of LiDAR,
although 360◦ scanning technology is used for data acquisition the 3D object labels are
limited to a small FoV of cameras in the front direction [17]. Because most autonomous
vehicles only need to focus on obstacles in front of the car, utilizing data with a large range
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can lead to an unnecessary computational burden. Thus, point cloud clipping was devel-
oped to reduce the difficulty of the detection algorithm applied in autonomous driving,
which limited point clouds to the front scanning data. Based on this, most of the existing
detection models could not provide omnidirectional detection results. Some researchers
try to use bigger datasets [16,18] to obtain a wider range of object labels, but that requires
sacrifices in computation time and hardware cost. This issue has become a big challenge
for roadside perception.

In this paper, a 3D point cloud stitching method for object detection with wider
FoV was proposed. Though there are a lot of object detection methods developed for
autonomous driving, those approaches could not be directly used for the roadside LiDAR
because of different data quality, working environments, and expected performance. The
principle of this paper lies in combining detection results from a single LiDAR to generate
a wider detection range. A novel point cloud stitching is designed to fuse results and refine
bounding boxes. In this way, the existing detection method can be directly utilized to detect
objects without increasing the number of data or creating new datasets for roadside LiDAR.
Small datasets (e.g., KITTI) can be used for model training and testing of roadside percep-
tion, which provides useful and convenient help for traffic engineers and ITS. Specifically,
contributions of this study can be summarized as follows:

• The detection range of base model is further extended. Roadside Lidar’s FoV could
not be restrained by camera and can search targets in the whole 3D space;

• The omnidirectional detection results can be processed in parallel and generated by
a 90◦ training model. There is no increased cost in the model training time and each
result group is integrated into the same coordinate system;

• Overlapping object estimation and removal method are developed for point cloud
switching, which can avoid false detections of the same object and offer accurate results.

The remainder of this paper proceeds as follows: Section 2 reviews the related work.
Section 3 presents the methods for object detection and point cloud stitching. Then, Section 4
evaluates the performance of algorithms. Finally, Section 5 concludes with findings and
limitations of this work.

2. Related Work

Data stitching and object detection are widely acknowledged in existing studies. Tra-
ditionally, due to the limitations of the geometric shape of the measured object, measuring
equipment and other factors, the measuring sensors need to collect 2D/3D data from
different angles and transform then to the same coordinate systems. There are also several
studies related to image and point cloud stitching, but few studies on applying stitching
methods to object detection at present.

2.1. 2D Stitching Methods

Since the limitation of a camera’s FoV, 2D image stitching is to combine a group of
images with overlapping regions to generate a larger and wider view [19]. The focus of the
stitching process has been attempting to overcome blurring and ghosting problems. Among
these stitching approaches, seam cutting is a common method to optimize pixel selection
among overlapping images [20]. Li et al. [21] proposed a perception-based seam cutting
approach to simulate visual perception. Chen et al. [22] designed an energy function for
image stitching based on scene depth, color, and texture information. The brightness and
color of input images can be corrected to improve the alignment accuracy and invisibility of
the seam. Shi et al. [23] investigated an image stitching method based on grid-based motion
statistics matching to eliminate misalignment warping. A matching from coarse-to-fine
was applied to provide accurate inliers by rotating images.

2.2. 3D Stitching Methods

The purpose of 3D data stitching is to link and merge different frames based on
the sensor motion. Zakaria et al. [24] used an iterative closest point cloud algorithm for
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LiDAR data stitching and mapping. Point clouds (max 300 frames) with movement can
be stitched to expand the map for vehicle navigation. Ibisch et al. [25] aggregated LiDAR
measurements in one common representation based on real-world coordinates of the
given scene. Measured data can be transformed into the same systems by projective linear
transformations. Sun et al. [26] proposed a 3D aircraft reconstruction method based on point
clouds. According to the same points or connection points of aircraft geometry, a complete
3D model was rebuilt from part to whole. Wu et al. [27] described several methods using
LiDAR for simultaneous localization and mapping. These methods can effectively obtain
historical point clouds and their detection results and output more perfect environment
information. Yao et al. [28] proposed city-scale stitching using 2D/3D registration methods
for larger geographical coverage. They applied the 2D image mosaicking technique to
stitch multiple city-scale point clouds into one 3D model. All point clouds at different
times and locations can be transformed into the same coordinate system by calculating
transformation matrices.

2.3. 3D Object Detection Methods

After continuous development, 3D object detection methods have been widely applied
in various complex scenarios. For traditional detection methods, Lv et al. [29] designed
a revolution- and rotation-based method to integrate point clouds from multiple LiDAR
sensors. They used the ground surface points in 3D space as reference feature points
to solve the challenge caused by the extended detection range. Different datasets from
roadside LiDARs can be converted into the same coordinates. Wu et al. [30,31] applied
traditional background filtering methods to extract trajectories of road users for near-crash
identification. LiDAR data processing algorithms were performed on collected data at an
intersection, and for deep learning strategies the point-based method directly processed the
raw input point clouds and generated sparse data. It used permutation invariant operators
to capture local structures and fine-grained patterns [32,33], and the voxel-based method
is to build 2D/3D grids then store the non-empty grids for feature extraction. Thus, it
has higher efficiency with lower computational memory demands [34] and then captures
context information for the proposal box refinement. Wang et al. [35] tried to make a fusion
of roadside LiDAR and a camera to track objects in a wider range. The 2D trajectory was
used to complement of 3D trajectory that was limited by the LiDAR FoV.

Although the mentioned studies offered good references for data stitching and LiDAR
perception, the existing detection methods focused on the architecture and accuracy of
networks, especially ignoring how to extend the detection range to provide wider coverage
for objects. Meanwhile, none of the methods could work for stitching detection results from
different FoV at same position. This study is designed to attempt to fill these gaps. Inspired
by 2D and 3D stitching methods, a novel and systematic stitching method is explored to
solve these problems for roadside LiDAR perception. The overall workflow of this study is
illustrated in Figure 1.
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3. Methods

This section presents the 3D point cloud stitching method for object detection. Existing
studies usually crop the full-view point clouds to front-view point clouds to decrease the
overall processing and training time. The methodology in this paper aims to create a single
detection range that is larger than the FoV of common approaches. The stitching method is
a combination of three modules (3D object detection, generating omnidirectional results,
and overlapping object removal) to solve the problem of applying autonomous driving
datasets and models for roadside perception tasks.

3.1. 3D Object Detection in Point Clouds

As a typical point-based and two-stage 3D object detection framework, PointR-
CNN [36] is selected for proposal bounding boxes generation and refinement. In stage-1,
PointNet++ [37] is utilized as a backbone network to extract points to make foreground
point segmentation and proposal box generation. In stage-2, PointRCNN aims to optimize
the bounding box orientations and locations in stage 1. Each box is enlarged to get more
additional surrounding information and local spatial features. For the expanded proposal
boxes, if the internal point p is a foreground point it would be kept for refining. After
canonical transformation, the 3D intersection over union (IoU) between the ground-truth
and proposal box can be further calculated. Finally, the position regression of proposals is
performed in a smaller search range.

The above strategies of PointRCNN have been integrated into the OpenPCDet frame-
work [38], which is an open-source toolbox for 3D object detection that employs a data-
model separation pattern with a unified coordinate system. The model training and testing
can be distributed to multiple GPUs and machines. It is convenient for processing in paral-
lel. The structure of PointRCNN is divided into four sections: Backbone3D, Backbone2D,
Dense Head and ROI Head. In Backbone3D, the voxel feature encoder (VFE) is used for
voxelization of input point clouds, and PointNet++ is applied to learn features and make
propagation. Then, in Backbone2D, data are projected to Bird’s Eye View (BEV) to compress
by non-maximum suppression. After that, 3D proposals can be calculated and generated in
Dense Head. ROI Head corresponds to the stage-2 of PointRCNN. It refines the proposals
and removes overlapping bounding boxes for final object detection.

The output detection results on the KITTI dataset contain multiple attributes of 3D
objects. Through OpenPCDet, results from all frames are integrated and saved in a specific
data format (*.pkl). The corresponding information of each field is shown in Table 1.

Table 1. The detection results from OpenPCDet on KITTI.

Location Name Example

1 type Car
2 truncated 0
3 occluded 1
4 alpha 1.55

5–8 bbox (357.33, 133.24, 441.52,
216.2)

9–11 dimensions (1.57, 1.32, 3.55)
12–14 location (1.00, 1.75, 13.22)

15 rotation_y 1.62
16 score 1.38

3.2. Generating Omnidirectional Detection Results

In the KITTI dataset the camera images and LiDAR point clouds are used as the main
inputs. It registers the Velodyne LiDAR to the camera coordinate system. At the same
time, the point clouds falling outside image and all ambiguous image regions are removed
automatically [39]. The 3D object ground-truth in a FoV of the camera can be generated by
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the labeling tool. According to the sensor registration, the intrinsic matrix M1 and extrinsic
matrix M2 of the camera in KITTI can be described as:

M1 =

 f

0

0

0

f

0

u0

v0

1

0

0

0

 (1)

M2 =

[
R

0

T

1

]
(2)

where f is the camera focus, (u0, v0) is optical center in image. R and T represent rotation
and translation matrix, respectively.

Further, the viewing frustum of the camera in KITTI [40] can be formulated as follows:

(xcam, ycam, zcam) =

[
(ui − u0)

fx/z
,
(vi − v0)

fy/z
, z
]

(3)

where ui and vi represent four corners of the image, and z is the distance from camera to
near or far plane. Then the location of viewing frustum is transformed to LiDAR-coordinate
system by Equation (4). By using the new corners (C1, C2, C3, C4, C

′
1, C

′
2, C

′
3, C

′
4) as shown

in Figure 2, redundant point clouds can be cut smoothly. The processed point clouds are
saved and put into the PointRCNN model.
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To generate omnidirectional detection results, the proposed solution does not rely
on denser labels and larger datasets but constructs new detection ranges to provide 3D
detection boxes within an azimuthal FoV of 360◦. The traditional detection method is split
into two parts including forward and backward detection. Forward detection refers to
processing the point clouds in front of the LiDAR then inputting the network to obtain
results. Conversely, back detection is to send the point clouds from the rear of LiDAR to the
network to determine the category of each point. In this paper, the corresponding points of
corners in a larger range are acquired by projection and inference. The steps of forward
detection are executed as follows:

1. Projecting the quadrangular prism to the plane coordinate system O-XY. The purpose
of this is to simplify the origin model;

2. Projecting the corners in far plane to Y-axis and the corresponding points are expressed
as V1 and V2, as shown in Figure 3;
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3. According to location of 90◦ FoV, delimiting the rectangular FoV R-V1C2C3V2 to get
the object attributes within the perspective range;

4. Re-adjustment of the FoV is undertaken to optimize the detection range based on the
voxel size. Extracting the Xmin, Ymin, Xmax and Ymax from R-V1C2C3V2 and setting the
difference divided by the voxel size is a multiple of 16.

The backward detection can be seen as rotating the input point clouds 180◦ for the
second detection. Like forward detection, its detection range is calculated by transforming
V1 and V2 to V3 and V4. The formula for the point transformation is as follows:

x′

y′

z′

1

 =


cosθ

sinθ

0

0

−sinθ

cosθ

0

0

0

0

1

0

0

0

0

1

·


x

y

z

1

 (4)

where (x, y, z) is the location before transform, (x′, y′, z′) represents the location after the
transform, and θ is the angle of rotation around the Z-axis. Due to all the x-coordinate
values of points in this range being less than 0, forward detection is not required to develop
in duplicate. The base PointRCNN is redeployed in this range. Furthermore, although
the amount of input data has been increased in the whole process, the backward detection
has not brought the loss of accuracy. At the same time, the backward detection can detect
effective targets in front and rear of the roadside LiDAR, thus effectively improving the
detection performance of roadside LiDAR and providing more information for roadside
perception.

3.3. Overlapping Object Estimation and Removal

After making the omnidirectional detection, forward and backward results can be
represented as S1 and S2, respectively. To fuse two parts of objects, novel overlapping object
estimation and removing methods are designed. Different from traditional point cloud
splice or image stitching by using joint points, this method is to apply detection results to
conduct later stitching. The entire procedure uses unified data with different ranges and
results to fuse non-overlapping objects. The forward and backward detection results are
still under the same coordinate system to obtain the final results.
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This estimation and removal method is not only adding S1 and S2, but it focuses on
the problem of multiple detections of the same object across different FoVs (near the seam).
When objects pass the front and back regions, point clouds are split into two parts. The
PointRCNN can detect the positive object in each part. However, detection results are
a false positive for the omnidirectional FoV, which leads to the problem with repeated
detection. Then the same target will appear in S1 and S2 simultaneously, as shown in
Figure 4.
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To address the overlapping problem, CDIoU is designed for overlapping object estima-
tion and removal. IoU is the most popular evaluation metric for bounding box regression
in many 2D/3D detection tasks [41]. It usually works when the bounding boxes overlap,
which can be represented as:

IoU =

∣∣B ∩ Bgt
∣∣∣∣B ∪ Bgt
∣∣ (5)

where Bgt = {xgt, ygt, wgt, hgt} indicates the labeled real box, and B = {x, y, w, h} is the predicted
box. However, IoU cannot reflect the box distances from each other [42]. Meanwhile, no
more labeled boxes are provided in the rectangular FoV. Thus, traditional IoU cannot be
applied to describe the degree of overlapping objects from forward and back detection.
This paper further proposes a general extension to IoU, namely Center Distance IoU to
integrate center-to-center distance and length-to-width ratio. Firstly, the center points of
boxes are reduced to 2D points. Euclidean distance is attained by:

d(c1, c2) =
√
(x f − xb)

2 + (y f − yb)
2 (6)

where C1 (xf, yf) and C2 (xb, yb) are center points from forward and backward detection
boxes. It is apparent that overlapping areas can reduce length or width of no overlapping
parts. Specifically, overlapping parts at different angles still reduce the bounding box size
of no overlapping parts. The length and width between no overlapping boxes are always
larger than overlapping boxes as shown in Figure 5.

L′0 = L0 − ∆l(∆l ≤ L0) (7)

W ′0 = W0 − ∆w(∆w ≤W0) (8)

where L0 and W0 are origin detection sizes of boxes, ∆l and ∆w represent the reduction size,
L′0 and W ′0 are no overlapping sizes. The CDIoU can be defined as:

CDIoU =
1
2

( l f + lb
2d(c1, c2)

+
w f + wb

2d(c1, c2)

)
(9)

where lf, lb, wf, and wb denote the length and width of Bf and Bb, respectively. The relation-
ships among the above variables are demonstrated in Figure 5.
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For CDIoU, in the case when Bf and Bb overlap exactly, CDIoU = 0. When the input
target bounding boxes partially overlap, the further the distance between the center points,
the closer CDIoU is to 1. If there is no overlap between Bf and Bb, CDIoU > 1. According
to the value of CDIoU, overlapping object estimation can be implemented automatically.
Moreover, the score in Table 1 is used as a metric to remove false positive targets. Different
from the general overlap problems, most of the bounding boxes have been refined by
PointRCNN in stage-2, and the angle and size are close to the real objects. Thus, the
removal method traverses the score of overlapping objects to retain the bounding boxes
with higher confidence. Algorithm 1 summarizes the overall procedure of estimation and
removal of overlapping objects.

Algorithm 1 Duplicate target estimation and removal

input: Detection result sets S1 (the front frames set) and S2 (the back frames set).
output: A non-repeated data set S3 with 360◦.

1 for the cycle in length(S1) do:
2 for the single frame detection result s in S1 and S2 do:

Build empty lists S1_frame and S2_frame to save each frame data.
3 if s[frame] = cycle do:

set the uniform data format for s;
add s to S1_frame or S2_frame.

4 end for
5 Build an empty list del_list to store the indexes of duplicate targets.
6 for each target s1 in S1 do:
7 for each target s2 in S2 do:

Calculating CDIoU(s1,s2)
8 if CDIoU(s1,s2) ≤ 1 do:

s1 and s2 overlap.
Select the index of Min[score(s1), score(s2)] to save in the del_list.

9 else do:
No overlap between s1 and s2.

10 end for
11 Remove multiple elements in the del_list.
12 end for
13 Delete elements in the del_list from S1 and S2.
14 S3 = S1 + S2
15 end for
16 return S3.
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4. Experiments

In this section, PointRCNN was trained and evaluated on the KITTI dataset. The
experiments were designed to verify the point cloud stitching method. The whole process
was performed on a laptop with Ubuntu 18.04 and Robotics Operating System. The GPU
was GeForce RTX 1650 and RAM size was 32 GB.

4.1. KITTI Dataset

The KITTI dataset was proposed by Karlsruhe Institute of Technology and Toyota
Technological Institute in Chicago to support 3D object detection, 3D tracking, optical flow,
and visual odometry tasks. The classes of raw data set are divided into three categories
including: ‘Car’, ‘Pedestrian’, and ‘Cyclist’. Raw point cloud data are shown in Figure 6.
According to the occlusion and truncation levels, the dataset was grouped into three
difficulty levels (easy, moderate, and hard) for each category. The minimum height of the
bounding box in easy difficulty level is 40 Px, and the maximum truncation degree is 15%.
In the moderate difficulty level, the minimum height of the bounding box is 25 Px, and the
maximum truncation degree is 30%. The minimum height of the bounding box in hard
level is 25 Px and the maximum truncation degree reaches 50% [43]. The KITTI dataset was
divided into 7481 training samples and 7518 testing samples. The PointRCNN in this paper
was trained for 500 rounds with an initial learning rate of 0.01, and the batch size was 2.
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4.2. Model Evaluation

Among various evaluation metrics, mean Average Precision (mAP) is a commonly
used metric for object detection. MAP can be calculated by the Precision–Recall curve, where
Precision and Recall can be defined as:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

where TP and FP denote true and false positive samples, and FN is the number of false
negative samples.

On this basis, a function p(r) of Recall r can be obtained [44]. The 11-point Interpolated
Average Precision metric is used to calculate the Average Precision (AP) on each difficulty
class as below:

AP|R =
1
R ∑

r∈R
p(r) (12)
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where R = R11 = {0, 0.1, 0.2, . . . , 1}. In this paper, R40 with 41 sub-sampling points [44]
was proposed to replace R11, and R40 = {1/40, 2/40, 3/40, . . . , 1} can eliminate the error
encountered and provided more accurate results. Moreover, AP was evaluated from the
following four aspects: 2D Bounding Box (bbox), Bird’s Eye View (bev), 3D Bounding Box
(3d), and Average Orientation Similarity (aos).

4.3. Results and Discussion

In this paper, the labeled data in the KITTI dataset were utilized and divided it into
training (3712 samples) and evaluation sets (3769 samples). For the car class, IoU is set to
0.70 and 0.50, respectively; For pedestrians and cyclists, since their volume is relatively
small and generated fewer points, IoU is set to 0.50 and 0.25. Meanwhile, due to less
labels in the testing dataset, it is necessary to use the parts of training data to evaluate the
algorithm. The performance of PointRCNN in different classes with different IoU is shown
in Tables 2–4.

Table 2. The Performance of PointRCNN in the car class of KITTI with different IoU.

Easy
(Imin = 0.70)

Moderate
(Imin = 0.70)

Hard
(Imin = 0.70)

Easy
(Imin = 0.70)

Moderate
(Imin = 0.50)

Hard
(Imin = 0.50)

APR11
(Car)

bbox 90.7746 89.6528 89.1511 90.7746 89.6528 89.1511
bev 90.0448 87.2562 86.4370 90.7395 89.8508 89.5665
3d 88.9404 78.6675 77.8114 90.7395 89.8258 89.5203
aos 90.76 89.55 88.98 90.76 89.55 88.98

APR40
(Car)

bbox 96.4271 92.8655 90.5181 96.4271 92.8655 90.5181
bev 93.1580 88.9119 86.7579 96.4536 95.1651 92.9492
3d 91.3287 80.5840 78.1417 96.4313 95.0479 92.8361
aos 96.41 92.74 90.34 96.41 92.74 90.34

Table 3. The Performance of PointRCNN in the pedestrian class of KITTI with different IoU.

Easy
(Imin = 0.50)

Moderate
(Imin = 0.50)

Hard
(Imin = 0.50)

Easy
(Imin = 0.50)

Moderate
(Imin = 0.25)

Hard
(Imin = 0.25)

APR11
(Pedestrian)

bbox 73.5689 66.1255 62.2895 73.5689 66.1255 62.2895
bev 67.1253 58.8610 53.3021 82.0378 74.9234 67.0553
3d 61.8900 54.4388 50.1242 81.9940 74.7333 66.9421
aos 70.86 63.01 59.00 70.86 63.01 59.00

APR40
(Pedestrian)

bbox 74.8557 67.7918 61.0786 74.8557 67.7918 61.0786
bev 66.1146 58.1660 51.4365 82.8676 76.0780 68.8326
3d 62.8512 54.9202 47.9085 82.7933 74.8970 67.6176
aos 71.85 64.21 57.60 71.85 64.21 57.60

Table 4. The Performance of PointRCNN in the cyclist class of KITTI with different IoU.

Easy
(Imin = 0.50)

Moderate
(Imin = 0.50)

Hard
(Imin = 0.50)

Easy
(Imin = 0.50)

Moderate
(Imin = 0.25)

Hard
(Imin = 0.25)

APR11
(Cyclist)

bbox 89.6212 76.3985 70.1547 89.6212 76.3985 70.1547
bev 85.7266 71.9324 66.3024 88.4910 74.5981 68.5349
3d 85.0175 66.8832 64.3491 88.4910 74.5981 68.5349
aos 89.54 75.90 69.74 89.54 75.90 69.74

APR40
(Cyclist)

bbox 94.9042 77.2506 72.8562 94.9042 77.2506 72.8562
bev 90.3609 71.2446 68.1587 93.5190 75.2005 70.8290
3d 87.6985 68.6195 64.1195 93.5190 75.2005 70.8290
aos 94.82 76.71 72.33 94.82 76.71 72.33
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According to the detailed detection results, PointRCNN has better performance on
the car class under different difficulty levels. Due to the smaller size, the perception
was somewhat reduced for pedestrians and cyclists. To show performance of the model
as intuitive as possible the detection results were comparatively visualized as shown in
Figure 7. The above parts in Figure 7 are corresponding images, and the lower parts in
Figure 7 are detection results in point clouds. Since the limitation of FoV and dataset, the
base trained model only performed in a small detection range.
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Figure 7. The base detection results from PointRCNN.

The proposed method in this paper was further applied to each frame of point clouds.
Two sets of virtual environments in Anaconda were built to run the detection model. Based
on the location of roadside LiDAR, forward and backward detection with a range of 0◦–180◦

were implemented in parallel. The results were saved with the same time of calculation.
The two sets of 180◦ results from the same point cloud frame were provided in Figure 8.
One is forward detection results, and another is backward results.
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It is obvious that detection results are in the same environment and sensor location, but
the detection range is different, therefore making the stitching method necessary. Coarse
stitching was made for two sets of point clouds as in Figure 9. The results from the
same coordinate system were combined in a set of the omnidirectional detection results.
Compared with the previous approaches, the stitching method obtained more detection
results to be merged, but no additional point clouds were added. Specifically, more detailed
and valid objects can be detected at 360◦ by base model that was trained by labeled
targets. The stitching method in this paper is an effective way that can further expand
detection range by associating results to the same coordinate system. It should be noted that
overlapping targets were added near the stitching. By utilizing estimation and removing
methods, the CDIoU of each of bounding boxes could be calculated. The final stitch data are
shown in Figure 10, where each object is highlighted by a green bounding box. It shows
that the proposed method can stitch the point cloud correctly based on detection results.
The redundant information is removed successfully by multi-detection on the same frame,
and the true positive results with higher confidence scores are retained completely. A
smooth transition is realized when the same target crossed FoVs, and it can generate more
meaningful results for roadside perception.
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In addition, the roadside LiDAR was temporarily installed on a tripod for this study,
as shown in Figure 11a. The detection results are also described by green bounding
boxes in Figure 11b–e. Meanwhile, multiple existing methods (PointRCNN [36], PV-
RCNN [34], SECOND [7] and Part-A2-Free [45]) were tested on same collected point cloud
data, respectively. In Table 5, the performances of different detection algorithms with
training time, running time, detection range, AP and output objects were further compared.
The AP (3d) under easy conditions for the car class was selected to represent the accuracy
level of models. All the algorithms showed similar performance in the AP, but the proposed
method (88.9404) is higher than SECOND (88.6137). The training time of ours is lower
than most of the methods, which means an effective detection model can be obtained for
roadside perception as soon as possible. It should be noted that the total training and
running time of the proposed method was performed at a similar level with the base
PointRCNN. This is because the stitching method was based on PointRCNN improvement,
where forward and backward detection can be conducted in parallel with a high efficiency.
Omnidirectional detection results can be generated in the same environment without more
computational resources such as larger memory consumption. Even though the time this
stitching algorithm takes was not shorter than other models, more precise and robust
detection was provided, as can be seen from visualization results. In Figure 11b–e, objects
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can be detected but the cover range was limited to the front FoV. Some close targets with
sufficient features were not labeled due to being beyond the range of the front FoV, which
cannot meet the needs of roadside perception. In addition, a maximum of 8051 objects
were outputted by other models within the limitations of the search range, but it clearly
did not properly evaluate the quality of an algorithm. It can be observed that some results
are false positive objects in Figure 11b–e, especially the results provided by SECOND
and Part-A2-Free. Conversely, our method could output true positive objects, as many
as possible, as Figure 11f described. The near, distant and back targets could be included
in the detection results. Taken together, the proposed stitching method can support the
perception tasks of roadside LiDAR., which could produce more accurate results in 360◦

FoV with less training time.
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Table 5. The Performance of different detection algorithms.

PointRCNN (Base) PV-RCNN SECOND Part-A2-Free Ours

Training time 3 h 5 h 1.7 h 3.8 h 3 h
Running time 120.548 s 102.653 s 50.595 s 93.343 s 121.469 s

Detection range Front FoV Front FoV Front FoV Front FoV 360◦ FoV
AP 88.9404 89.3476 88.6137 89.1192 88.9404

Output objects 4306 6094 8051 6259 7628

5. Conclusions

This paper introduces a 3D point cloud stitching method for object detection with
wide FoV using Roadside LiDAR, which contains an object detection framework for point
clouds, an omnidirectional detection results generating module, and a novel approach for
overlapping object estimation and removal. Based on the experiments and visualization,
the proposed approach could successfully stitch multiple sets of the detection results in
a small range generated by the same LiDAR sensor. After optimizing the results, larger
detection can be realized without generating overlapping targets. Stitching also provides a
cost-efficient solution to object detection using roadside LiDAR. This addresses the problem
of perception and application using popular vehicle datasets in the case of a missing
roadside LiDAR dataset.
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Some limitations of this paper still exist. The overlapping object estimation and
removal method is difficult to work out without any error, particularly in areas with
less object spacing such as large parking lots. The current algorithm is still expected to
optimize thresholds of CDIoU. If a real-time and integrated system could be constructed,
the computations involved in object detection and stitching will be carried out in real time.
Furthermore, this paper did not provide an effective way to overcome the effects of bad
weather that can limit the performance of algorithms. Noise points may have contributed
to wrong forward and back detections under rainy and snowy weather. Further studies
can consider making data processing and analysis in these realistic scenarios. Experiments
also reveal that some voxel-based methods have particular advantages for running time.
Future work should not be restricted to only point-based detection models; efforts will also
need to be made to provide fast and accurate 3D detection using other methods.
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