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Abstract: Battery energy storage systems (BESSs) can control the power balance in DC microgrids
through power injection or absorption. A BESS uses a bidirectional DC–DC converter to control the
power flow to/from the grid. On the other hand, any fault occurrence in the power switches of the
bidirectional converter may disturb the power balance and stability of the DC microgrid and, thus,
the safe operation of the battery bank. This paper presents a fault-tolerant topology along with a
fault diagnosis algorithm for a bidirectional DC–DC converter in a BESS. The proposed scheme can
detect open circuit faults (OCFs) and reconfigure the topology to guarantee the safe and continuous
operation of the system while it is connected to the DC microgrid. The proposed method can be
extended to multi-phase structures of interleaved bidirectional DC–DC converters using only two
power switches and n TRIACs to support the OCF occurrence on 2 × n switches of n legs. The
proposed fault diagnosis algorithm detects OCFs only by observing the current of the inductors
and does not require any sensor. Hence, the cost, weight, volume and complexity of the system is
considerably reduced. Experimental results show that the reconfiguration of the converter, along
with its fast fault detection, leads to fewer switches overloading and less DC voltage deviation.

Keywords: battery energy storage system; bidirectional converter; fault-tolerant topology; fault
diagnosis algorithm

1. Introduction

Nowadays, with the ever-increasing use of distributed generation (DG) technologies
such as wind turbines and photovoltaic systems, energy storage systems play an important
role in power systems and microgrids. DC resources, loads and storages lead to more cost
and complexity of AC microgrids because they need more DC–AC and AC–DC converters.
To address these issues, DC microgrids were introduced as a suitable alternative for AC
microgrids [1,2]. In DC microgrids, BESSs are commonly used to control the power balance
between the load and generation. It is an essential condition for stable operation of
the system.

In recent years, an increasing number of studies have focused on BESS applications
such as electric vehicles [3], aircrafts [4], microgrids [5] or power systems [6]. BESSs needs
a power electronic converter to control its power flow. A bidirectional converter was
proposed in [7] to control the BESS power along with a diesel generator in an aircraft.
BESSs are able to inject and absorb power to/from the grid through a bidirectional DC–
DC converter [8]. Figure 1a shows the most well-known bidirectional DC–DC converter
topology, which is commonly used to connect the battery bank to the DC grid [9]. This
converter is limited at high power levels due to the use of an inductor in its structure.

Moreover, some of the literature focused on isolated topologies for BESSs such as dual
active bridge (DAB) [10,11], NPC-based DAB [12], LLC resonant converter [13] and high-
gain, non-isolated, bidirectional DC–DC converters [14,15]. Nevertheless, high-frequency

Electronics 2023, 12, 679. https://doi.org/10.3390/electronics12030679 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12030679
https://doi.org/10.3390/electronics12030679
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2313-8200
https://orcid.org/0000-0002-5444-4139
https://orcid.org/0000-0003-1521-790X
https://doi.org/10.3390/electronics12030679
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12030679?type=check_update&version=1


Electronics 2023, 12, 679 2 of 16

transformers and coupled inductors increase their manufacturing cost, losses and complex-
ity. To overcome the limitation of the conventional converter in Figure 1a for high power
applications, interleaved multi-phase bidirectional converters, as depicted in Figure 1b,
were introduced [16,17]. As can be seen in this figure, to reduce the size of inductor, the
total input current is divided into parallel legs.
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Figure 1. Bidirectional DC–DC converter for BESS connected to DC microgrid. (a) Conventional 
topology; (b) interleaved multiphase topology. 
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Figure 1. Bidirectional DC–DC converter for BESS connected to DC microgrid. (a) Conventional
topology; (b) interleaved multiphase topology.

Due to the important role of BESSs in the power balance of DC grids, it is necessary to
guarantee their reliable operation against fault occurrences in the bidirectional converter
or battery bank. In [18], a unified control system was presented to estimate the state of
charge and detect the fault occurrence in battery bank simultaneously by using a fuzzy
observer. Once a fault occurs in the battery bank, its output voltage decreases. Another
probable scenario is fault occurrence in the power switches of a bidirectional converter.
In [19–21], different types of faults that may occur in power switches were investigated and
categorized into two groups: (i) open circuit faults (OCFs) and (ii) short circuit faults (SCFs).
SCFs cause severe damage in an instant and must be quickly removed [22,23]. On the
other hand, OCFs do not cause the absolute failure of the converter. Thus, power transfer
can be continued, but in the long term, it may cause the failure of the converter and its
components. Hence, it is important to detect and fix it [24]. In [25], a method was proposed
to detect OCFs in the DC–DC converter of a photovoltaic system and fix them by changing
the converter’s topology. Additional inductors and power switches increase the weight,
volume and cost of the converter. In addition, it requires additional voltage and current
sensors for fault detection.

An observer-based fault diagnosis method for induction machine drives was proposed
in [26]. The computational burden and the complexity of this method is relatively high.
Many fault diagnosis methods [27–30] use the current measurement to reduce the com-
putational burden. On the other hand, some other studies used the voltage measurement
to increase fault detection speed. In [31], a fault-tolerant topology was introduced for
quasi-Z-source inverters along with a fault detection method based on the capacitor’s
voltage measurement.

Fault-tolerant topologies usually change the configuration of the circuit after the
fault. Until now, many fault-tolerant topologies have been introduced for different types
of converters, such as full-bridge [32], Z-source [31], triple active bridge [33] or Half-
Bridge LLC Resonant converters [34]. In [35], a fault detection and correction method
was presented for interleaved three-phase boost converters. This method was based on
sampling the voltage of the inductors. Although the number of additional components
for fault correction is less than [25], it suffers from more complexity in its control system.
In [36], a fault diagnosis method was introduced based on the Luenberger observer for a
DC–DC converter of a fuel cell. Despite the simplicity of the implementation, it can only
detect the fault, and it does not provide a solution for reconfiguring the converter topology
to remove the fault. Another strategy to detect the OCF is to compare the inductor current
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as estimated by using an observer with its sensor-measured value. To reduce the number of
sensors used, a state observer is created using the information available in the closed loop
control [37,38]. In [39,40] a fault diagnosis method was proposed for a three-leg interleaved
boost converter based on inductor current sampling.

In this paper, a fault-tolerant topology and a fault diagnosis method are proposed for
n-leg interleaved bidirectional converters against OCF occurrences in power switches. The
proposed topology does not require any additional inductors. Its additional components
include only two power switches and n TRIACs to support OCF occurrences in 2 × n
switches of n legs. The proposed fault diagnosis algorithm detects an OCF only by observ-
ing the current of the inductors and does not require any sensors. Hence, the cost, weight,
volume and complexity of the system is considerably reduced. Fast reconfiguration of the
converter along with fast fault detection causes the switches to face the least overloading.
In addition, the converter senses the lowest interrupt in its normal operation without any
efficiency drop.

2. Proposed Fault-Tolerant Bidirectional Topology
2.1. Basic Configuration

The proposed BESS topology is depicted in Figure 2. In this scheme, a battery bank is con-
nected to a DC microgrid through the proposed OCF-tolerant bidirectional DC–DC converter.
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In the proposed topology, a backup leg is added to an n-leg interleaved bidirectional
DC–DC converter. The backup leg, including two power switches, M1 and M2, is shown
inside the dashed lines in Figure 2. It is connected to all of the other legs with TRIACs,
which are triggered only when an OCF is detected on that leg. Thus, the backup leg is
connected to the other n legs through n TRIACs: T1, T2, . . . and Tn. As can be seen in this
figure, only two additional switches and n TRIACs are required to eliminate any possible
OCF at 2 × n switches in n legs of the bidirectional converter. The extra devices are inside
the dashed line in Figure 2. Therefore, in the proposed OCF-tolerant topology, very few
extra components are needed compared with the conventional topology.

2.2. Normal State Operation

Under normal conditions, the converter operates with conventional topology, where
the switches S1, S3, S5 . . . to S2n−1 are controlled in forwarding mode for power injection
to the DC microgrid, and switches S2, S4, S6 . . . to S2n are controlled in reverse mode
for power absorption from the DC microgrid. Different control systems can be used to
control an n-leg interleaved bidirectional DC–DC converter under normal conditions. One
of these control systems is depicted in Figure 3. According to this scheme, a two-stage
cascaded control system is employed to control the power flow. In the first stage, a PI-based
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power controller regulates the power injection/absorption to/from the grid (Pout) and
generates the reference current (Ire f

out) for the next stage. In the second stage, a PI-based
current controller is utilized to track the reference current and generate the modulation
signal for the PWM unit. It should be noted that the switching pulses for each leg are
commonly shifted by 360°/(n − 1) relative to the pulses of the previous leg.
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It is possible to analyze the circuit in three states: (i) the normal state (operation
without faults), (ii) the faulty state (transient after an open-circuit power switch fault), and
(iii) the rebuilt state (post-fault operation with the proposed fault-tolerant strategy requiring
hardware and software reconfiguration). In this paper, without loss of generality, a two-leg
interleaved bidirectional topology is studied, but the proposed method can be simply
extended to an n-leg topology. In the normal state, if the converter has two interleaved
inductors and four power switches, then it is characterized by four operating modes
according to the power direction. In each operating mode, two switches are conducting,
and the others have to be turned off. The normal operation of the conventional topology
can be found in [41].

2.3. Control System Design

A control system in the normal state consists of two cascaded PI controllers. In order to
design the parameters of these controllers, the system is modeled in s-domain considering
a second-order transfer function for DC–DC converters [42] and a Thevenin equivalent
circuit for DC microgrid with inductance Lg and resistance Rg, as depicted in Figure 4.
Firstly, the coefficients of the inner loop must be tuned. Then, the coefficients of the outer
loop are designed. The inner loop is a PI current controller with proportional gain kp2
and integral gain ki2. Considering the dominant poles of the closed loop transfer function,
it corresponds to the typical second-order transfer function with the bandwidth ωn and
damping factor ξ. It is possible to select kp2 and ki2 so that ωn and ξ are set to desired values.
The same method is used to tune kp1 and ki1 in the outer loop with lower bandwidth.
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2.4. Faulty State Operation

In the case of an open circuit fault in any of the switches, if it occurs in the upper
switches (S1, S3, S5 . . . to S2n−1), then the bidirectional converter fails in forward mode,
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which causes current to flow through the switches in parallel with the faulty switch and
will cause the parallel switch to be damaged by overcurrent. On the other hand, if the OCF
occurs in the lower switches (S4, S6, S8 . . . to S2n), then the bidirectional converter fails in
reverse mode. This will cause the parallel low-side switch to be damaged by overcurrent.

Figure 5 illustrates the operating modes of a bidirectional converter with two inter-
leaved inductors and four power switches when each power switch experiences an open
circuit fault before detecting and diagnosing the fault. In the forward mode of the bidirec-
tional converter, when an open circuit fault occurs in S1, two operating modes are possible
for the converter (as shown in Figure 5a): in the first interval, S3 is on and the rest of the
switches are off, and in the second interval, all switches are off. During the period where
S3 is on, diode D4 is reverse-biased, and inductor L2 is charged from the input source. In
addition, D2 is forward-biased, which causes the inductor to discharge until it reaches
zero current.
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Assuming that all elements are ideal, the supply voltage and input power are con-
stant and the inductance values of L1 and L2 are equal, during one switching period, the
equations of the input and inductor currents are as follows:

Iin,ave = IL1,ave + IL2,ave (1)

IL1,ave = IL2,ave = I (2)

Combining Equations (1) and (2), the equation of the input current can be obtained
as below:

Iin,ave = 2I (3)
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After the inductor current L1 becomes zero, Equation (2) is rewritten as below:

IL2,ave = Is3,ave = 2I (4)

IL1,ave = Is1,ave = 0 (5)

In the above equation, it is evident that when an OCF occurs in the power switch S1, a
current twice the nominal current passes through L2 and S3, causing damage. Similarly,
the current through inductor L1 and switch S1 reach twice the rated current when an OCF
occurs in switch S3, as shown in Figure 5b.

During reverse mode, if there is an OCF in the S2, two operating modes are possible
for the converter (Figure 5c): in the first interval, S4 is on and the rest of the switches are
off, whereas in the second interval, all switches are off. During the period where S4 is on,
D3 is reverse-biased, the DC grid charges the inductor L2, and D1 is also forward-biased.
As a result, the inductor charges the battery until it reaches zero current. Similar to forward
mode, this mode damages the switch S4 by passing twice the rated current through it. On
the other hand, if an OCF occurs in S4, S2 must carry twice its rated current, as shown in
Figure 5d.

The topology and control system are reconfigured after the fault is detected by using
the proposed fault diagnosis algorithm. Depending on where the fault is located, cir-
cuit reconfiguration varies slightly. Figure 6 shows the reconfigured topologies for fault
occurrences on each switch.
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2.5. Fault Diagnosis Algorithm

Under normal conditions, during the forward mode of the bidirectional converter and
when the switches S1, S3, . . . to S2n−1 are turned on with a specific duty cycle, the inductor’s
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current increases in all legs. Similarly, in reverse mode and where the switches S2, S4, . . .
to S2n are turned on with a specific duty cycle, the absolute value of the inductor’s current
increases. An OCF occurrence on each switch of each leg of the converter causes the current
of the inductor of the same leg to decrease while the currents of the other inductors increase.
Therefore, by observing the currents of inductors and their changes over time, it is possible
to detect the OCF.

The proposed fault diagnosis scheme for an n-leg bidirectional converter is presented
in Figure 7. In this scheme, inductors’ currents iL1, iL2, . . . , iLn are measured using small
series resistors. In fact, a major advantage of the proposed topology is that it allows the
inductors’ currents to be measured without any current sensors and only with small series
resistors because all inductors are ground-connected. Then, for the k-th leg, the measured
current iLk passes through a low-pass filter (LPF) with the following transfer function in
the z-plane:

LPF(z) =
βz

z − β
(6)

where β = 1/(ωcTs + 1), ωc is the filter’s cutoff frequency and Ts is the sample rate of
discretization. This filter removes the high-frequency terms and noise of the signal. Then,
the filtered signal passes through a discrete transfer function D(z) as follows:

D(z) =
N

1 + NTs
z

z−1
(7)

It is a causal form of the derivative function discretized using the backward Euler
method to determine the changes of the signal over time. N is the filter coefficient. Outputs
of this stage λ1, λ2, . . . to λn are used in the fault diagnosis algorithm along with the
measured values of inductors’ currents iL1, iL2, . . . to iLn. The proposed fault diagnosis
algorithm is presented in the flowchart of Figure 8.
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The first question is whether an OCF occurred or not. The second question is which
leg the fault occurred in. Finally, the third question is which switch of that leg is the open
circuit. To detect the OCF occurrence in Figure 7, it is enough to analyze the product of
λ1, λ2, . . . and λn. According to Figure 8, if the resulting value of λ1 × λ2, . . . × λn is less
than a negative threshold value −λth, then an OCF has occurred. At this time, each leg with
a negative corresponding λ value is faulty. Thus, as depicted in Figure 8, if λk < 0, then
an OCF has occurred on the switches of the k-th leg. To find out which one of upper and
lower switches in k-th leg is faulty, it is enough to check the sign of inductor’s current in
that leg. If iLk is positive, then the upper switch is faulty; otherwise, the lower switch is
faulty. According to the algorithm in Figure 8, if the switch Sk is faulty, then the parameter
SFk is set to 1; otherwise, it is set to zero.

2.6. Reconfiguration Method for Fault-Tolerant Operation

Once the faulty switch is detected by using the proposed fault diagnosis scheme, the
circuit is reconfigured to replace the faulty switch with one of the backup switches M1 and
M2. A detailed scheme of the hardware and software reconfiguration is shown in Figure 9.
When the converter operates under normal conditions, switches M1 and M2 do not receive
any pulses from the control system, and none of the TRIACs T1, T2, . . . to Tn are activated.
Once an OCF occurs on one of the power switches of the k-th leg, the TRIAC Tk is activated.
If the upper switch is faulty, then M1 is triggered by the pulses of the open circuit switch. If
the lower switch is faulty, then M2 is triggered by the pulses of the open circuit switch.

As depicted in Figure 9, to generate the switching pulses for backup switches M1 and
M2, the reconfiguration system employs the switching pulses S1, S2, . . . to S2n generated
from the control system along with the parameters SF1, SF2, . . . to SF2n generated from
the fault diagnosis algorithm. In this logic design, if SF2k−1 is set to 1, then an OCF has
occurred on an upper-side switch; thus, the switching pulses S2k−1 will be applied to switch
M1. On the other hand, if the OCF occurs on a lower-side switch, then SF2k is set to 1, and
the switching pulses S2k will be applied to switch M2.
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3. Results
3.1. Simulation Results

This section presents the simulation results of the proposed fault-tolerant topology
and fault diagnosis algorithm for a sample two-leg interleaved bidirectional converter
connected to a DC microgrid. The simulated converter had two interleaved inductors and
four power switches along with two additional backup switches. The characteristics and
parameters of the converter are listed in Table 1. The simulation results were caried out
using the MATLAB/Simulink software. The SimScape toolbox was used to demonstrate
the performance accuracy of open-circuit fault detection and fault-tolerant reconfiguration.
In addition, ωc = 50 kHZ, λth = 100, Ts = 10 us and N = 100.

Table 1. Design parameters of DC–DC bidirectional converter.

Simulation Parameter Value

Input voltage Vbattery 100 V
DC microgrid voltage 290 V

Reference current in forward mode 5 A
Reference current in reverse mode −5 A

Inductance L1, L2 3 mH
Capacitance Cout 1000 µF

Switching frequency fs 10 KHz

At first, the converter operation in forward mode was analyzed without fault diagnosis
and fault-tolerant reconfiguration. Figure 10 illustrates the current flowing through the
switch S1 in the forward operation mode of the converter before and after an OCF occurred
in the switch S3 at t = 1 s. As can be seen in the figure, before the fault occurrence, the output
current was equally divided between two switches. However, after the fault occurrence,
the currents of the switches in the faulty leg became zero, and the currents of the switches
in the other leg were doubled. This overload will lead to damage in the switches of the
other leg. If an OCF occurs on the switch S3, then similar results will be obtained.
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switch S3 during an OCF on power switch S1; (b) current of switch S1 during an OCF.

To analyze the converter operation in reverse mode, Figure 11 shows the current of
the switch S2 before and after an OCF occurred on the switch S4 at t = 1 s. The currents of
the switches in the faulty leg became zero, and the currents of the switches in the other leg
were doubled. If an OCF occurs on the switch S2, then similar results will be obtained.
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Figure 11. Simulation results during an OCF on power switch S4 in reverse mode: (a) current of
switch S2 during an OCF on power switch S4; (b) current of switch S4 during an OCF.

In the proposed fault diagnosis and fault-tolerant system, once the converter detects
the fault occurrence, it is reconfigured using TRIACs T1 or T2. Therefore, the backup switch
M1 or M2 is turned on, and the additional current of the healthy switch passes through it
to prevent damage to the healthy switch.

Using the proposed fault diagnosis method and fault-tolerant reconfiguration, the
simulation results for when an OCF occurs on the switch S3 in forward mode are presented
in Figure 12. It shows the current flowed through the switches S1 and M1 in forward
mode, and when a fault on the switch S3 was detected, the topology was reconfigured by
turning on the switch T2. In reverse mode, considering an OCF on the switch S4 at t = 1 s,
Figure 13 shows the currents of switches S2 and M2 after the fault diagnosis and topology
reconfiguration by turning on the switch T2.

As can be inferred from these figures, due to fast fault detection and reconfiguration,
the proposed fault-tolerant system was able to quickly remove the overload of the switches
S1 and S2 within about 0.6 s. The maximum overload was limited to 8 A. The output
voltage and output current of the converter in forward and reverse modes are shown in
Figure 14a,b, respectively.
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3.2. Experimental Results

To experimentally verify the performance of the proposed fault-tolerant topology
and fault diagnosis algorithm, an experimental prototype for the proposed BESS was
implemented and connected to a laboratory-scale DC microgrid. As shown in Figure 15, the
BESS consisted of a lead-acid battery bank along with the proposed fault-tolerant two-leg
interleaved bidirectional converter with an additional backup leg. The BESS was connected
to a DC microgrid including another BESS and a DC load. The second BESS regulated the
DC bus voltage of the microgrid. The proposed BESS was connected to the DC bus and
injected/absorbed the reference current to/from it. The proposed fault diagnosis algorithm
was implemented on the STM32F407ZGT6 digital microcontroller with a 168 MHz CPU
clock. The fault diagnosis algorithm and switching control system were implemented with
200 kHz and 10 kHz frequencies, respectively, in separated interrupt routines. BT139 was
used for TRIACs T1 and T2. In addition, ωc = 50 kHz, λth = 100, Ts = 10 us and N = 100.
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Figure 15. Experimental setup.

Figure 16 shows the experimental results, including the currents of the switches
in the healthy leg and the output voltage of the converter while an OCF occurred on
power switches S1 and S4 in forward and reverse modes, respectively. At first, a two-
leg interleaved bidirectional converter without the fault-tolerant strategy was tested. In
forward mode, once an OCF occurred on the switch S1, the current flowing through
switches S3 and S4 and the output voltage of the converter were as illustrated in Figure 16a.
Because there was no fault-tolerant strategy, the currents of S3 and S4 were doubled. In
addition, a considerable drop occurred in the output voltage.
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system: (b) OCF on switch S1 in forward mode with proposed fault-tolerant system; (c) OCF on
switch S4 in reverse mode without fault-tolerant system; (d) OCF on switch S4 in reverse mode with
proposed fault-tolerant system.

To overcome these issues, the proposed fault-tolerant system and fault diagnosis
method were experimentally implemented. Figure 16b illustrates the performance of the
proposed system in removing the overload of switches S3 and S4 and limiting the output
voltage drop when an OCF occurred on the switch S1 in forward mode.

In reverse mode, first, a two-leg converter was tested without the fault-tolerant strategy
for an OCF on the switch S4. The current that flowed through switches S1 and S2 and
the output voltage of the converter can be seen in Figure 16c. Because there was no fault-
tolerant strategy, the currents of S1 and S2 in the healthy leg were doubled. In addition,
a considerable drop occurred in the output voltage. Using the proposed fault-tolerant
strategy, Figure 16d shows that the system was able to remove the overload of switches S1
and S2 and limit the output voltage drop in reverse mode.

According to Figure 16, the maximum overload was limited to 8.5 A, and the maximum
settling time was about 400 ms to completely remove the overload. Analyzing the generated
pulses for the TRIACs, it is possible to measure the computation time of the fault diagnosis
algorithm. The proposed method can practically detect the OCF occurrence and the fault
location within 18 ms.

In Table 2, the performance of the proposed fault diagnosis algorithm is compared with
other references in terms of fault detection speed, computational burden and complexity.
The proposed method can be simply implemented on the microcontroller. In addition, its
fault detection speed was more than other methods except for that of reference [30], whose
complexity is greater than that of the proposed method.
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Table 2. Proposed fault diagnosis algorithm compared with other methods.

Method Complexity Fault Detection Time

Observer-based method [26] Medium 19 ms
Reference current error [30] Medium 13 ms

AC current instantaneous [29] Low 20 ms
Normalized DC current [28] Medium 18.4 ms

Modified normalized DC current [28] Low 18.4 ms
Park’s vector [27] Medium 20 ms
Proposed method Low 18 ms

4. Conclusions

A fault diagnostic method and a fault-tolerant reconfiguration are presented in this
study for a bidirectional DC–DC converter in a BESS. This method uses only the inductor
current, its changes, and the series resistance for fault diagnosis without any sensors. Hence,
its implementation is simple and cost-effective. It is able to indicate an OCF occurrence and
its location. For an n-leg interleaved bidirectional converter, two power switches are added
and one TRIAC is required for each leg. As soon as a fault is detected by the proposed fault
diagnosis algorithm, a fault-tolerant reconfiguration is initiated. Switches and TRIACs
are switched in such a way that the overcurrent in a healthy switch does not damage it.
An OCF in one switch causes the currents of switches in the other legs increase, causing
damage and disrupting the converter’s performance. Experimental results show that the
fast fault detection within 18 ms and automatic reconfiguration caused the overload in the
other switches to be quickly removed, and thus, the voltage deviation was limited.
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