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Abstract: The table recognition model rows and columns aggregated network (RCANet) uses a
semantic segmentation approach to recognize table structure, and achieves better performance in
table row and column segmentation. However, this model uses ResNet18 as the backbone network,
and the model has 11.35 million parameters and a volume of 45.5 M, which is inconvenient to deploy
to lightweight servers or mobile terminals. Therefore, from the perspective of model compression,
this paper proposes the lightweight rows and columns attention aggregated network (LRCAANet),
which uses the lightweight network ShuffleNetv2 to replace the original RCANet backbone network
ResNet18 to simplify the model size. Considering that the lightweight network reduces the number
of feature channels, it has a certain impact on the performance of the model. In order to strengthen
the learning between feature channels, the rows attention aggregated (RAA) module and the columns
attention aggregated (CAA) module are proposed. The RAA module and the CAA module add the
squeeze and excitation (SE) module to the original row and column aggregated modules, respectively.
Adding the SE module means the model can learn the correlation between channels and improve the
prediction effect of the lightweight model. The experimental results show that our method greatly
reduces the model parameters and model volume while ensuring low-performance loss. In the end,
the average F1 score of our model is only 1.77% lower than the original model, the parameters are
only 0.17 million, and the volume is only 0.8 M. Compared with the original model, the parameter
amount and volume are reduced by more than 95%.

Keywords: table structure recognition; deep learning; SE module; lightweight network

1. Introduction

Tables are a common data storage method in daily life. With the development of
the information age, various documents use tables more and more widely. In the early
days, people mainly used rule-based methods to identify tables. Reference [1] and ref-
erence [2] used hand-made rules to analyze tables, which could only be used for table
recognition in certain fixed formats, which had certain limitations, and the design of the
rules was also more complicated. With the continuous development of deep learning,
deep learning methods have achieved remarkable results in various fields such as mu-
sic, natural language, and images. Reference [3] uses different conventional algorithms
to solve multiple types of table structure recognition, but requires many preprocessing
operations. In recent years, many researchers have used deep learning methods to parse
the structure of tables. Reference [4] uses the method of object detection to identify the
table structure, and proposed complicated table structure recognition with local and global
pyramid mask alignment (LGPMA) based on Mask R-CNN [5], which detects the local and
global boundaries of the table, and aligns and fuses the results. Then, three post-processing
steps of cell matching, blank cell search, and blank cell merging are added, which solves the
problem that blank cells are difficult to detect. Qasim et al. [6] used a convolutional neural
network [7] and graph neural network (GNN) [8] to identify table structures, the former
for extracting image features and the latter for improving the correlation between vertices.
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Reference [9] proposed a table graph reconstruction network for table structure recognition
(TGRNet), which uses ResNet50 [10] to extract the rows and columns of the table image
and the features of the original image for fusion, predicting the spatial coordinates, and
used the graph convolutional networks (GCN) [11] to predict the logical coordinates. Khan
et al. [12] tried to use a variant of recurrent neural network (RNN) [13–15], gated recurrent
units (GRU) [16], to identify table structure. The receptive field of a convolutional neural
network (CNN) is not enough to capture complete row and column information in one step,
so RNN can effectively make up for this deficiency. After comparing two improved RNN
models, namely, long short-term memory network (LSTM) [17] and GRU, GRU shows
greater advantages. Khan et al., therefore, choose to use a pair of bidirectional GRUs, one
for row detection and the other for column detection. Siddiqui et al. [18] reduced table
structure recognition to the prediction of table columns and table rows. Shen et al. [19]
designed a semantic segmentation network for the problem of high fault tolerance of rows
and columns, and added feature slicing and tiling operations to the rows aggregated (RA)
module and the columns aggregated (CA) module, segmenting the rows and columns of the
table. Reference [20] proposed a transformer-based method for table structure identification
(TableFormer), which achieved better results in predicting the table structure and bounding
boxes of cells. Reference [21] proposes a spatial CNN and grid-CNN-based method for
table structure recognition, which can be robust on curved table datasets.

At present, the methods based on deep learning have achieved good results in the task
of table structure recognition, but after investigation, it is found that the volume and param-
eters of the model are often relatively large. From the perspective of the backbone network,
many models use a backbone network with a large number of parameters. TGRNet adopts
the ResNet50 network, and the parameter amount reaches 25.56 million, while the method
in reference [22] uses the Resnet101 [10] network, and the parameter amount reaches
44.55 million. Judging from the size of the model, the volume of the LGPMA model reaches
177 M, while the model volume of reference [23] reaches 256 M. At the same time, the
structure of the model is very complex, the training consumption is large, and it is difficult
to deploy to a lightweight server or apply it to mobile devices. How to simplify the model
complexity and make the table structure recognition model lightweight is still a problem to
be solved.

In summary, this paper optimizes the volume of the table recognition model from the
perspective of model compression and proposes an improved lightweight table recognition
model lightweight rows and columns attention aggregated network (LRCAANet) based on
rows and columns aggregated network (RCANet). We used the ShuffleNetv2 [24] backbone
network, rows attention aggregated (RAA) module, and columns attention aggregated
(CAA) module to replace the original ResNet18 backbone network, rows aggregated (RA)
module, and columns Aggregated (CA) module. In the case of ensuring low loss of model
performance, the volume and parameters of the model are greatly reduced.

The main innovations are as follows:

1. In this paper, we use a more lightweight network. The backbone network ResNet18
of the RCANet [19] model is replaced by a lightweight ShuffleNetv2 network, which
greatly reduces the volume and parameters of the model;

2. In this paper, we add the squeeze and excitation (SE) [25] module to the rows and
columns aggregated module of RCANet, so that the row–column feature information
has channel attention and improves the performance of the lightweight model;

3. Finally, we combine the lightweight backbone shufflenetv2 with RAA and CAA modules
to propose the end-to-end lightweight table structure identification model LRCAANet.

This paper is organized as follows: Section 2 presents the structure of the original
model, the structure of the replaced lightweight backbone, and the compression and
optimization strategies. Section 3 describes the process of the experiments and the analysis
of the experimental results. Section 4 describes the main conclusions of this paper and the
prospect on future research directions.
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2. Methods
2.1. RCANet Model

The research in this paper is based on the RCANet [19] model, the main structure of
RCANet is shown in Figure 1. RCANet is mainly composed of three main parts, namely, the
ResNet18 backbone network, rows aggregated (RA) module, and columns aggregated (CA)
module. The ResNet18 backbone network is mainly used to extract the features of table
images, and the outputs of the layer1, layer2, layer3, and layer4 layers of ResNet18 [10] are
extracted to be used as the input of the row–column aggregation module. The outputs of
layer4 and layer3 are used as inputs to RA3 and CA3. The input of RA2 and CA2 consists
of two parts, one is the result of conducting element-wise addition to the output of RA3
and CA3, and the other is the output of layer2. Finally, the output of RA1 and the output of
CA1 are convolved by a 1 × 1 convolution to obtain the final mask prediction result.
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Figure 1. RCANet network structure.

2.2. ShuffleNetv2 Model

As an efficient network, the ShuffleNetv2 [24] is mainly composed of a basic unit and
a down-sampling unit; the structure of the basic unit and the down-sampling unit is shown
in Figure 2.

In the basic unit, the input features are firstly channel split to obtain left and right
branches with the same number of channels. The left branch performs the identity mapping,
and the right branch undergoes two 3 × 3 convolutions and one 1 × 1 convolution and
keeps the number of channels before and after the output unchanged. The left and right
branches are merged by channel splice, and the feature information fusion of the left and
right branches is enhanced by channel shuffling.

In the down-sampling unit, the input is directly sent to two branches without channel
split, and the left and right branches perform 3 × 3 depth-wise separable convolution and
1 × 1 point convolution with stride 2 respectively. After channel splicing, the number of
channels becomes twice that of the input, and the spliced features are channel-shuffled,
similar to the basic unit, to enhance feature information fusion.
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2.3. Compression and Optimization Strategy

We found that most of the volume of the model comes from the backbone network,
and replacing the backbone network with a lightweight network can greatly reduce the size
of the model. ShuffleNetv2 enhances the flow of information between channels, ensures the
correlation between input and output channels, and ensures a lower amount of parameters.
The parameter comparison between ShuffleNetv2 and the original backbone network
ResNet18 is shown in Table 1. Compared with ResNet18, ShuffleNetv2 reduces the number
of parameters by 88%. Therefore, we optimize the backbone network of RCANet and select
the lightweight network ShuffleNetv2.

Table 1. Comparison of ResNet18 network and ShuffleNetv2 network parameters.

Model Name Model Parameters (Million)

ResNet18 11.69
ShuffleNetv2 1.37

Assuming that the original image size is W × H, the output feature map size and
number of channels of each layer of Resnet18 and ShuffleNetv2 are shown in Tables 2 and 3.

Table 2. The output feature map size and number of channels of each layer of Resnet18.

Layer Output Size Output Channels

Conv1 W/2 × H/2 64
Layer1 W/4 × H/4 64
Layer2 W/8 × H/8 128
Layer3 W/16 × H/16 256
Layer4 W/32 × H/32 512
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Table 3. The output feature map size and number of channels of each layer of ShuffleNetv2.

Layer Output Size Output Channels

Conv1 W/2 × H/2 24
MaxPool W/4 × H/4 24

Stage2 W/8 × H/8 48
Stage3 W/16 × H/16 96
Stage4 W/32 × H/32 192

However, by comparing the number of channels in Tables 2 and 3, we find that the
number of feature map channels output by ShuffleNetv2 is reduced to a certain extent
compared to Resnet18. The reduction in the number of channels increases the difficulty
of the network learning the features between channels, which has a certain impact on
the performance of the model. Therefore, in order to strengthen the correlation learning
between feature channels and optimize the performance of the model, we propose the
rows attention aggregated (RAA) module and the columns attention aggregated (CAA)
module. The RAA module and the CAA module are obtained by adding the squeeze
and excitation (SE) [25] module to the RA module and CA module of the original model
RCANet, respectively. We enhance the correlation learning between channels by increasing
the SE module, thereby improving the overall performance of the model.

The implementation idea of the SE module is very simple, and it is flexible to use, so
it is easy to join various networks. The specific structure of the SE module is shown in
Figure 3. The module first uses global average pooling to pool the W × H size feature map
compressed to 1 × 1, and then through a full connection layer to compress the channel,
compress the feature of the original channel C into channel C/r, and use the Relu function
to activate it. In this paper, r is set to 16. Then the compressed channel is mapped back to
the original channel C, and the Sigmoid function is used to activate it. The activation result
is multiplied with the original feature to obtain a feature map with channel attention.
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Finally, we name the proposed model lightweight rows and columns attention ag-
gregated network (LRCAANet), and the structure of the model is shown in Figure 4. The
structure of the RAA and CAA module is shown in Figure 5.
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Figure 5. RAA module and CAA module (a) RAA module; (b) CAA module.

As shown in Figure 4. All input images are normalized and then passed into the
model. After a 3 × 3 convolutional layer, four outputs are obtained through the Maxpool
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layer, stage2 layer, stage3 layer, and stage4 layer as the input of the RAA module and the
CAA module.

We use RAAi to denote the ith RAA module and CAAi in the same way. First, the
input of the RAAi and CAAi modules is divided into two parts, Fi and F′i+1. F′i+1 can be
denoted as IW/2×H/2×2C and Fi can be denoted as IW×H×C, where W and H denote the
width and height of the feature map and C denotes the number of channels. The number of
channels of F′i+1 is twice that of Fi, while the height and width of the feature map of F′i+1
are both half that of Fi. In order to adjust F′i+1 to the same feature map size and number of
channels as Fi, as shown in Figure 5a,b we perform up-sampling and 1 × 1 convolution on
F′i+1 to obtain Fup

i+1 with the same feature map size and number of channels as Fi, and Fup
i+1

goes through the SE module to obtain Fatt
i+1 with channel attention.

Fatt
i+1 and Fi perform element-wise addition to obtain Fa

i , slicing and tiling operations
are performed on Fa

i . The slicing operation is a process of taking the maximum value. In
the RAA module, the maximum value is obtained by row for the feature map, and the
maximum value is obtained by column in the CAA module. The calculation formulas for
the two modules are shown in Equations (1) and (2), respectively.

Fs
i [m, 1] = max

1≤n≤w
Fa

i [m, n] ∀m = {1, . . . , H} (1)

Fs
i [1, n] = max

1≤m≤H
Fa

i [m, n] ∀n = {1, . . . , W} (2)

The tiling operation is performed to copy the features obtained after slicing. For
example, the features obtained by row in the RAA module need to be copied W times
to restore the feature map of the same size as before. Similarly, in the CAA module, it
will be obtained by column. The features are replicated H times to restore the feature
map size. The tiling operations of the RAA module and the CAA module are shown in
Equations (3) and (4), respectively.

Ft
i =


Fs

i [1, 1] Fs
i [1, 1] · · · Fs

i [1, 1]
Fs

i [2, 1] Fs
i [2, 1] · · · Fs

i [2, 1]
...

...
. . .

...
Fs

i [H, 1] Fs
i [H, 1] · · · Fs

i [H, 1]

 (3)

Ft
i =


Fs

i [1, 1] Fs
i [1, 2] · · · Fs

i [1, W]
Fs

i [1, 1] Fs
i [1, 2] · · · Fs

i [1, W]
...

...
. . .

...
Fs

i [1, 1] Fs
i [1, 2] · · · Fs

i [1, W]

 (4)

Ft
i is obtained after slicing and tiling of Fa

i . After passing through a softmax layer,
Ft

i is multiplied element-wise with the previously obtained Fatt
i+1 with channel attention

to obtain the final module output, where the RAAi module outputs Firow and the CAAi
module outputs Ficol . Firow and Ficol perform element addition to obtain F′i ,and F′i and
Fi−1 as the input of the RAAi−1 module and CAAi−1 module. As shown in Figure 4, the
inputs of RAA3 and CAA3 are the same, both F′4 and F3. The output of RAA3 and CAA3
modules have the same feature map size and channels as F3. The output of RAA3 and
CAA3 perform element addition to obtain F′3, and F′3 and F2 are used as the input of RAA2
and CAA2, and so on, to finally obtain the output F1row of RAA1 and output F1col of CAA1.
F1row and F1col perform 1 × 1 convolution to obtain the final mask prediction result.

3. Experimental Results and Analysis
3.1. Experimental Environment and Parameter Setting

Table 4 shows the software and hardware environment of this paper. The experiments
use the Python language and are based on the deep learning open-source framework Pytorch.
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Table 4. Experimental environment.

Category Version

CPU Intel Xeon W-2133
GPU NVIDIA GeForce GTX 3090
RAM 32 GB

CUDA CUDA 11.1
Operating system Ubuntu 20.04.1

Pytorch torch 1.10.1
Hard-disk 1 TB SSD

We used Adam [26] as the optimizer for model training. When reproducing RCANet,
we resized the input image to 640 × 640 × 3 pixels and set the learning rate to 1 × 10−4,
which is the same as the original author. For the compressed model, we adjusted the
learning rate to 4 × 10−4 based on experience, and other parameters are consistent with
the original model, and a total of 200 training iterations are performed. During training,
data enhancement techniques such as horizontal flipping, random movement, and scaling
are used to enhance the training set data to prevent overfitting. The data augmentation
operation is shown in Figure 6.

As shown in Figure 6, where Figure 6a is the image in the original dataset, we flipped
the image in Figure 6a horizontally to obtain the image shown in Figure 6b as the expansion
of the data. We randomly translate\d the image in Figure 6a to obtain the image shown
in Figure 6c as the expansion of the data. We randomly scaled the image in Figure 6a to
obtain the image shown in Figure 6d as an expansion of the data.

The loss function, such as RCANet, uses dice loss, and the loss function is derived
from the dice coefficient. The dice coefficient is a metric function used to measure the
similarity of sets, usually used to calculate the similarity between two samples. The original
dice coefficient calculation function is shown in Equation (5).

Dice =
2|X∩ Y|
|X|+ |Y| (5)

The corresponding dice loss is defined as shown in the following formula:

Dice Loss = 1− 2|X∩ Y|
|X|+ |Y| (6)

3.2. Datasets

The experiments use the public tabular dataset ICDAR2013 [27], which contains
67 PDF documents from the EU and US governments. The dataset we obtained comes
from the cropped table area images in the original PDF document, with a total of 156 table
images. We visualized according to the text area annotation labels, and the result is shown
in the following Figure 7:
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We use Opencv [28] to process the original data according to the text box annotation
information, and draw the mask labels according to the position information between the
text boxes. We divide the segmented area into white and the non-segmented area into
black, and the generated mask label is shown in Figure 8.
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3.3. Evaluation Indicators

For the segmentation performance indicators of the model, we use the same evaluation
indicators as RCANet and calculate the precision P, recall rate R, and F1 of the model
according to the calculated number of true positives (TP), number of false positives (FP),
and number of false negatives (TN). The score is calculated as follows:

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

F1 =
2× P× R

P + R
(9)

At the same time, in order to evaluate the compression effect and complexity of the
model, we introduced three evaluation indicators, namely, the volume of the model, the
parameter amount of the model, and the number of floating-point calculations of the model,
to verify the effectiveness of our model compression work.

3.4. Experimental Results and Analysis

In order to verify the effectiveness of the method proposed in this paper, we conducted
a series of ablation experiments to compare the performance of the RCANet (recurrence)
model, the model LRCANet after replacing the backbone network, and the model LR-
CAANet after replacing the backbone network and adding the SE module. The final
experiment results are shown in the following table:

From the experimental results in Table 5, it can be seen that when the backbone network
is directly replaced by ShuffleNetv2 without adding the SE module, the performance of
the model is affected to a certain extent, and the average F1 score drops by 3.78%. The
replacement lightweight backbone network ShuffleNetv2 has fewer channels compared
to the original Resnet18. The SE module has a channel attention mechanism, and the
addition of the SE module can enhance the learning between channels, thus, improving
the performance of the model. When the SE module is added, the indicators of the model
increase, and the average F1 score is 2.01% higher than that without the SE module, which
verifies the effectiveness of adding the SE module.

Table 5. Model performance comparison.

Model
Row Column Average

P R F1 P R F1 P R F1

RCANet
(Recurrence) 0.9586 0.9534 0.9560 0.9654 0.9922 0.9786 0.9620 0.9728 0.9673

LRCANet 0.9066 0.9152 0.9109 0.9166 0.9818 0.9481 0.9116 0.9485 0.9295
LRCAANet 0.9300 0.9434 0.9366 0.9348 0.9922 0.9626 0.9324 0.9678 0.9496

We process the predicted row and column segmentation masks and use Opencv
to draw the segmentation lines to obtain the visualization results of the segmentation.
Figures 9 and 10 show the comparison of some prediction results and the prediction before
and after adding the SE module:
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In the previous experiments, we only added a layer of the SE module to the row–
column aggregation module. Considering that the SE module only operates on channels
and does not change the size of the original feature map, multiple layers can be added. In
order to verify the effect of multi-layer SE modules on the model, we designed ablation
experiments according to the addition of different layers. The experimental results are
shown in Table 6.

Table 6. SE module layers ablation experiment.

Model
SE Layers Row Column Average

Row Column P R F1 P R F1 P R F1

LRCANet 0 0 0.9066 0.9152 0.9109 0.9166 0.9818 0.9481 0.9116 0.9485 0.9295
LRCANet 1 1 0.9300 0.9434 0.9366 0.9348 0.9922 0.9626 0.9324 0.9678 0.9496
LRCANet 2 1 0.9253 0.9284 0.9268 0.9329 0.9766 0.9539 0.9291 0.9525 0.9404
LRCANet 2 2 0.8806 0.9075 0.8938 0.9382 0.9870 0.9620 0.9094 0.9473 0.9279
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From the experimental results in Table 6, it can be seen that the multi-layer SE module
does not bring better prediction results. When we add two and one layers of SE modules
to the rows and columns aggregated modules, respectively, the overall prediction effect
decreases. When we add two layers of SE modules to both rows and columns aggregated
modules, the overall prediction effect also decreases. On balance, the model has the highest
performance when only one layer of the SE module is added.

At the same time, we compared and analyzed the model complexity before and after
the improvement, checked the size of the generated model weight file, and used Python
language to obtain the model parameter quantity and model calculation volume. We took
MByte as the unit of model volume. We used millions as the unit of model parameter
quantity, and used giga floating point operations per second (GFLOPs) as the unit of model
calculation volume. One GFLOPs is equivalent to one billion floating point calculations per
second. The comparison results are shown in the following table.

From the experimental results in Table 7, it can be seen that compared with the original
model, our improved model has a very good model reduction in the three indicators
of model volume, model parameter quantity, and floating point number of operations.
Compared with the original model, the volume of this model is reduced by 98%, the number
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of model parameters is reduced by 99%, and the number of floating point calculations is
reduced by 96%. A comprehensive analysis of the results in Tables 5 and 7 shows that
our proposed method LRCAANet greatly reduces the number of parameters, volume, and
calculation of the model while ensuring a low-performance loss of the model, making the
model more lightweight.

Table 7. Model complexity comparison.

Model Volume (MByte) Model Parameters (Million) Model Calculation Volume (GFLOPs)

RCANet (Recurrence) 45.5 11.35 16.62
LRCAANet 0.81 0.17 0.64

4. Conclusions

Aiming at the problem of large size and large parameters of the table recognition
model, this paper improves the table structure recognition method RCANet based on
the lightweight network. We replaced the original backbone network ResNet18 with
a lightweight network ShuffleNetv2, and introduced the SE module into the rows and
columns aggregated modules, which strengthens the learning between feature channels,
generates feature information with channel attention, and improves the performance of
lightweight models. Finally, we experimentally verify the effectiveness of the lightweight
table recognition method LRCAANet proposed in this paper. Under the premise of ensuring
a low-performance loss of the model, the model volume, model parameters, and floating
point operations are reduced by more than 95% compared to the original model. The final
model size is only 0.81 M, and the number of model parameters is only 1.7 million.

The performance of our model may fall short compared to some of the more advanced
work. However, from what we know about the model size and the number of model
parameters of some advanced works, we can see that the number of parameters and the
volume of our model achieve advanced results. For example, the model volume of LGPMA
is as high as 177 M, while our model is only 0.81 M. Due to the relatively small number of
publicly available row mask datasets, it is difficult to make a comprehensive comparison of
our model with most advanced models. Therefore, the main experiments in this paper are
compared with the original model RCANet, and from the previously mentioned results,
we can see that our model LRCAANet achieves a huge improvement in terms of volume
and number of parameters compared to RCANet.

However, our model has only been experimented on smaller datasets so far, and we
may produce more row mask segmentation datasets in the future for research purposes
to explore the performance of the model on large datasets and further improve the model
and enhance its performance based on the experimental results. At the same time, we will
consider how to compress the advanced table recognition models to be smaller, drawing
on the algorithmic ideas of the currently available advanced work. In recent years, many
table recognition models have introduced transformer models, such as TableFormer, and in
the future we may consider adding transformer models to the model and adopting some
strategies to compress the size of the model. Further improving the performance of the
lightweight model will be our main work in the future, and we are looking forward to
further exploring a smaller, mobile-friendly table structure recognition model that can
guarantee the performance of the model while being lightweight.
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