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Abstract: The recent success of machine learning has accelerated the development of data-driven
lithium-ion battery state estimation and prediction. The lack of accessible battery operation data is
one of the primary concerns with the data-driven approach. However, research on battery operation
data augmentation is rare. When coping with data sparsity, one popular approach is to augment the
dataset by producing synthetic data. In this paper, we propose a novel fusion method for synthetic
battery operation data generation. It combines a generative, adversarial, network-based generation
module and a state-of-charge estimator. The generation module generates battery operation features,
namely the voltage, current, and temperature. The features are then fed into the state-of-charge
estimator, which calculates the relevant state of charge. The results of the evaluation reveal that our
method can produce synthetic data with distributions similar to the actual dataset and performs well
in downstream tasks.

Keywords: synthetic data; lithium-ion battery; battery data; generative adversarial network; state-of-
charge estimation; machine learning

1. Introduction

Electric vehicle (EV) development is accelerating due to concerns about air pollution.
Lithium-ion (Li-ion) battery technology has been widely adopted as the primary power
source of EVs because of its long lifespan, high energy density, low self-discharge rate,
and lightweight characteristics [1]. During the operation of EVs, battery management is
vital to ensure the safety of the users. A battery management system (BMS) is applied
in EVs to perform various tasks, including state estimation, thermal control, and battery
cell balancing [2]. State estimation is one of the crucial jobs among them to guarantee
dependable functioning and increase battery life.

The state of charge (SOC) and state of health (SOH) are two main concerns for the state
estimation in BMSs. The SOC represents the currently available charge level of the battery.
It is essential to develop reasonable control mechanisms in order to preserve energy and
avoid overcharge and overdischarge situations [3]. The SOH indicates the current health of
the battery. It is usually defined by the battery’s internal resistance increment or remaining
capacity loss [4]. SOC and SOH estimation can be divided into three types of approaches:
data-driven, model-based, and a hybrid method that fuses them [5,6]. The model-based
method is mainly based on the equivalent circuit model (ECM) method and electrochem-
ical and mathematical models that mainly focus on identifying model parameters via
experiments [7]. The data-driven method uses big data technology to estimate the battery
state by utilizing the battery’s historical operation data. Unlike the model-based method,
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the data-driven method does not analyze the complicated electrochemical behavior inside
the Li-ion battery. This eases the implementation difficulty of the data-driven method.

Recently, the success of neural network technology in various domains encouraged the
adoption of neural networks for data-driven battery SOC and SOH estimation. Numerous
results for SOC and SOH estimation were presented in various studies [8,9]. The per-
formance of neural network technology (especially deep learning) relies heavily on the
amount of training data [10]. A model trained with insufficient data cannot comprehen-
sively capture the battery dynamics related to its state changes. Despite this, there is a lack
of publicly available Li-ion battery datasets. In particular, it is rare to obtain field testing
data that can reflect the conditions of the battery during its actual operation [11]. Typically,
data augmentation is used to address the problem of insufficient data in machine learning.

The operation data of Li-ion batteries used for estimation of the SOC and SOH is
typically in the form of a time series. The traditional data augmentation methods, such as
cropping, rotating, and flipping applied in the computer vision domain, are not applicable
for time series data. Time series data may become noisy when using the aforementioned
traditional methods since they directly transform the original data. Synthetic data gen-
eration, which learns the original data distribution and creates new data that mimic the
distribution, is a better option [12].

The generative adversarial network (GAN) has recently achieved great success in
producing synthetic data for computer vision [13]. The field of synthetic data generation
research using GANs is well studied, such as the cGAN [14] for assigning conditions to
generated data, StackGAN [15] for text-to-image synthesis, and CycleGAN [16] in image-
to-image translation. Although the majority of GAN research focuses on creating images,
time series generation is also being investigated. As summarized by Brophy et al. [17],
the application of a time series GAN includes data augmentation, imputation, denoising,
and differential privacy. Inspired by the success of the time series GAN for synthetic data
generation, utilizing a GAN for Li-ion battery operation data generation is proposed in
this research.

In this work, we propose a novel approach that combines a generation module and
an SOC estimator. A GAN-based generation module is employed to create synthetic
battery operation data during the discharge phase. It is necessary to generate data from the
discharge phase because the operation of the battery during discharge is more dynamic and
variable than during charging. The synthetic battery operation data include the voltage,
current, and temperature, all of which vary during operation. Using the data generated
by the GAN-based generation module, a long short-term memory (LSTM)-based SOC
estimator is applied to compute the corresponding SOC associated with the discharge
operation. Therefore, we can generate synthetic battery operation data with four features:
the voltage, current, temperature, and SOC. The main contributions are summarized
as follows:

• The existing GAN and non-GAN methods for producing synthetic battery operation
data are reviewed.

• We propose a fusion method for producing synthetic battery operation data during
the discharge phase, which involves a GAN-based generation module combined with
an LSTM-based SOC estimator.

• Qualitative and quantitative examinations are performed to compare the quality of
the produced data to those of other time series GAN techniques.

The rest of this paper is organized as follows. A literature review of the related topics is
presented in Section 2. Then, Section 3 explains the method used in this work. In Section 4,
we evaluate the proposed method. Finally, Section 5 summarizes this paper and provides
the concluding remarks.

2. Related Work

In this section, the fundamental of the GAN, its variation for time series data genera-
tion, and the current advances in GANs and related networks in the area of Li-ion batteries



Electronics 2023, 12, 657 3 of 17

are introduced. Furthermore, the present methodologies for generating synthetic battery
operation data are described. Following that, we present the motivation for our proposed
method based on the relevant works.

2.1. Generative Adversarial Network

The generative adversarial network (GAN) is an algorithm for training generative
models proposed by Goodfellow et al. [18]. Fundamentally, a GAN consists of two neural
networks: a generator and a discriminator. Training is conducted in the form of a zero-sum
game between the two networks. The GAN architecture is shown in Figure 1. The genera-
tors attempt to create synthetic data that can be misinterpreted by discriminators as real
data. In contrast, the discriminator is trained to distinguish between synthetic and real
data. The primary goal of the GAN is to produce synthetic data that are indistinguishable
from genuine data. The GAN has received tremendous attention since its debut in 2014. A
tremendous amount of advanced architectures were proposed in the research field. Several
of them are introduced in the following paragraph.

Generator

Discriminator

Real  
Data

Fake  
Data

Real/Fake

Generator Loss

Gradients

Discriminator Loss

Gradients

Loss

Figure 1. Generative adversarial network.

The conditional GAN (cGAN) [14] extends the GAN by including conditions. The con-
dition is usually the desired class or label of the generated data. The training process of the
cGAN is similar to that of the GAN, and it adds the condition in the input of the generator
and discriminator. The generator creates synthetic data that are associated with the desired
condition, and the discriminator identifies the data under the corresponding condition. As
the associated label of the generated data is known, it can be useful in augmenting training
data for classification tasks. The deep convolutional GAN (DCGAN) [19] combines deep
convolutional neural networks and GANs that increase the training stability. The authors
proposed several tricks to stabilize the training of GANs, including (i) replacing pooling
with strided convolution so that the network learns its own spatial downsampling, (ii)
using batch normalization in both the generator and discriminator to stabilize the train-
ing process, (iii) replacing the fully connected layers with a convolutional layer, (iv) the
generator using ReLU for activation of all layers except the output layer, which should use
Tanh, and (v) all layers in the discriminator using LeakyReLU. The InfoGAN [20] separates
the input of the generator into z (noise) and c (code) and introduces a classifier Q to deter-
mine the corresponding code of the output. The idea is to allow the generator to produce
synthetic data associated with the code. The code may contain conditional information
such as image rotation or the text character width. The Wasserstein GAN (WGAN) [21]
improves the stability of training the GAN model, and it can avoid mode collapse and
vanishing gradients in GANs. The ideas include (i) removing sigmoid activation from
the last layer of the discriminator, (ii) the loss of the generator and discriminator does not
taking a logarithm, and (iii) substituting the Wasserstein distance for binary classification
in the discriminator. Moreover, Gulrajani et al. [22] proposed the WGAN with a gradient
penalty (WGAN-GP) to further improve the WGAN by introducing a gradient penalty.
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As previously indicated, most GAN applications are geared toward producing images.
Brophy et al. [17] summarized that the time series-based GAN can be divided into discrete-
time and continuous-time forms, each of which has different challenges. The battery
operation data we study in this research are in continuous-time form; that is, a data value
capture happens at every moment. There are primary concerns regarding the model’s ability
to capture the complexity between the temporal features and attributes for continuous-time
data. The relationship between data features should be reflected in the generated data. For
instance, the linkage between the current and voltage due to ohmic loss and the diffusion
voltage in battery operation data [23] should be shown. In the research field, many works
were presented to address the time series GAN problem. Some of them are reviewed in the
following paragraph.

The time-GAN is a time series data generative model proposed by Yoon et al. [24].
The main idea is to combine the versatility of unsupervised training in GANs with the
conditional probability principles of supervised autoregressive models so that the temporal
dynamics is preserved. Li et al. [25] proposed a time series GAN model (TTS-GAN) based
on the transformer encoder architecture [26]. The authors view the time series data as
image data and process them with the transformer architecture. The time series sequence
length is set to be the width of an image with a height of one, and the features of the time
series data are treated as the channels of an image. Pei et al. [27] presented (RTSGAN)
the use of GAN and an autoencoder combined to deal with real-world time series data
that are usually characterized by a variable length, long sequence length, and missing
values. Autoencoders are trained on real data with an encoder that encodes data to latent
representations and a decoder that decodes the latent representations back into the original
data. A GAN model involves training a generator to generate latent representations and
feed both the real and synthetic latent representations to a discriminator to determine their
authenticity. In order to generate synthetic data, the trained decoder decodes the generated
latent representation.

Recently, a growing number of Li-ion battery-related studies have adopted GANs
and other similar techniques. For instance, Zhang et al. [28] proposed the use of a GAN-
conditional latent space (CLS) to generate pseudo-experimental Li-ion battery data. In
their research, the battery charge and discharge characteristics were converted into im-
age representation, and then the GAN-CLS was used to produce more relevant image
data. The produced data were then applied to train a bidirectional-LSTM model for
open circuit voltage characteristic prediction. Moreover, Gayon-Lombardo et al. [29] pre-
sented a DCGAN to generate 3D multi-phase electrode microstructural data. Furthermore,
Hu et al. [30] proposed forecasting the calendar aging of Li-ion batteries through the
use of a GAN designed based on the battery’s electrochemical knowledge. In addition,
Faraji Niri et al. [31] proposed using an auto-encoder decoder for microstructure recon-
struction of Li-ion battery electrodes.

2.2. Synthetic Battery Operation Data

Successful data-driven estimation of a battery’s state requires a variety of large battery
datasets. A battery dataset that covers a greater number of situations is more likely to
be convincing. It is still difficult to find sufficient public datasets that cover a variety of
scenarios related to battery operation. In response to the problem of lacking data, synthetic
data generation has become an option. In synthetic data generation, artificial data that have
a similar distribution to the original data are generated to expand an existing dataset. A
review of several studies relating to the generation of synthetic battery operation data is
presented below.

Pyne et al. [32] proposed a Markov chain- and neural network-based approach for
generating synthetic battery operation data with SOH variation. They proposed generating
feature data, namely the voltage centroid value (average value of voltage clustered by
k-means), rather than generating the entire charge or discharge cycle with data sampled at
every time step. In their framework, a synthetic current profile is first generated based on
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Markov chain propagation. Then, a neural network trained by real data is used to estimate
the voltage centroid value with the generated current profile. Time series GAN-based
synthetic battery operation data generation was proposed by Naaz et al. [33]. Their results
were evaluated by the Oxford battery degradation dataset [34] and NASA prognostics
dataset [35]. The synthetic data of both datasets were found to have similar distributions to
the original data. As a result of concerns regarding the intensive computing requirement
of the GAN, Naaz and Channegowda [36] proposed generating synthetic battery data by
using a recurrent neural network (RNN). The basic idea is to train the model to forecast
future voltage, current, and capacity values in order to generate new data.

2.3. Motivation for the Proposed Method

The existing literature shows the possibility of expanding battery datasets. However,
there are still limitations in synthetic battery data generation research. As the feature-based
generation method [32] only generates the selected features of the time series data, different
types of applications, such as forecasting the battery temperature, cannot be performed
on the feature-based data. Furthermore, the diversity of the synthetic data created by
projecting future operations [36] is limited since the generated data are confined by the
previous operation. What is more, the GAN-based approach [33] exhibits close distribution
between synthetic and real data. However, the synthetic voltage and SOC value show high
jitter compared with the real data. In addition, the battery data generated using the present
time series GAN approaches lack the essential battery operating characteristic, specifically
the SOC value, which is anticipated to decline progressively over the discharge cycle.

To address the issues highlighted above, we suggest a fusion strategy that combines a
generation module with an SOC estimator. The GAN-based generation module generates
current, voltage, and temperature values that mimic actual discharge operation. Based on
these synthetic operation data, an SOC estimator, which was validated to be able to estimate
the SOC accurately [37], can be used to produce the associated SOC value. Using an SOC
estimator to generate the SOC value rather than creating all values using a GAN can result
in synthetic data with SOC drops that are more similar to actual battery operation.

3. Methodology

This section introduces the dataset utilized in our research. The suggested generative
framework and its components are then described in depth. Finally, the suggested models’
training procedures are described.

3.1. Li-Ion Battery Dataset

In this research, a public dataset of the LG 18650HG2 Li-ion battery (LG dataset)
is used. This dataset was published by Kollmeyer et al. [38] and made available to the
public through Mendeley Data. Charge and discharge tests at various temperatures were
conducted to collect the data. The discharge cycles followed the driving cycles, namely
UDDS, LA92, US06, etc. and a combination of these cycles. Throughout this study, we
focus on the discharge cycle at positive temperatures since these represent the majority of
use cases. Specifically, in our experiments, we used discharge cycles at 0 °C, 10 °C, and
25 °C. The data were collected in the form of time series with voltage, current, temperature,
and SOC values sampled at a 10 Hz rate. An example discharge cycle from the dataset is
shown in Figure 2.
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Figure 2. LG 18650HG2 Li-ion battery dataset example.

3.2. Generative Framework

The generative framework consists of two main components: a GAN-based generation
module and a deep LSTM-based SOC estimator. The two components are trained separately.
In both components, training data are drawn from the LG dataset. The GAN-based
generation module employs a generator and discriminator that are trained together to
create high-fidelity synthetic data for the voltage, current, and temperature during a
discharge cycle. The SOC estimator is trained to estimate the SOC based on the input
voltage, current, and temperature value. By combining the synthetic battery operation
data from the generator with the estimated SOC derived from the synthetic data, we can
generate a synthetic Li-ion battery operation dataset.

Figure 3 illustrates the overview of the proposed framework. In the figure, V repre-
sents the voltage, I indicates the current, T is the temperature, and z is the latent space
sampled from the standard normal distribution. The orange dashed line represents the
SOC estimator training phase, the blue dashed line indicates the GAN training phase, and
the red line represents the synthetic data generation phase. The directions of the arrows
point out the input and output of the corresponding components in different phases. It is
worth mentioning that the latent space z is applied in both the GAN training phase and the
synthetic data generation phase. The generator is subjected to generating synthetic data
from random Gaussian noise both during training and during production. The details of
each component and the training process are described in the following sections.
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Generator

DiscriminatorReal/Fake

SOC
Estimator

Synthetic Data 

Synthetic Data 

Real Data Real Data 

Estimated 

SOC Estimator Training Phase

GAN Training Phase 

Synthetic Data Generation

Figure 3. Generative framework overview. The orange dashed line indicates the training phase of
the SOC estimator. The blue dashed line represents the GAN training phase. The red line indicates
the synthetic data generation process.

3.3. GAN-Based Generation Module

The generation module consists of a GAN model combined with an LSTM-based
generator and discriminator. The generator accepts latent space generated from a standard
normal distribution in the form of an input matrix z ∈ Rn×t×k, where n denotes the
batch size, t denotes the time step length, and k denotes the input dimension. The input
latent space is passed through a stacked LSTM model to produce the voltage, current, and
temperature in the form of a matrix x̃ ∈ Rn×t×3. The input dimension of the generator is
128. On the other hand, the discriminator accepts a sequence of the voltage, current, and
temperature to examine their authenticity with a stacked LSTM model. The architectures
of the generator and the discriminator are shown in Figure 4.

Latent Space

LSTM LSTM LSTM

Batch Normalization

ReLU

  Repeat 

LSTM LSTM LSTM

(a) Generator

LSTM LSTM LSTM

Instance Normalization

Leaky ReLU

  Repeat  

Dense

Real/Fake

(b) Discriminator

Figure 4. GAN-based generation module architecture.
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As shown in the figure, the stacked LSTM part in the generator is repeated nG times,
and an LSTM layer is used as the output layer directly. The LSTM layer in the stacked part
is followed by batch normalization and a ReLU activation function. In our experiment, we
set nG = 4, and the number of features in the hidden state of LSTM was 1024, 512, 256, and
128. In the discriminator, the stacked LSTM part is repeated nD times, and the output of its
last step is passed to a fully connected layer to produce the critic. After each LSTM layer,
an instance normalization layer and a leaky ReLU activation function are applied. As in
the generator, we set nD = 4, and the number of features in the hidden state of LSTM was
128, 256, 512, and 1024.

As a point of clarification, this work focuses on generating 300-step-long sequential
data (equal to 30 s). In order to be able to produce a 300 step SOC sequence, the time step
of the generator output and the input of the discriminator was set to be 600 (60 s), since the
SOC estimator we used had a many-to-one set-up.

3.4. Generation Module Training

The training of the generation module followed the improved version of the WGAN
(WGAN-GP) [22] framework. A min-max adversarial loss function was used to train both
the generator and discriminator networks simultaneously. The objective function of the
generation module is defined as

min
G

max
D

E
x∼Px

[D(x)]− E
z∼Pz

[D(G(z))] (1)

where D denotes the 1-Lipschitz discriminator, G denotes the generator, Px is the real
data distribution, and Pz is the latent space distribution (standard normal distribution in
our case). Through iterative training of the 1-Lipschitz discriminator and generator, the
generator is trained to minimize the 1-Wasserstein distance between the real and synthetic
data distribution. To improve the stability of training, the gradient penalty is used to
replace the weight clipping strategy in the WGAN. A gradient penalty is added to the loss
and defined as

λ E
x̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
(2)

where λ is the gradient penalty coefficient and x̂ is given by

x̂ ← εx + (1− ε)G(z) (3)

with the random number ε sampled from the continuous uniform distribution.
In total, we trained the generation module for 20,000 epochs with a batch size of

64. During each epoch, the discriminator was trained five times, and the generator was
trained once. The gradient penalty coefficient λ was set to be 10. The Adam optimizer [39]
was used in both the generator and discriminator networks with a learning rate of 0.0001,
β1 as 0.5, and β2 as 0.999. The networks were implemented in PyTorch [40], and all the
training was performed on the DGX station with Tesla V100 GPUs. The source codes of
the implemented networks have been made available in an online repository reachable at
https://github.com/KeiLongW/synthetic-battery-data (accessed on 5 January 2023).

3.5. Deep LSTM-Based SOC Estimator

The SOC estimator is a deep LSTM-based model proposed in [37]. The use of LSTM
over an RNN makes the model more resistant to problems related to gradient exploding
and vanishing. An LSTM cell contains multiple components, including a forget gate, input

https://github.com/KeiLongW/synthetic-battery-data
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gate, output gate, cell state, and hidden state. The calculation steps of an LSTM cell are
shown in Equation (4):

ft = σ(W f
x xt + W f

h ht−1 + b f )

it = σ(Wi
xxt + Wi

hht−1 + bi)

c̃t = tanh(Wc
xxt + Wc

hht−1 + bc)

ct = ft � ct−1 + it � c̃t

ot = σ(Wo
x xt + Wo

h ht−1 + bo)

ht = ot � tanh(ct)

(4)

where f is the forget gate, i is the input gate, o is the output gate, c is the cell state, h is the
hidden state, σ is the sigmoid function, � is the Hadamard product, W is the weight matrix,
x is the input vector, and b is the bias. The first step is to determine what information
should be forgotten from the previous cell state. Following this, it is determined whether
the information will be stored in the cell state. The next step is to combine the current cell
state with the previous cell state. As a final step, the output gate with the sigmoid function
determines which part of the cell state should be propagated to the hidden state.

In this work, we adopt the set-up of 300 time steps for the input sequence length; that
is, the input fed to the network is a time series data with a length of 300. The features of the
time series data are the voltage, current, and temperature. The network estimates the SOC
value at the last step. The input x at a time step t can be described as follows:

xt = [Vt, It, Tt] (5)

where V is the voltage, I is the current, and T is the temperature. The input sequence is
defined as follows:

X = [x1, x2, ..., xn] (6)

where n = 300 in our case. Additionally, the output can be described as follows:

Y = SOCn (7)

where Y is the SOC value at the last step n. The aforementioned set-up is a many-to-one
method. The model architecture consists of two LSTM layers followed by three fully
connected layers. The architecture of the SOC estimator is depicted in Figure 5.

Dense

LSTM LSTM LSTM

LSTM LSTM LSTM

Dense

Dense

Figure 5. SOC estimator architecture.
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The number of cells of the LSTM layers was 256, and the number of neurons for
the dense layers was 256, 128, and 1. In this research, instead of retraining the SOC
estimator, the trained weights of the SOC estimator provided in a public repository at
https://github.com/KeiLongW/battery-state-estimation/releases/tag/v1.0 (accessed on
5 January 2023), were used in the synthetic data generation stage.

4. Result and Discussion

In this paper, we evaluate the proposed method (LSTM-GAN + SOC estimator) using
qualitative and quantitative approaches. The proposed method is compared to two GAN-
based time series data generators, namely the RTSGAN [27] and our generation module
without the SOC estimator (LSTM-GAN). It is important to note that all three methods
were trained with 20,000 epochs so that the comparison could be carried out fairly.

4.1. Qualitative Evaluation

In qualitative evaluation, we visually compare the created synthetic data to the real
data. Then, we apply principal component analysis (PCA) [41] and t-distributed stochastic
neighbor embedding (t-SNE) [42] on both the synthetic and actual data to examine their
data distributions. Furthermore, by visualizing the created data throughout epochs, we
show how the training iterations increase the quality of the generated synthetic data.

4.1.1. Data Visualization

Once the training of the LSTM-GAN was completed, synthetic battery operation data
containing the voltage, current, and temperature could be generated by supplying Gaussian
noise to the generator. Then, we applied them to the SOC estimator to form a sequence of
the voltage, current, temperature, and SOC data. For another two methods, the generator
created all four features at once. Figure 6 demonstrates the examples of real data and the
generated data from the three methods.

In the figures, the blue line indicates the voltage value, the orange line indicates the
current value, the green line indicates the temperature value, and the red line represents
the SOC value. All the features were rescaled by minimum-maximum normalization so
that all of them ranged from 0 to 1.

The real data (Figure 6a) clearly demonstrates that the voltage and current curves
were subject to fluctuations. This was primarily due to the fact that the discharge curve in
the dataset was generated using a simulated driving profile that was loaded with varying
discharge currents. Additionally, there were small jitters in the temperature curve. In
contrast, the SOC curve was relatively smooth, since it was expected that the SOC change
would be small within a short period of time (30 s). The synthetic data generated by the
RTSGAN (Figure 6b), however, did not exhibit fluctuations in the voltage or current. A flat
and smooth pattern was present in all of the four features in the synthetic data generated
by the RTSGAN. The synthetic data created by LSTM-GAN-based methods (Figure 6c,d),
on the other hand, displayed oscillating voltage and current curves. The temperature curve
also exhibited rather minor jitters; that is, the voltage, current, and temperature curves
generated by the LSTM-GAN-based methods were closer to the actual discharge cycle.
However, the SOC curve created by LSTM-GAN without the SOC estimator fluctuated
as well. As previously stated, the SOC value was not expected to fluctuate much in a
short period of time. We can notice a relatively smoother SOC curve in the data when
we employed the SOC estimator (Figure 6d). The proposed method exhibited oscillations
in the voltage, current, and temperature curves while maintaining the smoothness of the
SOC curve.

https://github.com/KeiLongW/battery-state-estimation/releases/tag/v1.0
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Figure 6. Data example of the real and synthetic battery operation data. The four features (voltage,
current, temperature, and SOC) are rescaled by minimum-maximum normalization so that they have
the same common scale.

4.1.2. Data Distribution

We analyze the data distribution of the real data and synthetic data by using PCA
and t-SNE. A sequence of battery operation data with four features was reduced to two-
dimensional data using PCA and t-SNE, allowing us to visualize their distribution in two
dimensions. The outputs of PCA and t-SNE were generated by the machine learning library
sklearn [43]. The PCA results are shown in Figure 7, and the t-SNE results are depicted in
Figure 8.
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(a) RTSGAN (b) LSTM-GAN (c) LSTM-GAN + SOC estimator

Real Synthetic

Figure 7. PCA results of the real data and synthetic data generated by the three generators.

(a) RTSGAN (b) LSTM-GAN (c) LSTM-GAN + SOC estimator

Real Synthetic

Figure 8. t-SNE results of the real data and synthetic data generated by the three generators.

Every point in the figure represents a sequence of mean values for the four features
(voltage, current, temperature, and SOC). The red points indicate the real data, and the
blue points are the generated data. If the data points overlap, then it is considered that
the distribution is close. Using their overlap areas, we were able to evaluate how well we
could approximate the data distribution.

The synthetic data created by the three techniques matched the real data distribution,
as demonstrated by the PCA and t-SNE findings. Furthermore, we can see that the LSTM-
GAN-based approaches created more overlapping data (Figures 7b,c and 8b,c). This
indicates that the LSTM-GAN-based approaches created more diverse synthetic data. One
probable explanation is that they had more fluctuation in the produced data, as stated in
Section 4.1.1.

4.1.3. Training Curve

With each iteration of the training, the quality of the data generated by the generation
module was expected to improve. We present here the generated synthetic data, PCA, and
t-SNE results along with the training iteration for evaluation purposes. Figure 9 shows the
generator and discriminator loss with the corresponding generated samples.
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Figure 9. Training curve and the corresponding PCA, t-SNE, and synthetic data generated at different
epochs of training.

The samples generated at epochs 1000, 4000, 7000, 10,000, 13,000, 16,000, and 19,000
are displayed in the figure. It is worth mentioning that we skipped the example from the
last epoch (20,000) because we already demonstrated it in the above sections by using the
result generated from the 20,000th epoch.

As observed from the training curve, the generator and discriminator are competing
against each other. The better the performance for one, the greater the loss for the other.
For instance, the discriminator’s loss increases as the generator’s loss decreases. At the
beginning of the epoch (1000), the generator performed the worst. There was disorder in
the generated synthetic data, and there was a lack of coherence in the distribution of the
data. The generator loss became steady toward 7000 epochs, as seen in the loss curve and
the generated synthetic data, PCA, and t-SNE.

It is clear that the quality of the generated data began to stabilize around epoch 10,000.
In particular, the distribution between the synthetic and real data became closer in both the
PCA and t-SNE, and the best result was observed from the samples of the 19,000th epoch.
Although there were some tremors around epoch 17,500, the loss returned to a steady level
after a short period of training. As a result, it is advised that the LSTM-GAN be trained
with more than 10,000 epochs for a satisfactory outcome.

4.2. Quantitative Evaluation

Our quantitative evaluation employs the train on synthetic, test on real (TSTR) ap-
proach to validate the performance of the synthetic data in a voltage prediction downstream
task. Moreover, an authenticity classifier is trained to determine whether the presented
data are real or synthetic, and the performance of the classifier is used for evaluating the
subjected synthetic data generator’s performance.
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4.2.1. Train on Synthetic, Test on Real

We assessed the quality of the generated synthetic data using the TSTR approach. A
downstream model was trained using purely synthetic data and tested using purely real
data. The task of the downstream model is simple many-to-many prediction of the voltage
through a sequence of currents, temperatures, and SOC. The model is based on the neural
network architecture. It consists of two fully connected layers with 64 hidden units and
ReLU activation in the first layer. Here, we name this the dense model. We trained the
dense model using the Huber loss [44] as a loss function and optimized it using the Adam
optimizer [39] with a learning rate of 0.001. The performance of the downstream task was
evaluated through the mean absolute error (MAE) and root mean square error (RMSE),
which are given by

MAE =

n
∑

i=1
|yi − ŷi|

n
(8)

RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)2

n
(9)

where y is the true value and ŷ is the predicted value. A more concrete evaluation was
conducted by training and evaluating the model 30 times and averaging the results. The av-
erage performance of the dense model based on the synthetic data generated by different
approaches is shown in Table 1.

Table 1. TSTR performance.

RMSE MAE

RTSGAN 3.15% 2.31%
LSTM-GAN 3.36% 2.55%

LSTM-GAN + SOC estimator 2.83% 2.08%

As shown in the table, the model trained by the data produced by our proposed
method outperformed the other methods. The model trained using synthetic battery data
generated from LSTM-GAN + SOC estimator resulted in the lowest RMSE and MAE when
testing with the real data.

4.2.2. Authenticity Classifier

To further evaluate the authenticity of the generated synthetic data, we trained an
authenticity classifier. The classifier performed a many-to-one task that was used to
determine if the supplied data were real or synthetic. It was fed with a sequence of voltage,
current, temperature, and SOC data and output their corresponding label (real or synthetic)
probabilities. By evaluating the classifier’s performance for classification, we could verify
the authenticity of the synthetic battery operation data generated. Poor performance by
the authenticity classifier results in a higher degree of authenticity for synthetic data, as
the classifier cannot distinguish between the real and synthetic data. The classifier is a
fully connected model with two dense layers. The term dense classifier is used here. In
the first layer, 32 hidden units were present, and the probability output from the last layer
was derived from the sigmoid output activation. The classifier was trained with binary
cross-entropy as the loss function and optimized with the Adam optimizer [39] with a
learning rate of 0.001. The training and testing data of the classifier were a combination of
the generated synthetic data and the real data. A random split of 70% training data and 30%
testing data was performed. Then, the classifier was trained by 70% of the data and tested
by 30% of the data. As with the testing in TSTR, we trained and evaluated the classifier
30 times and took the average of the result. Table 2 displays the average accuracy of the
classifier against the synthetic battery operation data generated by the three generators.
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Table 2. Authenticity classifier results.

Accuracy

RTSGAN 0.70
LSTM-GAN 0.66

LSTM-GAN + SOC estimator 0.65

The table displays the classifier’s accuracy in detecting the authenticity of the provided
sequence of data. In general, the lower the accuracy, the greater the quality of the synthetic
data created as a result of the classifier’s failure to distinguish between real and synthetic
data. Based on the above results, it can be observed that using the data produced by the
LSTM-GAN + SOC estimator performed the worst in classification. Consequently, our
proposed method generated synthetic battery operation data that were the most accurate
at replicating the original data.

4.3. Discussion and Future Work

In this research, it was demonstrated that the proposed LSTM-GAN + SOC estimator
can produce battery operation data in which data distribution is closely related to the
actual data and maintains both the variability and smoothness attributes. Nevertheless, the
training of a deep GAN model and the generation of synthetic data are time-consuming.
We proposed using deep LSTM for both the generation module and SOC estimator in this
work. In our test environment, each epoch of GAN training took around 65 s, and full
training took more than 350 h. For evaluation purposes, the generation of 4000 samples
of voltage, current, and temperature data, as well as the estimate of the SOC, took around
3000 s in total. Despite the length of time consumed, it is uncommon to employ a synthetic
data generation application in real time. The most typical use of our proposed approach is
the augmentation of discharge profiles to an existing battery operation dataset.

We investigated expanding a battery’s operating dataset containing the voltage, cur-
rent, temperature, and SOC in the discharge scenario in this study. It would be interesting
to investigate battery operation data with additional characteristics in the future, such as
the SOH of the battery, or even expand the dataset taken from the battery pack during
actual EV operation.

The produced synthetic battery operating data in this study were unconditioned;
that is, the data were created at random from Gaussian noise. In the future, it would
be beneficial to examine the cGAN [14] framework, which could conditionally regulate
the created data. The condition might be, for example, the health of the battery cell, the
driving situation when discharging the battery pack, or the ambient temperature of the
discharging environment.

5. Conclusions

Data-driven Li-ion battery state estimation and prediction are significantly influenced
by the amount of historical battery data available. The collection of field testing battery
operation data is time-consuming and challenging. Data shortages can be addressed by
creating synthetic data that mimics the original dataset. This paper presents a fusion
method that combines a GAN-based generation module and an SOC estimator for synthetic
battery operation data generation. The generation module and the SOC estimator are
based on the deep LSTM architecture. The generation module creates voltage, current,
and temperature data, which it then applies to the SOC estimator to construct a synthetic
battery operation dataset with four attributes.

The proposed method was tested by a public Li-ion battery operation dataset sampled
by a variable discharge profile. The evaluation results show that our proposed method
can generate synthetic battery operation data with a data distribution close to the original
dataset. Furthermore, the downstream task trained using the synthetic battery operation



Electronics 2023, 12, 657 16 of 17

data generated by our proposed method exhibited the best performance when tested on
actual data.

In conclusion, this work demonstrates the feasibility of combining a GAN and SOC
estimator for synthetic battery operation data generation. It is anticipated that this approach
will benefit future data-driven battery state estimation and prediction research.
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