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Abstract: The current paper recovers dispersive optical solitons in birefringent fibers that are modeled
by the Schrödinger–Hirota equation with differential group delay and white noise. Itô Calculus
conducts the preliminary analysis. The (G′/G)-expansion approach and the enhanced Kudryashov’s
scheme gave way to a wide spectrum of soliton solutions with the white noise component reflected
in the phase of the soliton.
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1. Introduction

One of the major issues that arise in soliton propagation through optical fibers across
inter-continental distances [1–11] is the depletion of the chromatic dispersion (CD) count.
There are several countermeasures that have been adopted in the telecommunications
industry to circumvent this situation. These would include the consideration of the gratings
structure in these waveguides that are known as Bragg gratings that would introduce
dispersive reflectivity. Many other measures have been adopted with time. Another
popular method to arrest this low count of CD is to introduce third order dispersion (3OD)
and that would lead to the Schrödinger–Hirota equation (SHE) that can be obtained from
the nonlinear Schrödinger equation (NLSE) via Lie transform analysis. The current paper
includes the spatio-temporal dispersion (STD) in addition to CD just to supplement a
possible low CD count.

The current paper is an analysis of SHE but in birefringent fibers. These are the fa-
miliar erbium-doped fibers with the presence of third-order dispersion effect, in addition
to CD and STD. This is an effect of differential group delay (DGD) after the occurrence of

Electronics 2023, 12, 634. https://doi.org/10.3390/electronics12030634 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12030634
https://doi.org/10.3390/electronics12030634
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5436-7268
https://orcid.org/0000-0002-9121-5714
https://orcid.org/0000-0002-5934-329X
https://doi.org/10.3390/electronics12030634
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12030634?type=check_update&version=2


Electronics 2023, 12, 634 2 of 12

pulse splitting. The accumulation of such DGD leads to the effect of birefringence [12–36].
Thus, SHE in birefringent fibers would be the focus of attention in this work. However,
a multiplicative noise is also included in the model because no optoelectronic device is per-
fectly deterministic and consequently noise would naturally creep in. This paper therefore
considers the multiplicative white noise that emerges from the standard Weiner process.
The Itô Calculus would be applied to carry out the preliminary mathematical analysis.
Thereafter, the G′/G-expansion scheme and the enhanced Kudryashov’s algorithm would
be applied to secure solitons with the model. It must be noted that additive noise has
been studied in the past for soliton propagation [15–17]. In those cases, it is the Langevin
equation that led to the mean free velocity of the soliton. The details of the current work
are addressed after an overview of the model.

It is worth mentioning that the model is addressed in a single channel but in bire-
fringent fibers to address additive stochasticity in the form of white noise by Itô Calculus.
While the next stage is to address such a study to a further generalization of the model
with DWDM topology, it is therefore imperative to obtain preliminary results in birefrin-
gent fibers and also in birefringence-free fibers. Another feature that needs to be noted is
that SHE is an approximate model with the radiation component ignored. In fact, SHE
is derived from the perturbed NLSE with the application of Lie transform where higher
order terms are discarded to retain SHE which is integrated by the aid of Inverse Scattering
Transform. Thus, the model is a far cry from actuality in real life scenarios although it is a
starting point.

Governing Model

The Schrödinger–Hirota equation with differential group delay and white noise that
governs dispersive optical solitons in birefringent fibers is presented as below

iqt + a1qxx + b1qxt +
(

c1|q|2 + d1|r|2
)

q

+i
[
α1qx + λ1

(
|q|2q

)
x
+ υ1

(
|q|2
)

x
q + θ1|q|2qx + γ1qxxx

]
+ σ1(q− ib1qx)

dW1(t)
dt = 0,

(1)

and

irt + a2rxx + b2rxt +
(

c2|r|2 + d2|q|2
)

r

+i
[
α2rx + λ2

(
|r|2r

)
x
+ υ2

(
|r|2
)

x
r + θ2|r|2rx + γ2rxxx

]
+ σ2(r− ib2rx)

dW2(t)
dt = 0,

(2)

where σj (j = 1, 2) come from the noise strength. Setting σj = 0 decrease systems (1) and (2)
to the familiar SHE in birefringent fibers. Wj(t) arise from the standard Wiener processes
and dWj(t)/dt give the white noises. λj denote the self-steepening, while αj depict the
inter-modal dispersion. cj arise from the self-phase modulation, while γj stem from the
3OD. q(x, t) and r(x, t) stand as the soliton profiles, while υj and θj stick out as the nonlinear
dispersions. dj come out as the cross-phase modulation, while aj read as the CD. Next,
bj account for the STD that is from the spatio-temporal dispersive effect. The first terms
signify the temporal evolution with i =

√
−1.

2. Mathematical Analysis

Equations (1) and (2) represent the propagation of dispersive optical soliton through
a birefringent fiber. This happens when pulses propagating through an optical fiber split
into two pulses, occasionally three, thus leading to differential group delay (DGD). It is
the cumulative effect of DGD that leads to birefringence. The fundamental causes for
pulse splitting come from the rough handling of long fibers while laying underground
as well as undersea for global cable connection, which could lead to squeezing, bending
and other rough issues. Thus, birefringence is unavoidable. Hence, it is imperative
to address the model that studies dispersive solitons, namely SHE, with the effect of
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birefringence included. It must be note that the model for birefringence with dispersive
solitons was first proposed during 2011 [14]. The current paper extends the model with
the effects of perturbation terms included [37]. To give it a complete and flavorful taste,
both deterministic as well as stochastic perturbative effects are taken into consideration.
The stochastic perturbative effect [38–42] is additive and comes from white noise. However,
the effect of the multiplicative perturbation term, for the scalar SHE, was studied almost
two decades ago and was addressed using the derived Langevin equation [38]. This extends
the study of the current paper, and makes it generalized and truly novel.

The soliton profiles shapes up as

q(x, t) = Φ1(ξ) exp i
[
ψ1(x, t) + σ1W1(t)− σ2

1 t
]
,

r(x, t) = Φ2(ξ) exp i
[
ψ2(x, t) + σ2W2(t)− σ2

2 t
]
,

(3)

and
ξ = x− vt, ψj(x, t) = −κjx + ωjt + θj, (4)

where Φj(ξ) comes from the soliton amplitude components, while v emerges from the
soliton velocity. θj arise from the phase constants, while κj arise from the soliton frequen-
cies. ψj(x, t) evolve from the soliton phase components, while ωj stand as the soliton
wave numbers.

Equations (3) and (4) are the decomposed versions of models (1) and (2) into phase–
amplitude format. This is significant. This way, the soliton amplitude, inverse width,
velocity as well as the soliton wave number can easily be recovered. Such a form of phase–
amplitude style decomposition is preferred to retrieve these essential physical features.
The other form of decomposition of Equations (1) and (2) into real and imaginary parts is
normally applicable when Lie symmetry analysis is taken up. However, the current paper
will implement the G’/G-expansion method and the enhanced Kudryashov’s scheme that
would give the soliton solutions with the essential physical features in it as indicated.

Putting (3) and (4) into (1) and (2) and then decomposing into real and imaginary parts
yields a few relations. The real parts are presented as below

(a1 − b1v + 3κ1γ1)Φ′′1 (ξ)−
[
a1κ2

1 − κ1α1 + γ1κ3
1 +

(
ω1 − σ2

1
)
(1− b1κ1)

]
Φ1(ξ)

+d1Φ1(ξ)Φ2
2(ξ) + (c1 + λ1κ1 + θ1κ1)Φ3

1(ξ) = 0,
(5)

and

(a2 − b2v + 3κ2γ2)Φ′′2 (ξ)−
[
a2κ2

2 − κ2α2 + γ2κ3
2 +

(
ω2 − σ2

2
)
(1− b2κ2)

]
Φ2(ξ)

+d2Φ2(ξ)Φ2
1(ξ) + (c2 + λ2κ2 + θ2κ2)Φ3

2(ξ) = 0,
(6)

while the imaginary parts are given by

γ1Φ′′′1 (ξ)−
[
2a1κ1 − b1

(
ω1 − σ2

1
)
− α1 + 3γ1κ2

1 + (1− b1κ1)v
]
Φ′1(ξ)

+(3λ1 + 2µ1 + θ1)Φ2
1(ξ)Φ

′
1(ξ) = 0,

(7)

and
γ2Φ′′′2 (ξ)−

[
2a2κ2 − b2

(
ω2 − σ2

2
)
− α2 + 3γ2κ2

2 + (1− b2κ2)v
]
Φ′2(ξ)

+(3λ2 + 2µ2 + θ2)Φ2
2(ξ)Φ

′
2(ξ) = 0.

(8)

Setting
Φ2(ξ) = χΦ1(ξ), χ 6= 0 or 1, (9)



Electronics 2023, 12, 634 4 of 12

the real and imaginary parts (5)–(8) stick out as

(a1 − b1v + 3κ1γ1)Φ′′1 (ξ)−
[
a1κ2

1 − κ1α1 + γ1κ3
1 +

(
ω1 − σ2

1
)
(1− b1κ1)

]
Φ1(ξ)

+
(
d1χ2 + c1 + λ1κ1 + θ1κ1

)
Φ3

1(ξ) = 0,
(10)

(a2 − b2v + 3κ2γ2)Φ′′1 (ξ)−
[
a2κ2

2 − κ2α2 + γ2κ3
2 +

(
ω2 − σ2

2
)
(1− b2κ2)

]
Φ1(ξ)

+
[
d2 + χ2(c2 + λ2κ2 + θ2κ2)

]
Φ3

1(ξ) = 0,
(11)

and
γ1Φ′′′1 (ξ)−

[
2a1κ1 − b1

(
ω1 − σ2

1
)
− α1 + 3γ1κ2

1 + (1− b1κ1)v
]
Φ′1(ξ)

+(3λ1 + 2µ1 + θ1)B2
1(ξ)B′1(ξ) = 0,

(12)

γ2Φ′′′1 (ξ)−
[
2a2κ2 − b2

(
ω2 − σ2

2
)
− α2 + 3γ2κ2

2 + (1− b2κ2)v
]
Φ′1(ξ)

+χ2(3λ2 + 2µ2 + θ2)Φ2
1(ξ)Φ

′
1(ξ) = 0,

(13)

respectively. Integrating (12) and (13) with zero-integration constants produces

γ1Φ′′1 (ξ)−
[
2a1κ1 − b1

(
ω1 − σ2

1
)
− α1 + 3γ1κ2

1 + (1− b1κ1)v
]
Φ1(ξ)

+ 1
3 (3λ1 + 2µ1 + θ1)Φ3

1(ξ) = 0,
(14)

γ2Φ′′1 (ξ)−
[
2a2κ2 − b2

(
ω2 − σ2

2
)
− α2 + 3γ2κ2

2 + (1− b2κ2)v
]
Φ1(ξ)

+ 1
3 χ2(3λ2 + 2µ2 + θ2)Φ3

1(ξ) = 0.
(15)

Setting the coeffcients of the linearly independent functions of Equations (10) and (11),
we arrive at the soliton velocity

v =
aj + 3γjκj

bj
, bj 6= 0, (16)

the wave numbers

ωj =
ajκ

2
j − κjαj + γjκ

3
j − σ2

j + σ2
j bjκj

bjκj − 1
, bjκj 6= 1, (17)

and the constraint conditions

d1χ2 + c1 + λ1κ1 + θ1κ1 = 0, (18)

d2 + χ2(c2 + λ2κ2 + θ2κ2) = 0. (19)

To secure optical solitons with the model in the current paper, one of Equations (14)
and (15) can be addressed with the aid of the relations

γ1

γ2
=

2a1κ1 − b1
(
ω1 − σ2

1
)
− α1 + 3γ1κ2

1 + (1− b1κ1)v
2a2κ2 − b2

(
ω2 − σ2

2
)
− α2 + 3γ2κ2

2 + (1− b2κ2)v
=

3λ1 + 2µ1 + θ1

χ2(3λ2 + 2µ2 + θ2)
, (20)

which satisfies the real-valued parametric restrictions

α2 =
[(b1κ1−1)v−2a1κ1+b1(ω1−σ2

1 )+α1]γ2−[(b2κ2−1)v−2a2κ2+b2(ω2−σ2
2 )−(3κ2

2−3κ2
1)γ2]γ1

γ1
, (21)
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and

λ2 =
γ2(2µ1 + 3λ1 + θ1)− γ1χ2(2µ2 + θ2)

3γ1χ2 , γ1 6= 0. (22)

The present paper considers the fundamental Equation (14) which is also presented
as below

Φ′′1 (ξ) + ∆1Φ1(ξ) + ∆3Φ3
1(ξ) = 0, (23)

where

∆1 =
(b1κ1 − 1)v + b1

(
ω1 − σ2

1
)
− 2a1κ1 + α1 − 3γ1κ2

1
γ1

, ∆3 =
3λ1 + 2µ1 + θ1

3γ1
. (24)

3. (G′/G)-Expansion Algorithm

In this integration tool, the fundamental governing Equation (23) admits the explicit
solution

Φ1(ξ) =
N

∑
J=0

δJ F J(ξ), F(ξ) =
G′(ξ)
G(ξ)

, δN 6= 0, (25)

along with the ancillary equations

G′′ + λG′ + µG = 0, (26)

and
F′ = −

(
F2 + λF + µ

)
, (27)

which ensures the analytical solutions

F(ξ) = −λ

2
+

1
2

√
λ2 − 4µ

[
ε1 sinh

(
1
2 ξ
√

λ2−4µ
)
+ε2 cosh

(
1
2 ξ
√

λ2−4µ
)

ε1 cosh
(

1
2 ξ
√

λ2−4µ
)
+ε2 sinh

(
1
2 ξ
√

λ2−4µ
)
]

, λ2 − 4µ > 0, (28)

F(ξ) = −λ

2
+

1
2

√
−(λ2 − 4µ)

[
ε1 cos

(
1
2 ξ
√
−(λ2−4µ)

)
−ε2 sin

(
1
2 ξ
√
−(λ2−4µ)

)
ε1 sin

(
1
2 ξ
√
−(λ2−4µ)

)
+ε2 cos

(
1
2 ξ
√
−(λ2−4µ)

)
]

, λ2 − 4µ < 0, (29)

F(ξ) = −λ

2
+

ε2

ε1 + ε2ξ
, λ2 − 4µ = 0, (30)

where δJ(J = 0− N), λ, µ, ε1 and ε2 are constants. Balancing Φ′′1 (ξ) and Φ3
1(ξ) in (23)

simplifies (25) to
Φ1(ξ) = δ0 + δ1F(ξ), δ1 6= 0. (31)

Putting (31) along with (27) into (23) paves the way to the simplest equations

2δ1 + ∆3δ3
1 = 0,

3δ1λ + 3∆3δ0δ2
1 = 0,

δ1µλ + ∆1δ0 + ∆3δ3
0 = 0,

δ1λ2 + 3∆3δ2
0δ1 + ∆1δ1 + 2δ1µ = 0,

 (32)

which secure the results:

δ0 = ±

√
−∆1 + 2µ

∆3
, δ1 = ±

√
− 2

∆3
, λ = ±

√
2(∆1 + 2µ), µ = µ, ∆3 < 0, ∆1 + 2µ > 0.

(33)
Type-1: Plugging (33) along with (28) into (31) leaves us with the straddled solitons

q(x, t) = ±

√
−∆1

∆3

{
ε1 sinh[ 1

2
√

2∆1(x−vt)]+ε2 cosh[ 1
2
√

2∆1(x−vt)]
ε1 cosh[ 1

2
√

2∆1(x−vt)]+ε2 sinh[ 1
2
√

2∆1(x−vt)]

}
exp i

[
−κ1x + ω1t + θ1 + σ1W1(t)− σ2

1 t
]
, (34)
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and

r(x, t) = ±χ

√
−∆1

∆3

{
ε1 sinh[ 1

2
√

2∆1(x−vt)]+ε2 cosh[ 1
2
√

2∆1(x−vt)]
ε1 cosh[ 1

2
√

2∆1(x−vt)]+ε2 sinh[ 1
2
√

2∆1(x−vt)]

}
exp i

[
−κ2x + ω2t + θ2 + σ2W2(t)− σ2

2 t
]
. (35)

Taking ε1 6= 0 and ε2 = 0 changes (34) and (35) to the dark solitons

q(x, t) = ±

√
−∆1

∆3
tanh

[
1
2

√
2∆1(x− vt)

]
exp i

[
−κ1x + ω1t + θ1 + σ1W1(t)− σ2

1 t
]
, (36)

and

r(x, t) = ±χ

√
−∆1

∆3
tanh

[
1
2

√
2∆1(x− vt)

]
exp i

[
−κ2x + ω2t + θ2 + σ2W2(t)− σ2

2 t
]
. (37)

The surface plots of solitons (36) and (37) are depicted in Figure 1. The parameter val-
ues chosen are: a1,2 = 1, α1 = 1, b1,2 = 3, γ1,2 = 1, κ1,2 = 1, λ1 = 1, µ1 = −3, σ1 = 1, θ1 = 1
and χ = 3.

Figure 1. Profiles of dark solitons in birefringent fibers.

Setting ε1 = 0 and ε2 6= 0 also transforms (34) and (35) to the singular solitons

q(x, t) = ±

√
−∆1

∆3
coth

[
1
2

√
2∆1(x− vt)

]
exp i

[
−κ1x + ω1t + θ1 + σ1W1(t)− σ2

1 t
]
, (38)

and

r(x, t) = ±χ

√
−∆1

∆3
coth

[
1
2

√
2∆1(x− vt)

]
exp i

[
−κ2x + ω2t + θ2 + σ2W2(t)− σ2

2 t
]
. (39)

Type-2: Putting (33) along with (29) into (31) paves way to the singular periodic waves

q(x, t) = ±

√
∆1

∆3

{
ε1 sin[ 1

2
√
−2∆1(x−vt)]−ε2 cos[ 1

2
√
−2∆1(x−vt)]

ε1 cos[ 1
2
√
−2∆1(x−vt)]+ε2 sin[ 1

2
√
−2∆1(x−vt)]

}
exp i

[
−κ1x + ω1t + θ1 + σ1W1(t)− σ2

1 t
]
, (40)

and

r(x, t) = ±χ

√
∆1

∆3

{
ε1 sin[ 1

2
√
−2∆1(x−vt)]−ε2 cos[ 1

2
√
−2∆1(x−vt)]

ε1 cos[ 1
2
√
−2∆1(x−vt)]+ε2 sin[ 1

2
√
−2∆1(x−vt)]

}
exp i

[
−κ2x + ω2t + θ2 + σ2W2(t)− σ2

2 t
]
. (41)

Setting ε1 6= 0 and ε2 = 0 turns (40) and (41) into the singular periodic waves

q(x, t) = ±

√
∆1

∆3
tan
[

1
2

√
−2∆1(x− vt)

]
exp i

[
−κ1x + ω1t + θ1 + σ1W1(t)− σ2

1 t
]
, (42)
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and

r(x, t) = ±χ

√
∆1

∆3
tan
[

1
2

√
−2∆1(x− vt)

]
exp i

[
−κ2x + ω2t + θ2 + σ2W2(t)− σ2

2 t
]
. (43)

Taking ε1 = 0 and ε2 6= 0 also transforms (40) and (41) to the singular periodic waves

q(x, t) = ±

√
∆1

∆3
cot
[

1
2

√
−2∆1(x− vt)

]
exp i

[
−κ1x + ω1t + θ1 + σ1W1(t)− σ2

1 t
]
, (44)

and

r(x, t) = ±χ

√
∆1

∆3
cot
[

1
2

√
−2∆1(x− vt)

]
exp i

[
−κ2x + ω2t + θ2 + σ2W2(t)− σ2

2 t
]
. (45)

Type-3: Inserting µ = 1
4 λ2 into (32) provides us the results:

δ0 = ±λ

2

√
− 2

∆3
, δ1 = ±

√
− 2

∆3
, λ = λ, (46)

and
∆1 = 0, ∆3 < 0. (47)

Substituting (46) along with (30) into (31) causes the rational waves

q(x, t) = ±

√
− 2

∆3

[
ε2

ε1 + ε2(x− vt)

]
exp i

[
−κ1x + ω1t + θ1 + σ1W1(t)− σ2

1 t
]
, (48)

and

r(x, t) = ±χ

√
− 2

∆3

[
ε2

ε1 + ε2(x− vt)

]
exp i

[
−κ2x + ω2t + θ2 + σ2W2(t)− σ2

2 t
]
. (49)

4. Enhanced Kudryashov’s Algorithm

In this case, the fundamental governing Equation (23) satisfies the explicit solution

Φ1(ξ) =
N

∑
J=0

HJ RJ(ξ), HN 6= 0, (50)

along with the auxiliary equation

R
′2(ξ) = R2(ξ)[1− AR2p(ξ)] ln2 a, 0 < a 6= 1, (51)

which admits the combo bright-singular soliton

R(ξ) =
[

4B
(4B2 + A) cosh(pξ ln a) + (4B2 − A) sinh(pξ ln a)

] 1
p
, (52)

where HJ(J = 0− N), A, p, B are constants. Balancing Φ′′1 (ξ) and Φ3
1(ξ) in (23) leaves

us with
N + 2p = 3N =⇒ N = p. (53)

Case-1: Taking p = 1 transforms (50) to

Φ1(ξ) = H0 + H1R(ξ), H1 6= 0. (54)
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Inserting (54) along with (51) into (23) paves way to the simplest equations

3∆3H0H2
1 = 0,

∆3H3
0 + ∆1H0 = 0,

∆3H3
1 − 2H1 A ln2 a = 0,

3∆3H2
0 H1 + ∆1H1 + H1 ln2 a = 0,

 (55)

which admit the results:

H0 = 0, H1 =

√
2A
∆3

ln a, (56)

and
∆1 = − ln2 a, A∆3 > 0. (57)

Putting (56) along with (52) into (54) gives way to the straddled solitons

q(x, t) = ±

√
2A
∆3

[
4B ln a

(4B2+A) cosh[(x−vt) ln a]+(4B2−A) sinh[(x−vt) ln a]

]
exp i

[
−κ1x + ω1t + θ1 + σ1W1(t)− σ2

1 t
]
, (58)

and

r(x, t) = ±χ

√
2A
∆3

[
4B ln a

(4B2+A) cosh[(x−vt) ln a]+(4B2−A) sinh[(x−vt) ln a]

]
exp i

[
−κ2x + ω2t + θ2 + σ2W2(t)− σ2

2 t
]
. (59)

Setting A = 4B2 changes (58) and (59) to the bright solitons

q(x, t) = ±

√
2

∆3
(ln a)sech[(x− vt) ln a] exp i

[
−κ1x + ω1t + θ1 + σ1W1(t)− σ2

1 t
]
, (60)

and

r(x, t) = ±χ

√
2

∆3
(ln a)sech[(x− vt) ln a] exp i

[
−κ2x + ω2t + θ2 + σ2W2(t)− σ2

2 t
]
. (61)

The surface plots of solitons (60) and (61) are depicted in Figure 2. The parameter
values chosen are: γ1,2 = 1, κ1,2 = 1, λ1 = 1, µ1 = 1, θ1 = 1, a1,2 = 1, b1,2 = 1, a = e and
χ = 3.

Figure 2. Profiles of bright solitons in birefringent fibers.

Taking A = −4B2 also condenses (58) and (59) to the singular solitons

q(x, t) = ±

√
− 2

∆3
(ln a)csch[(x− vt) ln a] exp i

[
−κ1x + ω1t + θ1 + σ1W1(t)− σ2

1 t
]
, (62)
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and

r(x, t) = ±χ

√
− 2

∆3
(ln a)csch[(x− vt) ln a] exp i

[
−κ2x + ω2t + θ2 + σ2W2(t)− σ2

2 t
]
. (63)

Case-2: Setting p = 2 simplifies (50) to

Φ1(ξ) = H0 + H1R(ξ) + H2R2(ξ), H2 6= 0. (64)

Putting (64) along with (51) into (23) provides us the simplest equations

∆3H3
0 + ∆1H0 = 0,

3∆3H0H2
2 + 3∆3H2

1 H2 = 0,
3∆3H1H2

2 − 3H1 A ln2 a = 0,
∆3H3

2 − 8H2 A ln2 a = 0,
6∆3H0H1H2 + ∆3H3

1 = 0,
3∆3H2

0 H1 + ∆1H1 + H1 ln2 a = 0,
3∆3H2

0 H2 + ∆1H2 + 3∆3H0H2
14H2 ln2 a = 0.


(65)

which permit the results:

H0 = 0, H1 = 0, H2 = 2

√
2A
∆3

ln a, (66)

and
∆1 = −4 ln2 a, A∆3 > 0. (67)

The two Figures 1 and 2 represent the surface plots of dark and bright 1-soliton
solutions, respectively. The parameter choices are also indicated. For each of the two plots,
the solitons along the two components of the fiber are color coded as indicated in the
legend. It must be noted that these being dispersive solitons with the presence of 3OD
substantial radiation must be present and consequently the slowdown of solitons must also
occur [43]. These effects are discarded as the focus of the current paper is on the cire soliton
regime, namely the region with bound states. Once again, the analysis of the continuous
regime is not studied in the current paper.

Inserting (66) along with (52) into (64) gives the straddled solitons

q(x, t) = ±2

√
2A
∆3

[
4B ln a

(4B2+A) cosh[2(x−vt) ln a]+(4B2−A) sinh[2(x−vt) ln a]

]
exp i

[
−κ1x + ω1t + θ1 + σ1W1(t)− σ2

1 t
]
, (68)

and

r(x, t) = ±2χ

√
2A
∆3

[
4B ln a

(4B2+A) cosh[2(x−vt) ln a]+(4B2−A) sinh[2(x−vt) ln a]

]
exp i

[
−κ2x + ω2t + θ2 + σ2W2(t)− σ2

2 t
]
. (69)

Setting A = 4B2 translates (68) and (69) to the bright solitons

q(x, t) = ±2

√
2

∆3
(ln a)sech[2(x− vt) ln a] exp i

[
−κ1x + ω1t + θ1 + σ1W1(t)− σ2

1 t
]
, (70)

and

r(x, t) = ±2χ

√
2

∆3
(ln a)sech[2(x− vt) ln a] exp i

[
−κ2x + ω2t + θ2 + σ2W2(t)− σ2

2 t
]
. (71)

Taking A = −4B2 also changes (68) and (69) to the singular solitons
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q(x, t) = ±2

√
− 2

∆3
(ln a)csch[2(x− vt) ln a] exp i

[
−κ1x + ω1t + θ1 + σ1W1(t)− σ2

1 t
]
, (72)

and

r(x, t) = ±2χ

√
− 2

∆3
(ln a)csch[2(x− vt) ln a] exp i

[
−κ2x + ω2t + θ2 + σ2W2(t)− σ2

2 t
]
. (73)

These relations (68)–(73) represent the solutions of the models (1) and (2) that were the
main equations and that were the goal of this paper. These soliton solution structures are
now subjected to their classification. The solutions (68) and (69) are straddled solitons since
they remain straddled between purely bright and purely dark solitons. Next, upon choosing
convenient parameter combinations, namely A = 4B2 or A = −4B2, it is the pure bright or
pure singular soliton solutions that emerge. These are represented by the pairs (70)–(71) and
(72)–(73), respectively. Thus, the mathematical scheme that is adopted here to address the
governing equations, namely the enhanced Kudryashov approach, reveals three forms of
solitons, which are straddled solitons and pure bright and pure singular solitons although
the bright and singular solitons are a byproduct of the straddled solitons with a subtle
choice of the free parameters.

These results have some interesting features that are being reported for the first time in
the paper. Firstly, all of the solitons (68)–(73) contain the white noise component confined to
the respective phase component of the solitons for both q(x, t) as well as r(x, t). Thus, it is
safe to say from these relations that the soliton amplitude and their inverse widths are not
affected in the presence of white noise. Moreover, the structure of the soliton phase along
the two components also shows that the velocity of the soliton also remain unchanged. It is
only the wave number of the solitons that is affected with the inclusion of the white noise.
This is an interesting observation, namely the key features of the solitons along the two
components in a birefringent fiber do not change the amplitude, inverse width and velocity.
This is true for all kinds of solitons that are displayed in (68)–(73).

5. Conclusions

The current paper addressed the multiplicative white noise effect in birefringent
fibers that is addressed with SHE for the study of dispersive optical solitons. It has been
established that the bright, dark and singular solitons that stem from the model carry the
white noise effect in their phase components only and not in the amplitude portion. This
is an interesting observation. These bright solitons with the stochastic phase component
are visible on an oscilloscope by means of eye diagrams, while this is the case for the dark
solitons only when a defined background wave is in place. The third category of solitons,
namely the singular solitons, is a viable alternative terminology for optical rogons. Thus,
these are unwanted features and are nevertheless listed just so that the formation of such
solitons must be avoided at all costs.

One of the most interesting observations is that the soliton solutions that are derived
in the work, namely the bright, dark and singular solitons, carry the effect of white noise
only in their phase components. This means that the presence of white noise does not affect
the key features of the bright solitons, namely their amplitude, inverse width and velocity.
Moreover, for dark and singular solitons, the free parameters and the soliton velocity are
not at all affected. This is an interesting and a novel observation.

The paper focuses on the mathematical implications of the effect of birefringence
in dispersive soliton transmittal across intercontinental distances. Various additional
engineering aspects are tacitly ignored in this mathematically flavored paper. These include
the effect of artificially increasing birefringence artificially, which could lead to the departure
of the fiber core from cylindrical symmetry to an elliptical core. This typically occurs
when the birefringence parameter is at O(10−6). Stress-induced elements can also lead
to awkward shaped optical fibers that are also referred to as “panda” fibers or “bow-tie”
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fibers. This typically happens when the birefringence parameter is at O(10−4). Another
effect is that for hi-bi fibers, with fiber length much bigger than 1 cm, the effect of four
wave mixing can be neglected and, in contrast, for weakly birefringent fibers, this effect
must be retained. Such physical and engineering effects are ignored in the current work
and are to be addressed separately in future papers.

Later, this model would be extended to cover DWDM topology and other such opto-
electronic devices such as magneto-optic waveguides, Bragg grating metamaterials and
metasurfaces. Those research activities are underway and are to appear shortly.
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