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Abstract: We present in this paper a new method in detecting anomalies in datasets representing
systems behaviour, which is based on comparing a dataset to the data blueprint of the system
representing its normal behaviour. This method removes some of the need for applying complex
machine learning algorithms that aim at detecting abnormalities in such datasets and gives a more
assured outcome of the presence of abnormalities. Our method first models a system using the formal
language of the π-calculus, and then applies an abstract interpretation that ultimately generates an
abstract multiset representing the messages exchanged in the system model. We term this multiset
as the data blueprint of the system, and it represents the normal behaviour expected. We apply this
method to the case of a recent study in literature, which attempts to analyse normal and abnormal
behaviour in datasets representing runs of the MQTT protocol, both under attack and no attack
conditions. We show that our method is able to detect these conditions in an easier and more
straightforward manner than the original case study attempts to.
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1. Introduction

Despite the increasing popularity of the Internet of Things (IoT) systems, we find that
the majority of IoT literature is mostly concerned with either investigating such systems
as sources of data and information (e.g., Ref. [1]), often to be used as validation datasets
for machine learning algorithms that detect different classes of properties in these datasets
(e.g., Refs. [2–4]), or with the classical software engineering aspect of these systems that
aims to achieve specific IoT-based solutions to all sorts of problems in different domain of
applications (e.g., Refs. [5,6]). There is, in fact, a lack of understanding of the relationship
between these two views; the data-based model of IoT systems, and their formal models.
Understanding one form of this relationship, and its usefulness, will be the focus of our
research here, combining these two views.

In this paper, we propose a novel methodology; that abstract data representing the
normal behaviour of a communicating system, derived by statically analysing its formal
specification, can be used afterwards to detect and filter out real data representing abnormal
behaviour of some implementation of the same system during runtime. We call such
abstract data representing the normal behaviour the data blueprint of the system, against
which data from its runtime behaviour are compared. We demonstrate that even the
simplest of static analyses, in this case one that produces a data blueprint of the system
on merely what data should be communicated, would suffice in simplifying anomaly
detection of the system that would otherwise require the application of complex machine
learning methods.

We apply our new method to one popular IoT protocol, namely the MQ Telemetry
Transport (MQTT) protocol [7], specifically to the QoS 0 mode of this protocol. We first
model the protocol in the formal language of the π-calculus [8], and then use an abstract
interpretation of this language that captures message communications to provide the data
blueprint for the protocol. We then compare this to some actual message communications
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captured during a study in literature, and we demonstrate that our data blueprint is capable
easily of detecting anomalies in these communications.

The rest of the paper is structured as follows. In Section 2, we discuss a few examples
of literature to our approach. In Section 3, we give an overview of the formal language used
for modelling MQTT, the π-calculus. In Section 4, we define a name-substitution abstract
semantics for the π-calculus, which allows us to trace where messages are communicated
to. In Section 5, we demonstrate how the data blueprint generated from the abstract
semantics is used to detect anomalies for the case of an example study from literature.
Finally, in Section 6, we conclude the paper and provide directions for future expansion of
the ideas within.

2. Related Work

There is much literature [9–14] regarding formally specifying and verifying IoT sys-
tems, networks, protocols, and standards, usually for the purpose of understanding the
properties of such systems. We give here only a few examples. The author in Ref. [9] pro-
poses the use of the probabilistic model checker, PRISM [10], as a framework for specifying
and checking the functional properties of the IoT systems. The work uses probabilities,
as quantitative concepts, to be modelled in the formal language. The interaction and
interoperability in IoT systems is studied in Ref. [11] using the Tree Query Logic of Ref. [15].
This allows for a multi-layered view of an IoT system to be constructed, and hence the
properties verified at the different layers. In Ref. [12], the authors use Event-B [16] to model
and verify the properties of IoT communication protocols, such as the presence of dupli-
cate channels, persistent sessions, and message ordering, in MQTT [7], MQTT-SN [17],
and CoAP [18]. Other efforts in this area focus on more specific goals, for example, the
verification of security properties through the discovery of vulnerability surfaces, as in
Refs. [13,14], for example. None of these works, and others, address the question of how
formal specifications can be used to benefit the detection of anomalous behaviour in the
recorded data.

One of the research works close to ours is that of Ref. [19], where training datasets
related to musical songs are used to construct formal specifications in the form of automata
machines capable of playing similar genres of music. In some sense, this is almost the
reverse of our approach, which uses formal specifications to understand the dataset itself.
Similarly, the work of Ref. [20] proposes the formalisation of metadata specifications in
order to discover datasets (more robustly) matching those metadata, more specifically, the
discovery of geospatial datasets. Both of these works are related to ours, however, with
different motivations, and therefore, approaches.

Formal verification techniques have also been used to verify big data-related appli-
cations, tools, platforms, and technologies. Although these are not strictly similar in their
approach to ours, since they fall under the verification of system specifications category,
we mention a few examples here for completeness. In Ref. [21], the authors propose a
stochastic model checking using UPPAAL [22] to model the execution of big data appli-
cations, in particular, to model the execution strategies in Apache Spark [23]. In addition,
in Ref. [24], formal verification is used to evaluate the execution time of Apache Spark
applications, using a combination of directed acyclic graphs and constraint linear temporal
logic. In Ref. [25], the authors propose an extension of the i∗ requirements engineering
methodology [26], called BiStar, more adapted for modelling the requirements of big
data applications. The integrity property of BiStar is then modelled and verified using
bigraphs [27].

To some extent, one may also consider slightly relevant the most recent work of
Ref. [28], which extensively covers the relationship between formal verification in computer
science and stochastic analysis in mathematics, with application to big datasets related
to 3D road networks and household power consumption. Finally, we should mention
the works of Refs. [29–31], who provide extensive reviews of the applications of formal
methods to machine learning and the relationship between the two areas.
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3. Theory

We specify systems using the formal language of the π-calculus [8], as this is a simple
and easy language to formulate, using the following syntax:

P ::= 0 | π.P | (νx)P | P|Q | P + Q | !P

π ::= x(y) | x〈y〉 | τ

The syntax states informally that processes P, Q, . . . ∈ P are defined as one of the following:
an inactive process, 0, incapable of performing any further activity, a guarded process, π.P,
which performs an action π and continues with the residue P, the creation of a new name,
(νx)P, with the scope restricted to P, the parallel composition of two processes, P|Q, a
non-deterministic choice between two processes, P + Q, and finally, replication, !P, which
can spawn any number of copies of P. The actions, π, are defined using names x, y . . . ∈ N ,
in terms of input actions, x(y), output actions, x〈y〉, or silent unobservable actions, τ. We
refer to the set of the free names of a process as fn(P) and that of the bound names as bn(P),
and we assume that initially, the bound names of a process are selected such that no two
bound names are the same (α-conversion). We write n(P) = bn(P) ∪ fn(n).

The standard semantics of processes is given using the classical structural and opera-
tional relations, shown in Figure 1, which determine how a process can change its shape
and evolve through communications.

Figure 1. Rules of the structural operational semantics for the π-calculus.
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We describe first the rules of the structural relation ≡. Rule (R1)–(R3) state that
(P , |, 0) is a commutative monoid. Rules (R4) and (R5) state that the non-deterministic
choice is commutative and associative over P . Rule (R6) (also known as scope extrusion)
allows scope restriction on a newly created name to be removed from the left-hand process,
if the name is different from any of its free names. Rule (R7) removes name creation from a
null process, and rule (R8) allows the order of name restriction to be swapped on the same
process. Finally, rule (R9) allows a replication to spawn a copy of its process.

On the other hand, the rules of the operational relation π′−→ are explained as follows.
Rules (R10)–(R12) allow a guarded process to fire its action, making it observable to
the context. Rule (R13) is the most important rule, as it allows communications to take
place between matching input and output actions. The result is the replacement of the
input action parameter with the message carried by the output action. Both processes will
continue with their residual part. Rule (R14) is similar to rule (R13), except it deals with
bounded outputs, where the scope of the bounded output message is then restricted to
the two residual processes. Rules (R15) and (R16) state that internal communications can
also occur under parallel composition and non-deterministic choice composition. In the
latter case, the process with the internal communication will continue as the main process,
removing the option of the other inactive process. (R17) states that name restriction has
no impact on the observation of an output action, if that name is different from the names
of the channel and message being observed. Rule (R18) turns a free name output into a
bounded name output by restricting the scope of the output message. Rule (R19) states
that an input action is possible under name restriction, as long as the restriction is not on
the name of the communication channel. If the restricted name is the same as the input
parameter, then α-conversion is necessary to distinguish the two names. Finally, rule (R20)
states that silent internal actions can take place under any name restriction.

In addition to the above semantics, in Ref. [32], we defined a non-standard name-
substitution semantics, which when abstracted using an approximation function, yields a
meaning represented by the abstract environment φA : N ] → ℘(N ]) ∈ D]

⊥, which maps
each abstract name to a set of abstract names that can replace that name during a process’s
interpretation. N ] represents the set of abstract names. Unlike N , N ] is defined such that
it is finite, and therefore, ℘(N ]) is also finite. The resulting semantic domain, D]

⊥, consists
of all such possible environments and guarantees termination for an abstract interpretation
computed over it, such as that defined in Ref. [32]. The bottom element of such domain,
⊥D] = φA0, is the empty environment where ∀x ∈ N ] : φA0(x) = {}. In Ref. [32], we gave
an abstract interpretation of the π-calculus using the semantic domain D]

⊥, and we showed
this to be safe with regards to the name-substitution semantics, similar to other analyses
we had defined for different variations of the π-calculus in Refs. [33–35]. We next review
this abstract interpretation in more detail.

4. An Abstract Semantics

Let us examine in more detail the rules of the abstract interpretation of the π-calculus,
A : (P × ℘(P)× D]

⊥) → D]
⊥, which captures the property of name substitutions in an

abstract manner. These rules are shown in Figure 2 below.
We explain these informally as follows. Rules, (A1) and (A2), for null processes

and input actions, respectively, do not change the value of the φA environment, since no
communications take place in these rules. Rule (A3) deals with output actions; where
the meaning of a process guarded by an output action is given as the union of two φA
environments. The first environment reflects all possible communications between the
output action and matching input actions in ρ. A communication takes place whenever
the sets of values of the two communicating channels have similar name values or share
a common name value from previous substitutions. This means that the names of the
channels are the same (i.e., the channels are free or restricted names) or that there must have
been similar name values substituting both channels earlier in the interpretation (i.e., the
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channel names are closed under input actions). The effect of the communication is reflected
by adding the value of the message to the value of the substituted input parameter in φA.
The second environment is an unchanged φA, reflecting the option that no communication
may take place. Rules (A4)–(A7), are straightforward. Rule (A4) removes a silent action,
and reinterprets the rest of the process. Rule (A5) does the same for the case of a newly-
created name, given that all bound names are distinct. Rules (A6) and (A7) distributed the
two sides of parallel composition and choice to the rest of the processes in ρ. The rule for
replicated processes, (A8), attaches subscripts to bound names and tags of the spawned
processes according to the number of copy of each process. This is necessary to ensure
that these names and tags remain distinct throughout the semantics. The rule uses a least
fixed-point calculation for a special function, F : N× ℘(P)× D]

⊥ → D]
⊥, which starts by

adding a single copy of P then increments till the least-fixed point is reached.

Figure 2. A name-substitution abstract semantics for the π-calculus.

The abstraction function, αk : N → N ], constrains the number attached to a new copy
of a bound name created during the replication process over some maximum permitted
number of copies, k ∈ N. Hence, ∀P ∈ P , xi ∈ bn(P), we can define αk as:

αk(xi) =

{
xi if i ≤ k
xk otherwise

For example, if we set k = 3, and we apply the renaming mechanism to the structural
semantics relation, we would get the following congruence:

!(x(y).P) ≡ !(x(y).P) | x(y1).P | x(y2).P | x(y3).P | x(y3).P | x(y3).P | . . .

where every copy after the third copy is still approximated to being the third copy.
To simplify our analysis of the next section, we define a variation of φA, which instead

of having number-distinguished copies of the same name, it contains the same name
multiple times. Such a multiset version, written as φk

A, can be defined as follows:

∀x ∈ (dom(φA) ∪ ran(φA)) : φk
A = φA[x/xi]

k
i=1

where a copy of a name, xi, is replaced by the original root name, x, up to the maximum kth

copy of x occurring in φA, where xi is either an input parameter or a newly created name.
We now arrive at the definition of a data blueprint for some process.
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Definition 1. Define the data blueprint, ψk
AblueprintP, for a process, P, as follows: ψk

AblueprintP =

{y : ∀x ∈ bn(P).y ∈ φk
A(x) ∧ (φA = A([P]){}φA0)}

Hence, the blueprint environment only reflects the communicated messages, ignoring
the input parameters these instantiate.

5. Example: MQTT Data Analysis

The MQ Telemetry Transport (MQTT) protocol [7] is described as a lightweight broker-
based publish/subscribe messaging protocol that was designed to allow devices with small
processing power and storage, such as those which the IoT is composed of, to communicate
over low-bandwidth and unreliable networks. The publish/subscribe message pattern [36],
on which MQTT is based, provides for one-to-many message distribution with three
varieties of delivery semantics, based on the level of quality of service expected from the
protocol. These include the “exactly once” delivery semantics, the “at least once” delivery
semantics and the “at most once” delivery semantics. We focus here on the “at most once”
semantics, as this is the one most relevant to our example later.

In the “at most once” case, the protocol is configured to deliver messages with the
best effort of the underlying communication network, and given that many networks are
unreliable, there would be no guarantee that the MQTT messages will be delivered. This
protocol, also termed the QoS 0 protocol, is represented by the following flow of messages
and actions:

Client→ Server : CONNECT

Server→ Client : CONNACK

Client→ Server : PUBLISH

Server : Publish message to subscribers

The protocol defines the message communications between Clients, i.e., end-devices re-
sponsible for generating data from their domain (the data source), and Servers, i.e., brokers
responsible for collecting source data from clients, based on specific topics, and publishing
this data to interested subscribers. We can define the π-calculus model of the QoS 0 protocol
as shown in Figure 3.

Figure 3. The MQTT QoS 0 protocol as modelled in the language of the π-calculus.

In this model, the protocol consists of three top-level processes: Client, Server and
Subscriber. The Client process represents any IoT device, which after connecting to the
Server, will always publish some data by sending them in a Publish message, and so on.
The Server process, on the other hand, after acknowledging the connection message sent by
the Client, will always receive the published data and send these to the Subscriber process.
Finally, the Subscriber process is always waiting to receive the published data. The model is
abstract, but sufficient enough to capture anomalies in data as we show in Section 5.2.
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5.1. The QoS 0 Protocol Data Blueprint

Applying a non-uniform abstract interpretation for some value of k > 1, e.g., k = 3,
reveals the following φA environment:

φA[y1 7→ Connect, z1 7→ Connack,
x1 7→ Publish1, x2 7→ Publish2, x3 7→ Publish3, u1 7→ Publish1, u2 7→ Publish2, u3 7→ Publish3]

where its φ3
A equivalent is defined as follows:

φ3
A[y 7→ Connect, z 7→ Connack,

x 7→ {|Publish, Publish, Publish|}, u 7→ {|Publish, Publish, Publish|}]

From this, we can obtain the following data blueprint for the QoS 0 protocol:

ψ3
AblueprintQoS0 = {|Connect, Connack, Publish, Publish, Publish|}

In this case, we see that there are three copies of the Publish message, and a single copy of
each of the Connect and Connack. We consider this analysis as providing the data blueprint
corresponding to the normal behaviour of any system running an MQTT-based network
in the QoS 0 mode up to the choice of k = 3. The choice of k will depend on the trade-off
between precision and efficiency; larger values of k produce analyses with higher precision,
however, these would take a longer time to run. For k = 1 (i.e., a uniform analysis), it
is impossible for any attacks relying on the repetition or multiplicity of messages to look
anomalous with regards to the resulting data blueprint. Therefore, we avoid the case of a
uniform analysis.

Property 1 (Normal Behaviour). We characterise a protocol run as being normal, if and only if,
for some abstract dataset, ψk

A, representing a run of the protocol, we have that:

ψk
A = ψk

Ablueprint

for some approximation number, k.

5.2. A Case of Intrusion Detection

Now let us review here one example in recent literature, where a study was presented
in Ref. [37], as a typical example of the application of machine learning algorithms in
analysing dataset features and extraction of interesting information. We use this case
study to demonstrate how our concept of data blueprints renders the analysis of intrusions
straightforward, avoiding all the complexities associated with a machine learning-based
approach, which reveal no better knowledge here compared to what is revealed by our
approach.

In Ref. [37], the authors used Wireshark to sniff packets (i.e., messages) exchanged
over an MQTT network, both under normal and attack circumstances. This resulted in the
following cases.

5.2.1. The Normal Case

In the normal case, the analysis of Ref. [37] (§4.A) captures the following sequence of
messages, representing the normal case scenario:

1. Connect Command
2. Connect Ack
3. Publish Message
. . .
24. Publish Message
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Applying our abstraction k = 3, which limits the instances of the communicated messages
to 3, we would obtain the following abstract representation of the above dataset:

ψ3
ANormal = {|Connect, Connack, Publish, Publish, Publish|}

We can see here that ψ3
ANormal = ψ3

AblueprintQoS0, and therefore, it indicates normal be-
haviour of the protocol according to Property 1.

5.2.2. First Attack Scenario

Now, let us consider the second dataset generated in Ref. [37] (§4.B), which contains
the following sequence of messages:

1. Connect Command
2. Connect Ack
. . .
17. Connect Command
18. Connect Ack
19. Publish Message
. . .
24. Publish Message

Abstracting this dataset using k = 3, gives us the following abstract environment:

ψ3
AAttack1 = {|Connect, Connect, Connect, Connack, Connack, Connack, Publish, Publish, Publish|}

In this case, we can clearly see that ψ3
AAttack1 6= ψ3

AblueprintQoS0 and therefore there is some
anomalous behaviour as captured by the dataset of [37] (§4.B).

5.2.3. Second Attack Scenario

Finally, let us consider the dataset generated in Ref. [37] (§4.C), which gives us the
following sequence of messages:

1. Connect Ack
2. Connect Command
3. Connect Ack
4. Connect Command
5. Connect Ack
6. Publish Message
7. Connect Command
8. Connect Ack
9. Connect Command
10. Connect Ack
11. Publish Message
12. Connect Command
13. Connect Ack
14. Connect Command
15. Connect Ack
16. Publish Message
17. Connect Command
18. Connect Ack
19. Connect Command

which when abstracted, for k = 3, we obtain the following environment:

ψ3
AAttack2 = {|Connect, Connect, Connect, Connack, Connack, Connack, Publish, Publish, Publish|}
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Again here, we can see that ψ3
AAttack2 6= ψAblueprintQoS0, and therefore the dataset of [37]

(§4.C) reveals abnormal behaviour in the protocol run.

6. Conclusions

We presented in this paper a new method for detecting anomalies in datasets represent-
ing systems behaviour using a direct comparison with analysis of their formal specifications.
We highlight that this method is different but more robust than fuzzy methods that use
machine learning algorithms as it relies directly on formal specification and verification
methods in detecting anomalous data. Such methods provide verifiable evidence for the
presence of anomalies, unlike the fuzzy methods, which by their nature, can only hint at
such anomalies. Furthermore, we applied our method to a case of IoT systems that use
the MQTT protocol, and particularly, to a recent study in literature that presents multiple
normal and abnormal datasets for this protocol. One of the shortcomings of our approach,
at its current level of information that the analysis produces, is that it does not indicate
“which” kind of attack does the abnormal state generated through the analysis provide,
only that there is something abnormal (i.e., possibly some kind of attack).

We plan in the future to extend this method, with more definitions of the semantic
properties underlying the formal language used to obtain more variations of normality
in datasets, and hence extend the ability to detect more anomalous data. Because of the
generality of this method, we also plan to apply this method to other systems and protocols.
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