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Abstract: In recent years, the logistics sector expanded significantly, leading to the birth of smart
warehouses. In this context, a key role is represented by autonomous mobile robots, whose main
challenge is to find collision-free paths in their working environment in real-time. Model Predictive
Control Algorithms combined with global path planners, such as the A* algorithm, show great
potential in providing efficient navigation for collision avoidance problems. This paper proposes a
Dual Forward–Backward Algorithm to find the solution to a Model Predictive Control problem in
which the task of driving a mobile robotic platform into a bi-dimensional semi-structured environment
is formulated in a convex optimisation framework.

Keywords: path planning for multiple mobile robots or agents; collision avoidance; optimization
and optimal control

1. Introduction

In recent decades, the global economy has seen a massive development in the global
value chain combined with the growth of “Industry 4.0” and “Internet plus” phenomena [1,2].
In spite of the impact of the COVID-19 pandemic, in an increasingly interconnected world,
the flow of goods across different countries has become more and more frequent. This has
led to a significant expansion of logistics markets [3]. With these developments, the need
for greater efficiency and reliability in the transportation and storage process has become
more and more intense. Against this background, the smart logistics industry, whose goal is
the transition of the logistics industry to new technologies, has come into being. The smart
warehouse is an automated warehouse based on several automated and interconnected
technologies. It is characterised by high levels of automation, low labour costs, and high
efficiency [4]. To develop a smart warehouse, a key role is represented by warehouse
logistics robots. Indeed, in the process of rapid development of the logistics industry,
smart sorting is one of the critical links to ensure that the logistics process can handle, in
a timely manner, the massive material demand. Ultimately, the goal is to find a collision-
free path between two points in the work environment. Implementing an optimal path
planning algorithm would significantly reduce the operation time of logistics robots, while
also reducing wear and energy consumption, and increasing the productivity and overall
quality of the logistics industry. In addition, automation of such tasks would relieve human
workers of repetitive and dull activities, which may cause harm to their health. Moreover,
the COVID-19 pandemic makes the use of robots more attractive as they are not affected by
health concerns or lock-down policies [5]. More generally, path planning of mobile robots
in semi-structured environments, i.e., environments in which only the position of a subset
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of obstacles is known a priori, is a crucial topic in robotics, not just for the logistics sector [6].
The pursuit of increasingly optimised models and algorithms in terms of path length and
smoothness, running time, and reliability is an active research field.

Path planning for mobile robots is mainly classified into two categories: global plan-
ning and local planning [7]. From all the known techniques, Model Predictive Control
Algorithms (MPCA), in combination with global path planning strategies such as A* algo-
rithm [8], show some of the greatest potential to provide efficient navigation in collision
avoidance problems [9]. In this context, a common strategy is to model obstacles as
multiple convex polytopes leading to a convex optimisation problem whose solution is
guaranteed [10].

Several algorithms have been proposed to solve convex optimisation problems. Sev-
eral early approaches were based on the Active-Set (AS) method [11], which initially
estimates the optimal active set. This algorithm then repeatedly uses gradient and La-
grange multiplier information to eliminate one index from the current estimate of the active
constraints while adding a new index until optimality is reached [12]. Later, algorithms
based on the Interior-Point (IP) method, which involves modelling the constraints as barrier
functions [13], became popular in solving convex optimisation problems

The key novelty of this work is the development and use of a Dual Forward–Backward
Algorithm (DFBA) [14] to solve a Model Predictive Control problem. This DFBA can
compute the optimal trajectory to avoid obstacles in a convex optimisation framework,
and this is vital for obstacle avoidance in mobile robotic platforms operating in two-
dimensional, semi-structured environments such as warehouses. Although the DFBA
requires a longer computational time than the IP and AS algorithms, formulation of the
optimisation problem associated with MPCA is relatively straightforward, and this is suited
to real-time applications.

Section 2 presents the physical model of the system and the geometrical representation
of the environment. This is then used to define the mathematical formulation in terms of
an optimisation problem. Finally, there is a description of the algorithms needed to solve
the proposed optimisation problem. A case study to test the proposed algorithms and the
corresponding results are described in Section 3. A discussion of the results is presented in
Section 4. Finally, the conclusion and future works are presented in Section 5.

2. Materials and Methods

This section presents a mathematical description of the problem introduced in Section 1,
defines its equivalent optimisation problem, and describes the proposed numerical algo-
rithms to solve it.

2.1. Problem Description

This subsection describes the system and environment models employed to solve
the problem of autonomously driving a mobile robotic platform, avoiding obstacles in a
two-dimensional, semi-structured environment.

2.1.1. Dynamic Model

As a first approximation, the mobile robot can be modelled as a point mass moving on
a plane without considering gravity effects. The corresponding equation of motion is

p̈ = u,

where p̈ is the acceleration of the robot and u is the actuator control signal. The improved
Euler method [15] can be used to obtain the discrete time model of the system:{

vk+1 = vk + ukTs

pk+1 = pk + vkTs +
uk
2 T2

s
, (1)
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where Ts is the sample time, uk is the actuator control signal at a given time instant k, while
pk+1, vk+1 and pk, vk are the position and velocity at a given time instant k + 1 and k,
respectively. Equation (1) can be written in state-space form as follows:

zk+1 = Azk + Buk, (2)

where zk =
[
pk vk

]T and zk+1 =
[
pk+1 vk+1

]T are the states of the system at a given
time instant k and k + 1, respectively. Details about matrices A and B are presented in
Appendix A. In the problem presented here, dynamic laws are considered as equality
constraints. Indeed, (2) can be rearranged as follows:

− A zk − B uk + I4zk+1 = 04,1, (3)

where In is the n× n identity matrix and 0m,n is the m× n zero matrix.

2.1.2. Actuation Model

A real actuator is not able to produce arbitrarily large accelerations and velocities. This
saturation phenomenon can be modelled as the set, ∆, defined by the intersection of linear
inequalities:

∆ =


∀uk ∈ R2, ∀vk ∈ R2 :

−umin12,1 ≤ uk ≤ umax12,1

−vmin12,1 ≤ vk ≤ vmax12,1

, (4)

where1m,n is a m× n matrix all of whose entries are one, while umax, umin, vmax, and vmin
are real positive numbers representing the limits of the actuator.

2.1.3. Obstacle Model

All the obstacles are modelled as circular or rectangular subsets of R2, as reported in
Figure 1. A generic circular obstacle Oci is defined as follows:

Oci =

{
∀P ∈ R2, Pci ∈ R2, ρi ∈ R :

‖P− Pci‖
2 < ρ2

i

}
,

where Pci and ρi are the centre and the radius of Oci , respectively. Similarly, a generic
rectangular obstacle Ori is defined as follows:

Ori =

∀P ∈ R2, rij ∈ R2, V ij ∈ R2 :〈
rij , P− V ij

〉
< 0 for j = 1, . . . , 4

,

where V ij is the jth vertex of Ori , rij is the outward-pointing normal vector to the jth side
of Ori , and 〈·, ·〉 indicates the inner product. Then, the robot is constrained to move into a
non-convex set:

Π = R2 \ {Oc ∪Or},

where

Oc =

{
nc⋃

i=1

Oci

}
, Or =

{
nr⋃

i=1

Ori

}
,

and nc and nr are the number of circular and rectangular obstacles, respectively.
The maximum convex polytope Ωt ⊂ Π containing the centre of the robot pk, as

shown in Figure 2, is defined as

Ωt =

{
∀P ∈ R2, ni ∈ R2, Pi ∈ R2 :

−〈ni, P− Pi〉 ≤ 0 for i = 1, . . . , na

}
, (5)
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where na is the minimum number of lines necessary to define Ωt, while ni and Pi have
different meaning depending on the obstacle type. For circular obstacles, ni = pk − Pci and
Pi is the point on the boundary of the ith circular obstacle at minimum distance from pk.
For each rectangular obstacle, the eight sets Θij and Ξij with j = 1, . . . , 4 are defined, as
shown in Figure 1b. If pk ∈ Θij , ni = rij and Pi = V ij , otherwise, if pk ∈ Ξij , ni = pk − V ij
and Pi = V ij .

x
y

Pc,i

ρi

(a) Circular obstacle

x
y

Vi1 ri1
ri2

ri3

ri4

Vi2

Vi3Vi4

Θi1 𝚵i2

Θi3

Θi2Θi4

𝚵i3𝚵i4

𝚵i1

(b) Rectangular obstacle.

Figure 1. Obstacles model.

pk

x
y

Ωt

Π

Or1

Oc1

Oc2

Or2

Figure 2. Example of computing the maximum convex polytope Ωt.

2.2. Optimisation Problem

The problem described in Section 2.1 can be formulated in a convex optimisation
framework. The objective is to find the optimal control inputs to autonomously drive a mo-
bile robot from an initial position to a target position within a semi-structured environment
avoiding obstacles.

2.2.1. Objective Function

Considering np predictions of the system states and control variables, it is possible to
define the optimisation variables ξ ∈ Rnv , where nv = 6np + 4, as

ξ =
[
zT

0 zT
1 . . . zT

np uT
1 . . . uT

np

]T
.

Then, introducing the vector containing the initial state, the np desired states, and the
np desired control inputs (set to zero to reduce the control effort)

ξd =
[
zT

d0
zT

d1
. . . zT

dnp
01,2 . . . 01,2

]T
,

the objective can be modelled as a quadratic function

f (ξ) =
1
2
‖Q(ξ − ξd)‖

2
2, (6)
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where the matrix Q ∈ Rnv×nv is diagonal and allows weighting the cost function to define
the priority between increasing the trajectory tracking accuracy in terms of position and
velocity and reducing the control effort. The matrix Q has the following structure:

Q = diag
([

wz . . . wz wu . . . wu
])

,

where the weights of the position error and the velocity error

wz =
[
wp wp wv wv

]
are repeated np + 1 times, while the weight of the control effort

wu =
[
wu wu

]
is repeated np times. The parameters wp, wv, and wu are real positive numbers.

2.2.2. Equality Constraints

Equation (3) can be seen as an equality constraint which forces the states of the system
at instant k + 1 to satisfy the dynamic equations. Considering a prediction horizon of np
samples, it is possible to write (3) at each Ts in terms of the optimisation variables ξ as
linear equality constraints

Φξ − b = 04(np+1),1. (7)

Details about matrix Φ and vector b are presented in Appendix A.

2.2.3. Inequality Constraints

As described in Section 2.1, both the limits of the actuators and the region in which
the robotic platform can move are modelled as linear inequalities. Considering a prediction
horizon of np samples, it is possible to write (4) and (5) in terms of the optimisation variables
and in compact form as

Cξ − d ≤ 0nd ,1, (8)

where nd = np(na + 8) + na + 4. Details about matrix C and vector d are presented in
Appendix B.

2.2.4. Dual Problem Formulation

Considering the objective function (6) and the constraints (7) and (8), it is possible to
define the following optimisation problem:

min
ξ∈Rnv

1
2
‖Q(ξ − ξd)‖

2
2

subject to Φξ − b = 04(np+1),1

Cξ − d ≤ 0nd ,1

. (9)

Since the objective function is quadratic and the constraints are linear, this optimisation
problem is convex. Assuming that a solution to (9) exists, since the objective function is
quadratic, it is also continuous at some ξ such that constraints (7) and (8) are satisfied.
Assuming x ∈ Rn and the subset Γ ∈ Rn, where n ∈ N, the indicator function of Γ can be
defined as

ιΓ(x) =
{

0 x ∈ Γ
+∞ x /∈ Γ

.

Then, introducing the linear operator

L =
[
ΦT CT]T
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and the vector
β =

[
bT dT

]T
,

the optimisation problem described in (9) can be equivalently rewritten as

min
ξ∈Rnv

1
2
‖Q(ξ − ξd)‖

2
2 + ιF(Lξ − β), (10)

where F is a set defined as follows:

F =


λ ∈ R4(np+1)+nd :

λi = 0 for i = 1, . . . , 4
(
np + 1

)
,

λi ≤ 0 for i = 4
(
np + 1

)
+ 1, . . . , 4

(
np + 1

)
+ nd

.

Defining
g(ξ) = ιF(ξ − β),

it is possible to write (10) as
min

ξ∈Rnv
f (ξ) + g(Lξ). (11)

The convex conjugate [16] of (11) has the following form:

min
λ∈R4(np+1)+nd

f ∗
(
−LTλ

)
+ g∗(λ) + 〈λ, β〉,

where f ∗(ζ), ζ ∈ Rnv , is the Legendre-Fenchel conjugate of f (ξ) and is equal to

f ∗(ζ) =
1
2

∥∥∥Q−1ζ
∥∥∥2

2
+ 〈ξd, ζ〉,

while g∗(λ) is the Legendre-Fenchel conjugate of g(ξ) and is equal to

g∗(λ) = ιF◦(λ),

where

F◦ =
{

λ ∈ R4(np+1)+nd : λi ≥ 0 for i = 4
(
np + 1

)
+ 1, . . . , 4

(
np + 1

)
+ nd

}
.

2.3. Algorithms

This section presents the algorithms needed to solve the optimisation problem de-
scribed in Section 2.2. First, the MPCA is explained in detail. Then, the Convex Subset
Search Algorithm (CSSA), which is employed to compute the maximum convex subset in
which the mobile robot can move avoiding the obstacles, is presented. Finally, the DFBA
used to solve (9) is described.

2.3.1. Model Predictive Control Algorithm

Exploiting the current and desired states of the system and the obstacles map, the
MPCA computes the optimal sequence of inputs to obtain the np predicted states that
minimise the objective function. Then, only the first input is applied and all the variables
of the optimisation problem (the obstacles map, the constraints matrices C and vectors d,
and b) are updated according to the newly measured position. Moreover, to reduce the
number of iterations required by the DFBA, the initial point of the optimisation solver, ξi,
is updated using the predictions of the states of the system obtained as the results of the
optimisation problem at the previous time instant. The algorithm is repeated every sample
time Ts. For this application, to define the desired states, the trajectory that connects the
initial position to the target one is computed using the A* algorithm. The pseudocode of
the MPCA is described in Algorithm 1.
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Algorithm 1 MPCA

1: k = 0
2: pk ← initial position
3: p f ← target position
4: pt ← compute trajectory via A* algorithm
5: map← obstacles map
6: Ωt ← CSSA(pk, map)
7: umax , umin ← acceleration actuators limits
8: vmax , vmin ← velocity actuators limits
9: C , d ← compute inequality constraint parameters

10: np ← prediction horizon
11: Ts ← sample time
12: Φ , b ← compute equality constraint parameters
13: Q← define weight matrix
14: Q =

(
QTQ

)−1

15: ξi = 06np+4,1 ← initial point of DFBA
16: δ← position tolerance
17: while

∥∥∥p f − pk

∥∥∥
2
< δ do

18: ξd ← update with pt
19: ξk ← DFBA(ξi, ξd,Q, Φ, b, C, d)
20: uk ← apply u0 in vector ξk
21: pk ← update current position with measurement
22: map← update obstacles map
23: Ωt ← CSSA(pk, map)
24: C , d← update inequality constraints
25: b← update dynamic constraints with pk
26: ξi ← update initial point of DFBA
27: k = k + 1
28: end while

2.3.2. Convex Subset Search Algorithm

The CSSA takes as its input the current robot position and the updated map describing
the obstacles and returns the minimum number of vectors, {n1, . . . , nna} and {P1, . . . , Pna},
to compute the inequality constraints required to define Ωt. The pseudocode of the CSSA
is described in Algorithm 2.

2.3.3. Dual Forward–Backward Algorithm

Since f is strongly convex with a modulus of convexity µ > 0, f ∗ is differentiable
on Fo, and ∇ f ∗ is 1/µ-Lipschitz continuous, the primal problem has a unique solution
ξ̂. Furthermore, assuming that the calculus rule for subdifferentials holds, then the dual
solution λ̂ also exists, the duality gap is zero, and the following Karush–Kuhn–Tucker
conditions [13] hold:

ξ̂ = ∇ f ∗
(
−L∗λ̂

)
and Lξ̂ ∈ ∂g∗

(
λ̂
)

.
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Algorithm 2 CSSA(pk, map)

1: h = 0
2: while isEmpty(map) do
3: Oi ← obstacle at minimum distance from pk
4: i← index of Oi
5: if isRectangle(Oi) then
6: if pk ∈ Θij then
7: nh = rij

8: else
9: nh = pk − V ij

10: end if
11: Ph = V ij

12: else
13: nh = pk − Pci
14: Ph = Pci + ρinh/‖nh‖2
15: end if
16: t = 0
17: map← update by removing Oi
18: for q = 0 to length(map)− 1 do
19: if isDisk

(
Oq
)

then
20: Pmd = Pcq + ρqnh/‖nh‖2
21: if 〈nh, Pmd − nh〉 < 0 then
22: Rt = Oq
23: t = t + 1
24: end if
25: else
26: bool = true
27: for m = 1 to 4 do
28: bool = bool ∧

(
〈nh, V qm − Ph〉 < 0

)
29: end for
30: if bool then
31: Rt = Oq
32: t = t + 1
33: end if
34: end if
35: end for
36: map← update by removing R
37: h = h + 1
38: end while

Thus, the dual solution uniquely determines the primal solution. Under these condi-
tions, it is possible to solve (9) using the following DFBA:

ξh = ∇ f ∗(−L∗λh),

λh+1 = proxγg∗(λh + γLξh),

λh+1 = proxFo (λh+1),

where

∇ f ∗(−L∗λh) = −
(

QTQ
)−1(

LTλh

)
+ ξd,

proxγg∗(λh + γLξh) = λh + γ(Lξ − β),

proxFo (λh) =

{
λh,i λh,i ≥ 0∨ i ≤ 4

(
np + 1

)
0 λh,i < 0∧ i > 4

(
np + 1

) ,
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λh,i is the ith component of the optimisation variable of the dual problem at the hth iteration,
and 0 < γ < γm with γm = 2µ/‖L‖2, where the modulus of convexity µ is computed as the
minimum eigenvalue of QTQ. The pseudocode of the DFBA is described in Algorithm 3.

Algorithm 3 DFBA(ξi, ξd,Q, Φ, b, C, d)

1: L← generated by Φ and C
2: β← generated by b and d
3: λ0 = 04(np+1)+nd ,1
4: ξ0 = ξi
5: γ← initialise considering L
6: tol ← DFBA termination tolerance
7: maxIter ← DFBA maximum number of iterations
8: for h = 0 to maxIter− 1 do
9: λh+1 = λh + γ(Lξh − β)

10: for i = 4(np + 1) + 1 to length(λh+1) do
11: if λh+1,i ≤ 0 then
12: λh+1,i = 0
13: end if
14: end for
15: ξh+1 = Q

(
−LTλh+1

)
+ ξd

16: if
∥∥ξh+1 − ξh

∥∥
2/ length(ξh) < tol then

17: stop iteration
18: end if
19: end for

3. Results

A case study was developed to test the algorithms described in Section 2.3. Consider a
48 m× 36 m warehouse that contains eight shelves and three mobile robots (Rm1 , Rm2 , and
Rm3 ). The task for each robot is to reach different target positions while avoiding the walls,
the shelves, and the other robots. As described in Section 2.1, the walls and the shelves
are modelled as rectangular obstacles, whose parameters are reported in Table 1, while the
mobile robots are modelled as circular obstacles with a diameter equal to 1 m.

Table 1. Rectangular Obstacles Parameters.

V i,1 V i,2 V i,3 V i,4 Unit
x y x y x y x y

O1 6 32 22 32 22 30 6 30 m
O2 28 32 44 32 44 30 28 30 m
O3 6 24 22 24 22 22 6 22 m
O4 28 24 44 24 44 22 28 22 m
O5 6 16 22 16 22 14 6 14 m
O6 28 16 44 16 44 14 28 14 m
O7 6 8 22 8 22 6 6 6 m
O8 28 8 44 8 44 6 28 6 m
O9 0 38 1 38 1 0 0 0 m
O10 49 38 50 38 50 0 49 0 m
O11 1 38 49 38 49 37 1 37 m
O12 1 1 49 1 49 0 1 0 m

Since all the constraints of the optimisation problem are computed considering each
mobile robot to be a point mass, all the obstacles are enlarged by the radius of the mobile
robot. Given this environment, the following logistic task is simulated: (i) Rm1 has to move
an object from point X to point Y , then returns to its home position H1; (ii) Rm2 has to move
an object from point Y to point X, then returns to its home position H2; (iii) Rm3 has to store
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an object at point Z, then returns to the home position H3. The x and y coordinates of the
above-mentioned target positions are listed in Table 2.

Table 2. Target Positions.

H1 H2 H3 X Y Z Unit

x 3 5 7 14 32 40 m
y 36 36 36 10 20 10 m

Figure 3 shows the simulation environment where the following elements are associ-
ated with each robot: (i) a disk representing the robot itself; (ii) a polytope representing
the allowed area in which the robot can move; (iii) the path travelled by the robot; (iv) the
current target position labelled with the × symbol; (v) the home position represented as a
dot. The elements associated with Rm1 , Rm2 , and Rm3 are depicted in blue, red, and yellow,
respectively.

X

Y

Z

Rm1

Rm2

Rm3

H1H2H3

Figure 3. A frame of the simulation of the logistic task showing the mobile robots with their allowed
area, their travelled path, and their current target.

A simulation, whose parameters are reported in Table 3, was implemented in Matlab®

2019b using the Parallel Computing Toolbox™ to measure the performances of the proposed
algorithm.

Table 3. Simulation Parameters.

Algorithm Parameter Value Unit

MPCA

δ 0.1 m
wp 5 1/m
wv 3 s/m
wu 1 s2/m

umax 5 m/s2

umin 5 m/s2

vmax 1.5 m/s
vmin 1.5 m/s
Ts 0.1 s
np 10

DFBA

maxIter 5× 104

tol 1× 10−6

µ 1
γ 0.99 γm
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The weights were chosen to promote the trajectory tracking performances rather than
reducing the control effort. Figure 4 shows how the proposed algorithm avoids a crash
between Rm1 and Rm2 . In Figure 4a, since the desired trajectory of each robot lies within
the allowed area, the mutual obstacle constraints are inactive. In Figure 4b, the predicted
positions deviate from the desired paths to satisfy the obstacle constraints. In Figure 4c, the
two robots react to avoid a crash, leading to an increase in the trajectory tracking error. In
Figure 4d, the two robots start to recover their desired paths.

Rm1

Rm2

(a)

Rm1
Rm2

(b)

Rm1 Rm2

(c)

Rm1

Rm2

(d)

Figure 4. Detail of how the proposed algorithm avoids a crash between Rm1 and Rm2 . For each robot,
the predicted positions (grey dots), the desired trajectory (coloured dots), the travelled path (coloured
line), and the allowed area (coloured polytope) are reported. Rm1 and Rm2 are shown in blue and red,
respectively. (a) The desired trajectory of each robot lies within the allowed area, hence the obstacles
constraints are inactive; (b) The predicted positions deviate from the desired paths to satisfy the
obstacle constraints; (c) The two robots react to avoid a crash; (d) The two robots start to recover their
desired paths.

The results of the simulation show that all the constraints of the optimisation problem
are satisfied and the trajectory tracking error is bounded, except when the constraints are
active. Figure 5 summarises the simulation results. In particular, Figure 5a shows the trend
over time of the norm of the trajectory tracking error, Figure 5b represents the maximum
value of the constraint of the nearest obstacle, while the velocity and control effort of each
mobile robot along the x-axis and y-axis are depicted in Figure 5c–e, respectively.
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(a) Norm of the trajectory tracking error. (b) Value of the constraint of the nearest obstacle.

(c) Velocity along the x−axis. (d) Velocity along the y−axis.

(e) Control effort along the x−axis. (f) Control effort along the y−axis.

Figure 5. Simulation results. The shaded areas correspond to the avoided collision event described in
Figure 4.

4. Discussion

The performance of the proposed DFBA is evaluated by comparing its results with
those obtained using IP and AS algorithms to solving the optimisation problem presented
in the case study in Section 3. Both these algorithms are implemented in Matlab® 2019b
using the standard functions of the Optimization Toolbox™, setting the maximum number
of iterations and the termination tolerance equal to that of the DFBA, as reported in Table 3.
The results of the simulations are presented in Table 4, where:

• ê is the mean of the norm of the trajectory tracking error;
• σ(e) is the sample standard deviation of the norm of the trajectory tracking error;
• max(dmin) is the maximum value of the constraint of the nearest obstacle;
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• max|vx| is the maximum of the velocity of each mobile robot along the x-axis;
• max

∣∣vy
∣∣ is the maximum of the velocity of each mobile robot along the y-axis;

• max|ux| is the maximum of control effort of each mobile robot along the x-axis.
• max

∣∣uy
∣∣ is the maximum of control effort of each mobile robot along the y-axis;

• t̂c is the mean of the computation time required by the algorithm.

Table 4. Comparison of the results obtained using different optimisation algorithms.

Parameter
Rm1 Rm2 Rm3 Unit

DFBA IP AS DFBA IP AS DFBA IP AS

ê 0.12 0.12 0.12 0.12 0.11 0.11 0.12 0.11 0.11 m

σ(e) 0.04 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 m

max(dmin) −0.023 −0.052 −0.035 −0.011 −0.048 −0.031 −0.547 −0.545 −0.545 m

max|vx| 1.50 1.50 1.50 1.50 1.50 1.50 1.43 1.41 1.41 m/s

max
∣∣vy
∣∣ 1.43 1.40 1.40 1.43 1.40 1.40 1.36 1.36 1.36 m/s2

max|ux| 3.91 5.00 3.81 3.53 4.77 3.53 1.69 1.46 1.46 m/s

max
∣∣uy
∣∣ 2.00 1.86 2.04 1.65 1.45 3.45 1.10 1.00 1.00 m/s2

t̂c 0.030 0.022 0.025 0.029 0.021 0.024 0.027 0.022 0.022 s

All the tested algorithms are able to solve the optimisation problem resulting from
driving a mobile robotic platform into a two-dimensional semi-structured environment
avoiding obstacles autonomously. They have comparable accuracy regarding the trajectory
tracking error and the capability of satisfying both the obstacles’ constraints and the limits
of the actuators. Concerning the computation time required to solve the optimisation
problem, the IP and AS algorithms are, on average, 24.4% and 17.4% faster than the DFBA.
However, unlike IP and AS algorithms, the DFBA can solve the Model Predictive Control
problem using only matrix multiplications and operations, such as conditional statements
and for loops. This feature is advantageous because it allows an efficient implementation of
the MPCA in common micro-controllers.

5. Conclusions

In this paper, to address the problem of driving a mobile robotic platform in a two-
dimensional semi-structured environment while autonomously avoiding obstacles, a Dual
Forward–Backward Algorithm is proposed that can solve a Model Predictive Control
Algorithm within a convex optimisation framework. First, the mathematical details about
the problem formulation are described in terms of dynamic equations, system modelling,
and algorithms. Then, a case study from the logistics sector, in which three mobile robots
have to reach different target positions avoiding walls, shelves, and the other mobile
robots within a warehouse environment, is simulated using the proposed optimisation
method. Finally, for comparison, the case study is simulated using the Interior-Point
algorithm and Active-Set algorithm to evaluate the performances of the proposed Dual
Forward–Backward Algorithm.

The results of the simulations show that, for all the implemented algorithms, the
constraints given by obstacles and actuators limits are satisfied; furthermore, the trajec-
tory tracking error is bounded and approximately constant for all the simulated mobile
robots except when the constraints are active, since the robots need to deviate from the
desired path to avoid obstacles or satisfy the limits of the actuators. Although the Dual
Forward–Backward Algorithm has a longer computational time than the Interior-Point
and Active-Set algorithms, it can solve the Model Predictive Control problem using only
matrix multiplications and operations that can be easily implemented in common micro-
controllers: this is advantageous since it reduces hardware complexity, development costs,
and implementation time. In addition, it is possible to increase the computational efficiency
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by exploiting the sparsity of the matrices. Finally, by setting the maximum number of
iterations of the Dual Forward–Backward Algorithm, it is possible to define the maximum
computation time required to satisfy real-time applications.

Future work will focus on implementing and testing the proposed algorithm on
real mobile robots in a semi-structured environment. Further developments will exploit
predictions of the future positions of each mobile robot, computed by the Model Predictive
Control Algorithm, to estimate how the constraints will change in the prediction horizon.
This should have the potential to significantly enhance the capability of each robot to
avoid collisions, and at the same time optimise the path through earlier planning of course
corrections.
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Appendix A. Equality Constraints Details

The matrices introduced to describe the dynamic equations are the following:

A =

[
I2 TsI2

02,2 I2

]
and B =

[
T2

s I2

Ts I2

]
.

The vector b ∈ R4(np+1) and the matrix Φ ∈ R4(np+1)×nv introduced to compute the
equality constraints are defined as

b =

[
−z0

04np ,1

]
and Φ =

[
Φ11 04,2np

Φ21 Φ22

]
,

where Φ11 ∈ R4×4(np+1) is defined as

Φ11 =
[
I4 04,4np

]
,

Φ21 ∈ R4np×4(np+1) is defined as

Φ21 =


−A I4 04,4 . . . 04,4

04,4 −A I4 04,4 . . . 04,4
...

. . . . . . . . . . . .
...

04,4 . . . 04,4 −A I4 04,4

04,4 . . . 04,4 −A I4

,
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and Φ22 ∈ R4np×2np is defined as

Φ22 =


−B 04,2 . . . 04,2

04,2 −B
. . .

...
...

. . . . . . 04,2

04,2 . . . 04,2 −B

.

Appendix B. Inequality Constraints Definition

The vector d ∈ Rnd introduced to compute the inequality constraints is the following:

d =
[
dT

1 . . . dT
1 dT

2 dT
3

]T
,

where
d1 =

[
〈n1, P1〉 . . . 〈nna , Pna〉

]T

is repeated np + 1 times, while

d2 =

−vmax12(np+1),1

−vmin12(np+1),1

 and d3 =

[
−umax12np ,1

−umin12np ,1

]
.

The matrix C ∈ Rnd×nv introduced to compute the inequality constraints is described
as follows:

C =


C11 0na(np+1),2np

C21 02(np+1),2np

C31 02(np+1),2np

04np ,4(np+1) C3,2

,

where C11 ∈ Rna(np+1)×4(np+1) is defined as

C11 =


V 0na ,4 . . . 0na ,4

0na ,4 V
. . .

...
...

. . . . . . 0na ,4

0na ,4 . . . 0na ,4 V

,

with

V =

−nT
1 01,2

...
...

−nT
na 01,2

,

C21 ∈ R4(np+1)×4(np+1) is defined as

C21 =


M 02,4 . . . 02,4

02,4 M
. . .

...
...

. . . . . . 02,4

02,4 . . . 02,4 M

,

with
M =

[
02,2 I2

]
,
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C31 ∈ R4(np+1)×4(np+1) is defined as

C31 = −C21,

and

C3,2 =

[
I2np

−I2np

]
.
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