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Abstract: There are numerous communication barriers between people with and without hearing
impairments. Writing and sign language are the most common modes of communication. However,
written communication takes a long time. Furthermore, because sign language is difficult to learn, few
people understand it. It is difficult to communicate between hearing-impaired people and hearing
people because of these issues. In this research, we built the Sign-Glove system to recognize sign
language, a device that combines a bend sensor and WonderSense (an inertial sensor node). The
bending sensor was used to recognize the hand shape, and WonderSense was used to recognize
the hand motion. The system collects a more comprehensive sign language feature. Following that,
we built a weighted DTW fusion multi-sensor. This algorithm helps us to combine the shape and
movement of the hand to recognize sign language. The weight assignment takes into account the
feature contributions of the sensors to further improve the recognition rate. In addition, a set of
interfaces was created to display the meaning of sign language words. The experiment chose twenty
sign language words that are essential for hearing-impaired people in critical situations. The accuracy
and recognition rate of the system were also assessed.

Keywords: data glove; wearable device; sign language recognition; ubiquitous computing

1. Introduction

In Japan, there are about 341,000 hearing impaired people [1]. The general way to
communicate between a hearing person and a hearing-impaired person is communication
by writing or sign language. However, communication by writing takes a lot of time.
Furthermore, sign language, which hearing impaired people use, is not always familiar to
hearing people or those who acquired a hearing impairment. Each of the two approaches
has problems that hinder smooth communication in society.

Sign language recognition has always been a research problem that has received a
lot of attention. There has been a large number of studies on sign language recognition in
recent years [2–6].

Sign language recognition systems can be divided into non-wearable and wearable
approaches. Non-wearable generally include vision-based [7,8], while non-wearable use
WiFi signal-based [9,10] methods. Another approach is to recognize sign language with
wearable sensor-based data gloves [11,12].

Due to the development of deep learning methods in visual sign language recognition,
the recognition rate has been improved. However, deep learning is driven by data, and the
quality of data collection greatly affects the results. Insufficient video frames and occlusions
will also reduce the recognition accuracy. Gerges et al. [13] established dynamic hand
recognition based on MediaPipe’s Landmarks and compared the recognition accuracy of
three deep learning methods: gated recurrent unit (GRU), long short term memory (LSTM),
and bi-directional LSTM (BILSTM). Dataset collection requires complete characters, no
occlusions, and a fixed duration. It is difficult to achieve these requirements in actual use.
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Chang et al. [14] conducted research on recognizing sign language by detecting the places
of nails and wrists using pictures of the hand. It recognizes sign language by a skeleton of
the hand and the distribution of skin color from pictures taken of the hand. However, the
systems that hearing-impaired people need to use in their daily lives can detect not only
the hand shape part of sign language, but also the dynamic part of hand movement in sign
language. In other vision-based methods, one approach uses color gloves and Kinect data
stored by Microsoft. Shibata et al. [15] used color gloves for recognizing sign language. The
color glove has every color at every finger and wrist. Furthermore, it operates by moving
the distance and area of glove colors. However, in the detection step, if the background or
the user’s clothing are the same color as the part of the glove, it cannot be recognized in
this way. Kinect can detect hand motions and hand places. Muaaz et al. [16] developed
a system that can recognize American sign language with Kinect. This system has a high
average recognition rate of 80%. Furthermore, this system can make easy sentences by
recognizing sign language words. However, this system is also limited by the camera, and
we can only use this system in limited positions without occlusion. In daily life, it can be
large barrier for the hearing impaired to use this system.

Vision-based sign language recognition is limited by the nature of camera view obser-
vation and is not good at capturing complex two-handed interaction movements because of
occlusion. It is also susceptible to the influence of the environment in-between the camera
and the object. The method of wearable sensors and a data gloves forces users to accept
some burdens. However, data gloves can collect data steadily in complex environments,
without the problem of line of sight obstruction, noisy backgrounds, and inadequate light.
It can even be used outdoors, and in low visibility. The camera method is subject to a
variety of environmental constraints. Therefore, we plan to use wearable devices to capture
the complex motion of the fingers.

In recent years, wearable sensor-based data gloves have been developed with continu-
ous improvements in processing information technology and the miniaturization and high
functionality of equipment. Wearable sensor-based data gloves have been able to operate a
large amount of information and handle more complex processing.

Common wearable sensor data gloves for sign language recognition include flexible
sensors [17], inertial measurement units (IMUs) [18], surface electromyography (sEMG)
devices [19,20], and touch sensors [21]. EMG data have large individual variation. When us-
ing the bilinear model for classification, a new subject needs to perform at least one motion.
Furthermore, the recognition rate will drop significantly without using a bilinear model.

The information directly related to the hand in sign language includes 21 degrees
of freedom of the joints on the hand, and the spatial displacement and orientation of the
hand. It is difficult to obtain the appropriate characteristics of complicated information
through a single type of sensor. Korzeniewska et al. [17] chose Velostat to make bending
sensors to collect data to identify Polish sign language and obtained a letter recognition
rate of 86.5%. However, sign language generally uses words as the unit of recognition.
Youngmin Na et al. [18] installed an accelerometer on the index finger to recognize static
letter gestures in the Korean sign language alphabet, but sign language contains a lot of
dynamic gestures, and only static gesture recognition was not enough. Jakub et al. [22]
collected IMU sensor data installed on the palm and fingertips and used parallel hidden
Markov model (HMM) approaches for sign language recognition. The finger shape data
could be obtained by combining the IMU data on the fingertips and the IMU data on the
palm. For collecting hand shape features, multiple inertial sensors are more expensive than
multiple bending sensors.

Data gloves from a single type of sensor either collect much missing hand information
or have a high price for implementation. Thus, multi-sensor fusion is a better solution.
The use of wearable sensors and data gloves is moving toward practical applications as
advanced MEMS technology sensors are being miniaturized. It also breaks down the spatial
limitations of the hand, making multi-sensor data collection possible. Furthermore, among
the multiple combinations, inertial sensors to collect hand motion and bending sensors
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to collect hand shape are the common approaches [23–26]. Faisal et al. [23], using the
K-nearest neighbor (KNN), classified 14 static and 3 dynamic gestures for sign language
recognition. Faisal et al. [24] collected data from 25 subjects for 24 static and 16 dynamic
American sign language gestures for validating the system. Boon Giin Lee et al. [25] used
the support vector machine (SVM) to classify American sign language.

The combination of inertial sensors and bending sensors helps us to obtain hand shape
and motion information at low cost. However, how to rationalize multiple sensor data for
sign language recognition is still a difficult problem. The execution length of the actions of
sign language varies greatly due to people’s habits or usage scenarios. The dynamic time
warping (DTW) algorithm is a solution to compare the similarity between time series data
of different lengths. However, the current research on the application of the DTW algorithm
to sign language recognition is insufficient. Chu et al. [26] studied DTW for sign language
recognition on seven Japanese sign language datasets, and validation was performed using
the leave one out (LOO) approach, with recognition rates of 82.5%. First of all, seven
recognition actions were insufficient. On the other hand, the variation between different
sensors was significant in providing useful information for sign language recognition. Thus,
it is necessary to propose weighted DTW. As shown in Table 1, we compared the studies
of various sensors. Portability in the table refers to whether good results can be obtained
without any data from new users.

Table 1. Comparison of related research (KNN: K-nearest neighbor).

Research Sensor Accuracy Subject Kinds Portability Algorithm Dynamic Motion

Muaaz et al. [16] Kinect 95.6% 5 10 # DTW #
Tateno et al. [19] EMG 97.7% 20 20 × LSTM #

Lee et al. [21] Touch 92% - 36 # Tree ×
Faisal et al. [23] Inertial and Flex 64% 35 3 # KNN #

Chu et al. [26] Inertial and
FlexForce 82.5% 3 7 # DTW #

Ours Inertial and Flex 85.21% 8 20 #
weighted

DTW #

In this study, inertial sensors and bending sensors were deployed simultaneously
in the hand space to collect hand shape and motion features. This method is a practical
and promising solution to combine these two parts of features to recognize sign language.
Thus, in this research, the Sign-Glove system was implemented, as shown in Figure 1.
The development of such systems will give us a future where we wear sensors such as
accessories that make it easier to communicate between a hearing person and a hearing-
impaired person. When we developed the system to recognize sign language on portable
devices with recent technology, for the recognition algorithm of sign language, we extended
DTW to use on time series of multiple sensors. DTW is a general method for measuring
the similarity between two temporal sequences. However, for data from multiple sensors,
different sensors provide different recognition contributions. Thus, we proposed weighted
DTW, an algorithm that improves the recognition rate by setting weighted values to raise
the effect of key sensors. The contribution of the paper is as follows:

We developed a low-cost Sign-Glove system combining bending sensors and IMU
for supporting communication in the context of hearing impairment. To determine hand
shape and hand motion, the device supports the simultaneous collection of bending sensors
and inertial sensors. We built the weighted DTW algorithm to implement multi-sensor
fusion for sign language recognition. The algorithm does not limit the input data length. In
addition, weights were assigned based on the contribution of sign language recognition.
The contribution was analyzed based on the differences in the features of the sensors
and the measurement locations of the hands. Assigning weights enhanced the influence
of key sensors and reduced the errors caused by noisy data, effectively improving the
recognition rate.
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Figure 1. The Sign-Glove on hands.

The organization of this paper is as follows. The application model and sign language
dataset are presented in Section 2. Our system design, implementation, and algorithms
in this study are given in Section 3. The experimental setup and results evaluation are in
Section 4. The discussion of the system is presented in Section 5. Finally, conclusions are
given in Section 6.

2. Application Model and Sign Languages Datasets
2.1. Application Model

The system presented in this research shows the meaning of a sign language word
on a PC for supporting communication between a healthy person and a hearing-impaired
person. This system supposed that a user uses a pair of Sign-Gloves and shows the meaning
of a sign language word on the PC.

A user wears Sign-Gloves on his/her hands. Furthermore, the user moves the motion
of a sign language word. Then, the PC shows the mean of the sign language. A Sign-Glove
is a glove-shaped device with a WonderSense device and a bending sensor. WonderSense
is the device developed in this laboratory. This model supposed that the user wants to
communicate a sign language word motion to another person. We explain the process of
this system in Figure 2. A user moves the motion of the sign language word that he/she
wants to communicate to another person. Sign-Glove measures the acceleration of hand
motion and hand shape at this time. the WonderSense device of the Sign-Glove transmits
the measured hand acceleration to WonderBox with Bluetooth low energy. WonderBox is
the receiver device of WonderSense. WonderBox sends measured hand acceleration data
to a PC with a serial connection. At the same time, the bending sensors of Sign-Glove
measure the hand shape. Furthermore, an Arduino board sends measured data with a
serial connection. An Arduino is an AVR Micon board and is used for taking data from the
bending sensors and sending data to the PC. After the finished sign language gesture, the
data values sent by sensors are computed to recognize a sign language word motion. This
sign language word motion is converted into a message associated with the sign language
word motion in the PC. Finally, the PC displays the message requested by the user. At this
time, if the message is a serious one, the PC makes a sound.
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2.2. Sign Languages Datasets
2.2.1. Characteristics of Sign Language Data

Sign language consists of two main components in the hand part, namely, the shape of
the hand and the overall movement of the hand. Static sign language is defined as a special
case of dynamic sign language, which specifically means that the shape of the hand and
the hand motion remain unchanged for a period of time. Figure 3 shows the hand shape
parts and the hand motion parts of sign language.
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2.2.2. Sign Language Dataset Definition

The key point to recognizing sign language is to recognize the hand shape and the
hand motion at the same time. Missing one of them will significantly reduce the recognition
rate, such as “please” and “good”, “sick” and “obstacle”, “down” and “I see”, as shown
in Figure 4, because the hand motion of these sign languages is the same but the shape of
the hands is different. If we detect only the hand motion of these sign language words,
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the result is that this sign language is completely the same. In contrast, Sign-Glove used
in this research can detect hand shape. Thus, we can increase the recognition rate of
sign language words. Furthermore, for the same reason, we can also achieve the correct
result of recognizing sign language words, which is the same hand shape and different
hand motions.
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3. Methods

The system architecture is shown in Figure 5. The data glove collecting the physical
features, and the communication structure are shown in Figure 6. We explain the design of
the system in Section 4.1. We explain the recognition algorithm in Section 4.2.
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3.1. System Design

In this section, we explain how a sign language word is recognized by the system
constructed in this research and the way to detect it. First of all, we explain the operation
of this system. This research system recognizes a sign language word based on bending
condition data of fingers detected by a bending sensor and acceleration data of hands
detected by WonderSense.

First, the Sign-Glove worn on a user’s hands takes bending fingers condition data and
acceleration data of hands from the bending sensor and the 3-axis acceleration sensor. The
bending fingers condition data are sent from the Arduino to a PC with a serial connection via
the USB cable. At the same time, the acceleration data of hands detected by WonderSense
are sent to WonderBox, which is a data receiver with a BLE connection. Furthermore,
WonderBox sends the data to a PC with a serial connection. Until the end of a sign language
word motion, Sign-Glove continues to receive the values. Acceleration and bending finger
state data are stored in the computer. After that, the model data are read.

The model data are defined with the 3-axis acceleration data and bending data of the
fingers for all sign language words. For the recognition process, we use the weighted DTW
algorithm to calculate the similarity between the sign language data to be recognized and
the model data. The highest similarity of the model data is selected. Finally, the meaning
of the sign language word is extracted from the sign language table and displayed on
the screen.

As shown in Figure 6, the data glove collects the physical features of the hand. The
IMU collects the motion features of the hand, as shown in Figure 6b. The bending sensor
collects the shape features of the hand, as shown in Figure 6c. Both sensors are stitched
to the cloth glove at the corresponding locations for fixation. The bending sensor is fixed
in a special way. When the finger is bending, the skin is stretched. However, the length
of the bend sensor is fixed, so we fix the top of the bend sensor to the fingertip position
of the glove, and the middle of the sensor is restricted by the wire without shifting from
left to right. Furthermore, the back end of the sensor is not fixed but is free to stretch, only
allowing the sensor and the back of the hand to move as far as possible to fit.
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3.2. Implementation
3.2.1. Hardware

We explain the construction of the hardware in this research. Sign-Glove is the device
that takes the acceleration of the hand gesture and hand shape. Sign-Glove has two kinds
of sensors. One of the two sensors is the bending sensor. Figure 7a shows the bending
sensor. The bending sensor changes its resistance by the bending condition. The bending
sensor has a polymer ink on one side if the sensor, which has about 30 KΩ of resistance
when straight and increases when it is bent. The Arduino board detects the change as a
voltage change value and sends it to the PC with a USB cable. The Arduino is an AVR
Micon board. We use it as a banding sensor receiver. The other sensor is WonderSense.
Figure 7b shows WonderSense.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 16 
 

 

The bending fingers condition data are sent from the Arduino to a PC with a serial con-
nection via the USB cable. At the same time, the acceleration data of hands detected by 
WonderSense are sent to WonderBox, which is a data receiver with a BLE connection. 
Furthermore, WonderBox sends the data to a PC with a serial connection. Until the end of 
a sign language word motion, Sign-Glove continues to receive the values. Acceleration 
and bending finger state data are stored in the computer. After that, the model data are 
read. 

The model data are defined with the 3-axis acceleration data and bending data of the 
fingers for all sign language words. For the recognition process, we use the weighted DTW 
algorithm to calculate the similarity between the sign language data to be recognized and 
the model data. The highest similarity of the model data is selected. Finally, the meaning 
of the sign language word is extracted from the sign language table and displayed on the 
screen. 

As shown in Figure 6, the data glove collects the physical features of the hand. The 
IMU collects the motion features of the hand, as shown in Figure 6b. The bending sensor 
collects the shape features of the hand, as shown in Figure 6c. Both sensors are stitched to 
the cloth glove at the corresponding locations for fixation. The bending sensor is fixed in 
a special way. When the finger is bending, the skin is stretched. However, the length of 
the bend sensor is fixed, so we fix the top of the bend sensor to the fingertip position of 
the glove, and the middle of the sensor is restricted by the wire without shifting from left 
to right. Furthermore, the back end of the sensor is not fixed but is free to stretch, only 
allowing the sensor and the back of the hand to move as far as possible to fit. 

3.2. Implementation 
3.2.1. Hardware 

We explain the construction of the hardware in this research. Sign-Glove is the device 
that takes the acceleration of the hand gesture and hand shape. Sign-Glove has two kinds 
of sensors. One of the two sensors is the bending sensor. Figure 7a shows the bending 
sensor. The bending sensor changes its resistance by the bending condition. The bending 
sensor has a polymer ink on one side if the sensor, which has about 30 KΩ of resistance 
when straight and increases when it is bent. The Arduino board detects the change as a 
voltage change value and sends it to the PC with a USB cable. The Arduino is an AVR 
Micon board. We use it as a banding sensor receiver. The other sensor is WonderSense. 
Figure 7b shows WonderSense. 

  
(a) (b) 

Figure 7. Sensors and data collection devices: (a) bending sensor; (b) WonderSense. 

WonderSense collects acceleration data using a 9-axis inertial sensor module 
MPU9250. WonderBox is the data receiver of WonderSense. The core chip of the Wonder-
Box is the PCA10040 for Bluetooth data reception. WonderBox sends data to a PC with a 
USB cable. A Sign-Glove device is a pair of gloves. Sign-Glove is constructed by ten bend-
ing sensors, two Arduino boards, two WonderSense sensors, and one WonderBox device. 
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WonderSense collects acceleration data using a 9-axis inertial sensor module MPU9250.
WonderBox is the data receiver of WonderSense. The core chip of the WonderBox is the
PCA10040 for Bluetooth data reception. WonderBox sends data to a PC with a USB cable.
A Sign-Glove device is a pair of gloves. Sign-Glove is constructed by ten bending sensors,
two Arduino boards, two WonderSense sensors, and one WonderBox device. To facilitate
synchronization, we sampled both the inertial and bending sensor data sampling rate to
50 Hz.

3.2.2. Software

In this research, the environment of the PC for recognizing sign language was struc-
tured by the Java language written by the integrated development environment of Eclipse
in the OS of the Mac OS X 64-bit system. The DB system is MySQL of the XAMMP
application. Furthermore, we used WonderTerminal to manage the data of WonderBox
taken by WonderSense. WonderTerminal is software designed for controlling WonderBox
and WonderSense.

3.2.3. User Interface

Figure 8 shows the user interface of our system. We explain here every function of
our user interface. 1© is the start button. When we click this button, recognition of sign
language starts. Furthermore, when we click again, recognition of sign language stops, and
9© shows a recognized sign language word. 2© is the save button. When the save button

is clicked, sign language data that the system now contains is saved to the database. The
destination database in which to save is decided by database selectors. Furthermore, what
kinds of sign language words to save is decided by a sign language selector. 7© comprises
the extract buttons. The extract AccData button is the button that reads the acceleration
data of a database. The extract BendData button is the button that reads the bending data of
a database. At this time, the user interface decides which database to read from and what
kind of sign language word by 3©. In addition, the user interface decides to read how many
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times data are in the data base by 5©, ID selector. 6© is the Insert ModelData button. The
Insert Model Data button has a function that inserts the sign language word ModelData to
DataBase. Finally, 8© is the research button.
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The Research button is the button that calculates the similarity between sign language
data that contain current and model data.

3.2.4. Data Format

We explain here data taken from WonderSense. As above, the data taken from Won-
derSense are acceleration data. The acceleration data taken from WonderSense are sent to
WonderTerminal on a PC through WonderBox. WonderTeminal has a function that builds
a server. The server of WonderTerminal sends the acceleration data to our Sign system.
The acceleration data format is String and the frequency is 50 Hz. We use the acceleration
data for recognition. Our research system can save the acceleration data from WonderSense
into DataBase.

We explain data here taken from bending sensors. As above, the data taken from
bending sensors are the resistance values of finger bending. The resistance data taken from
every bending sensor are sent to our research system in a PC through an Arduino. In this
system, we can save the data from bending sensors into a database.

3.3. Recognition Method
3.3.1. Dynamic Time Warping

The dynamic time warping (DTW) algorithm is used for measuring waveform sim-
ilarity. The DTW algorithm calculates the similarity of time-series data using Euclidean
distance. The feature of the DTW algorithm is that the length of sample data does not be-
come a problem for the calculation. The duration of sign language varies while expressing
the same word according to habit, proficiency, and other factors. Even in this situation,
the DTW algorithm can calculate similarity. Next, we explain how to calculate the DTW
algorithm for a single sensor.

1. To calculate the similarity of a sequence X = x1, x2, . . . xM M ∈ N and sequence
Y = y1, y2, . . . yM N ∈ N, make similarity arrays D(i, j) of size M× N.

D(i, j)(i = 1, 2 . . . . M)(j = 1, 2 . . . . N) (1)

2. Assign 0 to D(0, 0) and ∞ to the others.

D(0, 0) = 0
D(i, j) = ∞(i = 1, 2 . . . . M)(j = 1, 2 . . . . N)

(2)
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3. Calculate the similarity of two time-series data, D(M, N), with calculation (3) for

i = 1, 2 . . . . M and j = 1, 2...N. f
(

xi, yj

)
is the cost function.

D(i, j) = f (xi, yj) + min(Di,j−1, Di−1,j, Di−1,j−1)

f (xi, yj) =
√
(x2

i − y2
j )

(3)

4. The DTW distance we need is the result of calculation in all combinations D(M, N).

D(M, N) (4)

3.3.2. Weighted DTW

DTW can calculate model data and sensor data similarity for a single sensor. Further-
more, by assigning weights, the weighted DTW can effectively fuse data from multiple
sensors. The model data are the ideal data generated by analyzing the average value of the
standard action and the waveform trend of each sensor for multiple executions.

The contribution of each sensor to sign language recognition is different. In this
research, we used both bending sensors and inertial sensors. Furthermore, two inertial
sensors measure the movement of two hands, and ten bending sensors measure the bending
of ten fingers. On the one hand, the types of sensors are different, so the effectiveness of
information is different. On the other hand, even with the same sensor, for sign language
recognition, the thumb, index finger, and middle finger of the right hand provide more
critical information in many cases, while the other fingers most of the time make little
contribution to distinguishing sign language. Due to a large number of static states, the
waveform has less effective information and is more affected by noise. Thus, setting
the same weight is unreasonable. We set different weights between 10 bending sensors,
different weights between 2 inertial sensors, and different weights between 2 types of
sensors. The weights calculation process is as follows:

1. Combine 10 bending sensors added weight βi of 10 fingers.

DTW(B) =
10

∑
i=1

βiBi (
10

∑
i=1

βi = 1) (5)

2. Combine 2 WonderSense added weight γj of both hands.

DTW(WS) =
2

∑
j=1

γjWSj (
2

∑
j=1

γj = 1) (6)

3. Combine (1) data and (2) data added weight α.

DTW = αDTW(WS) + (1− α)DTW(B) (7)

4. Experiment and Evaluation

In the experiment, we evaluated the performance of the sign language data glove. In
this section, we first describe the experimental setup. Next, we show how the experiments
compared the recognition performance of hand shape, hand motion, and combined data of
both. After that, we verify the recognition performance of our weighted DTW.

4.1. Experimental Setting

We recruited 8 volunteers and collected data on 20 sign language words. The average
age of subjects was 22. Each person repeated each sign language three times, and we
collected a total of 8 × 20 × 3 data points. Model data was the average value of multiple
executions of the standard action. Table 2 shows the weight parameters in the experiment.
Next, we introduced the usage of Sign-Glove.
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Table 2. Setting of the weight parameters in the experiment.

Weight Value Weight Value

α 0.05 β6 0.0002
β1 0.2448 β7 0.0002
β2 0.3772 β8 0.0002
β3 0.3776 β9 0.0002
β4 0.0002 β10 0.0002
β5 0.0002 γ 0.5

Usage of the Sign-Glove

In this section, we explain how to wear the Sign-Glove and the starting position of
recognizing a sign language word, as shown in Figure 4, with this system. First, the Sign-
Glove is worn on the hand. The fingers should be inserted into the Sign-Glove because the
Sign-Glove has a bending sensor in each finger part. Figure 6a shows the correct wearing
of Sign-Gloves.

Figure 9a,b show a pose and hand position when we start to recognize a sign lan-
guage word. The basic position is sitting in a chair and putting the hands on the knees.
Recognizing a sign language word must begin from this basic position. In this research, we
started the system during recognition. Furthermore, when a sign language word motion
was finished, we stopped the system. Then, the hands were returned to the basic position.
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4.2. Experiment Results
4.2.1. Comparison between the Hand Shape, Hand Motion, and Combination Methods

As shown in Figure 10, the recognition ratio of twenty kinds of sign languages in this
experiment was obtained. Experiments were performed to calculate the recognition rate of
sign language for three kinds of feature data: combined hand motion data and hand shape
data, data only based on hand motion, and data only based on hand shape. The motion
data of the hand originates from the inertial sensor, which is shown as a red rectangle on
the graph. The shape of the hand originates from the bending sensor, which is shown as a
blue rectangle on the graph.



Electronics 2023, 12, 613 12 of 15Electronics 2023, 12, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 10. Comparison between the hand shape, hand motion, and combination methods. (The red 
boxes on the right give the values of AVG and STDEV for combination method.). 

The combined sign language recognition rate was the highest, with an average recog-
nition rate of 85.21% and a standard deviation of 10.43. The next highest recognition rate 
was using only the hand motion features, and the lowest recognition rate was using only 
the hand shape features for sign language recognition. Depending on the features of dif-
ferent sign languages, the contribution of hand motion data and hand shape data were 
different. In this dataset, hand motion features contributed more to the recognition rate. 

The hand motion and hand shape parts of the data are complementary most of the 
time. Except for the word “return”, where the combined features are not as good as just 
the hand motion part of the data, the hand shape part of the data plays a reverse role. 

4.2.2. Comparison between Using Our Proposed Weighted DTW or Not 
We obtained result of cases in which we used different weights or the same weight 

as data fusion, as shown in Figure 11. 

 
Figure 11. Comparison between use our proposed weighted DTW and the original DTW. 

27.50

10.43

57.92

85.21

STDEV

AVERAGE

Figure 10. Comparison between the hand shape, hand motion, and combination methods. (The red
boxes on the right give the values of AVG and STDEV for combination method.).

The combined sign language recognition rate was the highest, with an average recogni-
tion rate of 85.21% and a standard deviation of 10.43. The next highest recognition rate was
using only the hand motion features, and the lowest recognition rate was using only the
hand shape features for sign language recognition. Depending on the features of different
sign languages, the contribution of hand motion data and hand shape data were different.
In this dataset, hand motion features contributed more to the recognition rate.

The hand motion and hand shape parts of the data are complementary most of the
time. Except for the word “return”, where the combined features are not as good as just the
hand motion part of the data, the hand shape part of the data plays a reverse role.

4.2.2. Comparison between Using Our Proposed Weighted DTW or Not

We obtained result of cases in which we used different weights or the same weight as
data fusion, as shown in Figure 11.
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When we used our weight by data fusion algorithm, we could take the average
recognition rate of 85.21%, and the standard deviation was about 10.43. When we did not
use our weight by data fusion algorithm, the average recognition ratio was about 57.92%,
and the standard deviation was 27.50. Thus, we understand that this data fusion algorithm
was increasing the recognition ratio and decreasing the standard deviation. Thus, we can
say that this algorithm is useful for recognizing sign language.

5. Discussion

We built a data glove based on bending sensors and inertial sensors to capture hand
shape and motion features, and then it uses weighted DTW fusion features to recognize sign
language. We experimentally verified that both hand shape and hand motion contribute to
sign language recognition. Moreover, the two features are complementary, and a higher
recognition rate can be obtained by fusing the two features to recognize sign language.
Adjusting the weight values to fuse the features, we found that the quality of information
provided by sensors with different placements is different. By adjusting the weights to
focus on the sensors with large value changes during the execution of sign language, the
recognition accuracy can be improved. We collected data for 20 dynamic sign language
words from eight volunteers, and the recognition accuracy was 85.21%. The feasibility of
the system was verified.

In comparison with similar systems, although there has been a large number of studies
on sign language recognition, the defined sign language countries are different, and the
numbers of participants in the experiments are different. The number of sign language
word data contained in the dataset is different. We chose Chu’s system, which is similar
in structure to our system, and both use bending sensors and IMUs, and we also used
Japanese sign language, for comparison. The results are shown in Table 3, which shows
that the weighted DTW has a better recognition rate when the number of participants and
the number of recognized sign language words are both greater.

Table 3. Our system compared with Chu’s system.

Research (Years) Subject Number of
Signs Algorithm Sensor Cross-Recognition

This study 8 20 Weighted
DTW

Bend and
IMU 85.21%

Chu et al. [26]
(2021) 3 7 DTW Bend and

IMU 82.5%

There are still many limitations of our system. The data glove prototype system uses a
breadboard, so the system is rather bulky. For some palm-related sign language words, the
system sometimes causes inaccurate movements. However, the semantic impact on sign
language expression is minimal. It is still able to recognize sign language words in sign
language communication. Regarding the impact of data collection, there will be data loss
or disconnection problems during long time periods of data collection.

In addition to hand shape features and hand motion features, collecting other features
in sign language has the potential to further improve recognition rates in the future, for
example, the relationship between head and hand position, body posture, facial expressions,
etc. In addition, the data features of some locations on the hand do not contribute much to
recognition, offering the possibility of simplifying the device in the future.

6. Conclusions

In this research, we built a Sign-Glove system to recognize sign language. By analyzing
the process of sign language, we noticed that sign language is composed of both hand
motion and the hand shape in time. Therefore, we decided to use IMU to detect the hand
motion part and the bend sensor to detect the hand shape part. Then, we combined this
information and used the weighted DTW algorithm to fuse the features and recognize sign
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language words. In the experiments, we verified the performance of the Sign-Glove system
and obtained high recognition rates of sign language. Such a wearable glove system has the
potential to greatly reduce the cost of communication for people with hearing impairment.

In the future, with further improvements, we will exchange the cables for wireless
connections such as BLE and Xbee. In addition, word-by-word sign language recognition
was achieved, but sign language is often used to construct meaning through continuous use.
We will replace the breadboard connection with a printed circuit board (PCB) and flexible
flat cable (FFC) connections to achieve more stable data collection over a long period of time
in daily use. We hope to build a system capable of continuous sign language recognition
in the future. A more concise system will provide more convenient and complete sign
language expression.
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