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Abstract: This paper presents several different Neural Network based DPD architectures for hybrid
beamforming (HBF) mMIMO applications. They are formulated, tested and compared based on their
ability to compensate nonlinear distortion of power amplifiers in a single user (SU) and multiuser
(MU) Fully-Connected (FC) HBF mMIMO transmitters. The proof-of-concept is provided with a
64 × 64 FC HBF mMIMO system, with 2 RF chains. The complexity of DPD solution is reduced
by using a single Real-Valued Time-Delay Neural Network with two hidden layers (RVTDNN2L)
instead of using as many different DPD blocks as there are RF chains in the HBF mMIMO transmitter
and it is shown that the proposed architecture better compensates nonlinear distortion compared to
the traditional memory polynomial DPD. Two RVTDNN2L DPD architectures are developed and
tested for linearization of MU FC HBF mMIMO systems, and it is also shown that the proposed
RVTDNN2L DPD architecture efficiently linearizes MU FC HBF mMIMO transmitters in terms of
Normalized Mean-Squared Error (NMSE) and Error Vector Magnitude (EVM).

Keywords: neural networks; digital predistortion (DPD); massive MIMO; hybrid beamforming
(HBF); power amplifiers (PAs)

1. Introduction

Massive multiple-input multiple-output (mMIMO) combined with hybrid beamform-
ing (HBF) has been widely accepted as one of the key technologies in fifth generation (5G)
and beyond networks to improve the throughput and increase spectral efficiency [1–7].
Hybrid beamforming is a combination of analog beamforming in RF domain and digital
beamforming in baseband. There are two types of HBF MIMO transmitter architectures:
(a) fully connected (FC) architecture, when each antenna is connected to each of the P RF
chains, and (b) partially connected or subarray architecture, when a set of L antennas is
connected to one RF chain. On the other hand, in order to reduce power consumption,
the power amplifiers (PAs), that are the main power consumers in the transmitters, must
operate in a region close to saturation, causing increased nonlinear distortion and reduced
spectral efficiency. Digital predistortion (DPD), as one of the most promising solutions and
the most effective PA linearization technique, has been extensively studied in literature [8].
Conventional DPD requires dedicated predistorter for observing and linearizing the non-
linear distortion of each PA, which, in the case of HBF mMIMO systems, is completely
unsuitable. Therefore, a lot of research work has been done to resolve DPD implementation
problems in HBF mMIMO systems [9–15].

Most of these DPD techniques are proposed for subarray or reduced complexity HBF
architectures, meaning that for the whole HBF mMIMO systems, as many DPD blocks as
there are RF chains will be needed. In [9] DPD learning is based on the feedback from a
single PA in the array. The decorrelation DPD model introduced in [10] uses a combined
output signal of individual PAs in conjunction with a decorrelation-based learning rule.
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The same group of authors proposed a closed-loop (CL) DPD technique in [11] as a solution
for multi-user hybrid MIMO that uses a single DPD block per RF transmission subarray.
The Beam-Oriented DPD (BO-DPD) technique presented in [12] linearizes the signal of the
main beam, not each PA individually, using the outputs of all PAs to obtain the feedback
signal. Authors in [13] proposed a Power Scalable Beam-Oriented DPD (PSBO-DPD) that
linearizes the signal of the main beam of a given subarray using feedback from only one
PA. As a fully-connected (FC) HBF architecture allows higher spectral efficiency compared
to a subarray HBF architecture, the authors in [15] proposed an approach for linearization
of FC HBF mMIMO transmitters. However, the approach still uses as many DPD blocks
as there are RF chains. Based on the type of feedback signal, over-the-air (OTA) DPD
and direct transmit-end DPD are distinguished. Authors in [16] proposed a best linear
approximation (BLA) based equalization strategy for OTA DPD in 5G Beamformer Array
at 28 GHz and showed that using this approach enhances the linearization performance
when a single and fixed set of DPD coefficients is used across different beam angles and
receiver positions. Nevertheless, this paper considers the linearization of the main beam
using direct transmit-end DPD and does not consider such equalization.

Neural networks (NNs) have high modelling accuracy as well as good distortion
compensation performance in PA linearization [17–24]. Current investigations are based
on the applications of different NN in DPD of a single PA. Authors in [20] proposed real-
valued time-delay feedforward backpropagation-based NN for DPD in MIMO transmitters.
However, as to the best of the authors knowledge, there have been no studies on the
implementation of NNs DPD for HBF mMIMO yet.

In this paper, we propose NN based DPD for FC HBF mMIMO. Firstly, we present
and analyze different NN configurations, and compare their predistortion capabilities
in a single user (SU) FC HBF mMIMO transmitter, in terms of Error Vector Magnitude
(EVM) and Normalized Mean-Squared Error (NMSE). It is shown that the proposed NN
based DPD solution efficiently linearizes FC HBF mMIMO (with P RF chains) using a
single NN instead of P different DPD blocks, thus reducing the complexity compared to
the state-of-the-art DPD solutions for HBF mMIMO, which uses P different DPD blocks.
Therefore, we proposed an advantageous Real-Valued Time-Delay Neural Network with
two hidden layers (RVTDNN2L) and showed that this NN DPD solution has smaller NMSE
and EVM compared to the state-of-the-art DPD solutions for SU HBF mMIMO. Secondly,
for the proposed and selected RVTDNN2L DPD approach we investigated the influence
of the number of RF branches on the linearization of the FC HBF mMIMO. We increased
the number of RF branches to 4 and 8 and showed that, with the implementation of this
approach, NMSE decreases by increasing the number of RF branches. At the end, we
considered and examined a multiuser (MU) FC HBF mMIMO using two different DPD
architectures with the RVTDNN2L approach. It is shown that the proposed approach
better compensates for the nonlinear distortion of PAs in MU FC HBF mMIMO. One of
the advantages of the RVTDNN2L DPD approach is also its adaptability, which means
that with the change of environmental conditions, it can be relatively easily retrained and
adapted to new conditions.

The rest of this paper is structured as follows. In Section 2, different NN based
DPD models for PA linearization are presented and their performance and complexity are
analyzed. Simulation results and comparisons between different NN DPD models for SU
FC HBF mMIMO are given in Section 3 and RVTDNN2L DPD is proposed as the most
efficient one. In Section 4, simulation results for the proposed RVTDNN2L DPD approach
for MU FC HBF mMIMO are shown. Finally, Section 5 gives the conclusions.

2. NN DPD Models

A commonly used NN model has an input layer, one or more hidden layers and
an output layer. Based on the number of hidden layers, NNs can be divided into two
main categories: shallow and deep neural networks. While shallow NNs have one or two
hidden layers, deep neural networks (DNNs) have at least three hidden layers with a high
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number of neurons in each layer. With the increase in the number of hidden layers, the
network behavior is better modeled, while on the other hand, the requirements for signal
processing increase. So, in this paper we analyze several different NN models such as,
two shallow networks: real-valued time-delay neural network (RVTDNN) and augmented
real-valued time-delay neural network (ARVTDNN), and one deep neural network (DNN),
and propose the use of the RVTDNN network with two hidden layers (RVTDNN2L).

Input signals for the DNN, as well as for the RVTDNN and RVTDNN2L, are I and Q
components of the signal. Beside I and Q components of the signal, ARVTDNN considers
the envelope-dependent terms of the input signal, i.e., |x(n)|, |x(n)|2 and |x(n)|3, where
|x(n)| is amplitude of the input signal. The activation function used in these models
is hyperbolic tangent (tanh), while for DNN model, sigmoid (logsig) activation function
is used.

Complexity is one of the more important parameters that needs to be considered when
choosing an appropriate NN DPD model. It can be expressed by the number of coefficients,
as well as the number of floating-point operations (FLOPs). The total number of coefficients
is equal to the sum of the used coefficients in every layer, and can be computed as follows:

Ncoe f = (Ni + 1)N1 + ∑F
f=2

(
N f−1 + 1

)
N f + (NF + 1)NO (1)

where Ni is the number of neurons in the input layer, F is the number of hidden layers,
Nf is the number of neurons in f -th hidden layer and No is the number of neurons in the
output layer.

The number of FLOPs is used for estimation of the computational complexity of the
model and is different for every particular operation performed [24,25]. For the NNs with
hyperbolic tangent activation function, number of FLOPs can be computed as follows:

FLOPs = 2Ni N1 + 2NF NO + 2 ∑F
f=2 N f−1N f + 15 ∑F

f=1 N f (2)

For the NNs with sigmoid activation function, number of FLOPs can be computed
as follows:

FLOPs = 2Ni N1 + 2NF NO + 2 ∑F
f=2 N f−1N f + 13 ∑F

f=1 N f (3)

Due to its simple implementation, the indirect learning architecture (ILA) was used
to form the DPD architecture based on single NN for the whole HBF mMIMO system,
as shown in Figure 1. First, the appropriate NN model for DPD was formed and was
trained using combined output data signals from all antennas and input data to the HBF
MIMO transmitter. Then the trained NN model was used to update the input signal to
HBF MIMO transmitter.

The algorithm used for training NN models is Levenberg-Marquardt optimization
algorithm, a well-known and widely used type of back-propagation algorithm [18,21,22,24].
The Levenberg–Marquardt algorithm has been shown to perform exceptionally well be-
cause of its fastest convergence with lower mean square errors for training feedforward
neural networks [26]. It also has an efficient implementation in Matlab ANN Toolbox. To
update the values of the synaptic weights and biases in neural network, the Levenberg-
Marquardt algorithm uses the following approximation:

xk+1 = xk −
[
JTJ + µI

]−1
JTe (4)

where J is the Jacobian matrix that contains first derivatives of the network errors with
respect to the weights and biases, and e is a vector of network errors. Initial µ is set equal
to 0.001 and increase factor for µ is 10.
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The optimal number of neurons in hidden layers are determined during training of
the network and are set to give the best performance. As a result of extensive simulations,
we determine following characteristics of NN models: DNN with 3 hidden layers, logsig
activation function and 12 neurons in each hidden layer; RVTDNN with one hidden layer,
tansig activation function and 35 neurons in hidden layer; ARVTDNN with one hidden
layer, tansig activation function and 28 neurons in hidden layer; and RVTDNN2L with
two hidden layers, tansig activation function, 18 neurons in the first hidden layer and
9 neurons in the second hidden layer. Block diagrams of these NN models are shown in
Figure 2. As well, we propose the use of RVTDNN2L network for digital predistortion of
FC HBF mMIMO transmitter. The performance and complexity of different analyzed NN
models are listed in Table 1. A large number of simulations were performed, varying the
number of neurons per layer from 1 to 30 for the first hidden layer and from 1 to 15 for
the second hidden layer, for RVTDNN2L network. For different combinations of neurons
per layer, the number of coefficients according to formula (1) was calculated, as well as the
number of FLOPs according to formula (2) and values of NMSE and EVM. Observing the
obtained results, the optimal numbers of neurons were chosen so that NMSE and EVM
values are comparable to the values existing in literature in the literature for HBF mMIMO
transmitters, but also that the number of coefficients and FLOPs are as small as possible, in
order to reduce the complexity of the system. The numbers of neurons per layer for other
types of networks were chosen in a similar way, ensuring that their complexity is similar to
that of the RVTDNN2L network.
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Table 1. Performance and complexity of different NNs.

Type of
NN DPD Input Data

Number of
Neurons in
Input Layer

Number of
Neurons in

Hidden Layers

Activation
Function

Number of
Neurons in

Output Layer
Ncoef FLOPs

DNN I/Q 2 12 12 12 logsig 2 374 852
RVTDNN I/Q 2 35 tansig 2 177 805

ARVTDNN I/Q, |x(n)|, |x(n)|2,|x(n)|3 5 28 tansig 2 226 812
RVTDNN2L I/Q 2 18 9 tansig 2 245 837

3. Results

In this section, some DPD simulation results of the SU FC HBF mMIMO transmit-
ter are presented. Individual PA units in transmitter are modeled using NN, based on
measurement data from an actual PA. A two-stage PA (CFH 2162-P3 PA) with a 14 dB
gain, and P1dB of 37 dBm driven in a hard compression region was used. The modulated
waveform with channel bandwidth of 20 MHz, was fed into this power amplifier model at
2140 MHz. The process of PA modeling is shown in Algorithm 1 in Appendix A. Single
PA has been modeled using one RVTDNN2L with two hidden layers, tansig activation
function, 32 neurons in the first hidden layer and 15 neurons in the second hidden layer. To
consider nonlinear crosstalk that occurs before PA, the output of each PA is modeled as:

yi = fi

xi + ∑Nt
n = 1
n 6= i

αi,n·xn

 (5)

where xi is the input to i-th PA, fi is the PA response function, αi,n is the crosstalk factor
reflecting the impact of n-th PA to i-th PA [27]. Then NN based DPD model was created,
using different NN architectures, as an integral solution to jointly compensate all PAs
nonlinearity, crosstalk, I/Q imbalance and dc offset imperfections, similarly to the authors
work presented in [22]. Considered DPD architecture is shown in Figure 1. To obtain
the feedback signal, used for the DPD learning, the outputs of the individual PAs are
firstly extracted, then co-phased and combined in the analog domain before being applied,
meaning that direct transmit-end feedback is considered.

The basic concept of hybrid beamforming is to split both the precoding and com-
bining weights to baseband digital weights and RF band analog weights. The problem
of determining these weights is quite a large topic and is not considered here. In this
paper, the orthogonal matching pursuit algorithm which is implemented in Matlab and
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proposed in [28] is used to obtain hybrid precoding and combining weights. Next, a clus-
tered Saleh-Valenzuela channel model is adopted, with impulse response h(t) defined as
follows [29]:

h(t) =
Ncl−1

∑
l=0

Nray−1

∑
k=0

βkl ·ejθkl ·δ(t− Tl − τkl) (6)

where: Ncl and Nray are maximum number of clusters and multipath components inside
clusters, respectively, βkl—the amplitude of k-th ray in l-th cluster, θkl—the phase of the
kl-th ray, Tl—time arrival of the l-th cluster, τkl—arrival delay of k-th ray with respect to
first ray of the l-th cluster. The model contains Ncl = 6 clusters, with Nray = 5 rays in each
cluster. It should be noted that a similar channel modeling approach is utilized in 3GPP
standardization [30].

A 64-QAM modulated OFDM signal with a bandwidth of 20 MHz, generated in Matlab
is used in DPD simulations. Subcarrier spacing is 15 kHz, and the number of used subcarri-
ers is 1200. Matlab code for generating OFDM signal is given in Appendix B. Simulations of
a 64 × 64 fully-connected hybrid beamforming MIMO system, with 2 RF chains were per-
formed. Four different NN models for DPD are considered: DNN, RVTDNN, ARVTDNN
and RVTDNN2L, and compared with each other and with the memory polynomial (MP)
DPD approach based on following formula [31]:

xout(n) =
M

∑
m=0

K

∑
k=1

amk·xin(n−m)·|xin(n−m)|k−1 (7)

where: amk—model coefficients, M—memory depth, K—nonlinearity order, xin and xout—input
and output signal, respectively. Simulations were performed for MP model used in [32]
with memory depth M = 3 and order of nonlinearity K = 11. Block diagram of used MP
model is shown in Figure 3.
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Figure 4 shows obtained power spectrum densities (PSDs) without DPD, with MP DPD
model and with analyzed NN DPD models. Table 2 summarizes the performance of MP
DPD model, different NN DPD models and the proposed RVTDNN2L DPD model, in terms
of EVMs and NMSEs. As it can been seen, PA linearization is significantly improved with
NN DPD models compared to MP DPD model, especially with the proposed RVTDNN2L
DPD model. It should be noted that observed NN DPD models are similar in complexity, i.e.,
in number of FLOPs. As it can be seen from the obtained results, the proposed RVTDNN2L
DPD outperforms other analyzed DPD models.
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Table 2. Performance of different NN DPD architectures for 64 × 64 FC HBF MIMO system.

Type of DPD EVM [%] NMSE [dB]

Without DPD 22.09 -
MP 2.04 −33.79

DNN 1.37 −37.25
RVTDNN 1.99 −33.98

ARVTDNN 1.70 −35.39
RVTDNN2L 1.23 −38.19

Further, the proposed RVTDNN2L DPD technique has been applied on FC HBF
mMIMO system with 4 and 8 RF branches. Simulations were performed in Matlab, with
the same input signal and same parameters of RVTDNN2L DPD as in the previous analysis.
The same orthogonal matching pursuit algorithm and Saleh-Valenzuela channel model
were used to generate the hybrid beamforming coefficients for system with 4 and 8 RF
branches. Figure 5 shows the power spectrum densities (PSDs) for FC HBF mMIMO
system with 2, 4 and 8 RF branches with the proposed RVTDNN2L DPD model. Table 3
summarizes the performance of the proposed RVTDNN2L DPD model for system with
2, 4 and 8 RF branches, in terms of EVMs and NMSEs. It can be seen that EVM without
DPD increases with increasing number of RF branches, meaning that nonlinear distortion
increases with increasing number of RF branches, which was expected. The obtained
simulation results showed that EVM with the proposed RVTDNN2L DPD model decreases
with increasing number of RF branches, which means that the proposed model better
compensates nonlinear distortion if the number of RF branches increases, since the RF
signals are more correlated with each other.

Although the use of more RF branches achieves better results in EVM and NMSE with
the application of digital predistortion, due to the cost of implementing a physical system
with more RF branches, in practice HBF MIMO transmitters with 2 RF branches are used.
Consequently, FC HBF mMIMO with 2 RF branches will be analyzed in further research of
RVTDNN2L DPD for MU case.
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Table 3. Performance of RVTDNN2L DPD architecture for 64 × 64 FC HBF MIMO system with 2, 4
and 8 RF branches.

2 RF Branches 4 RF Branches 8 RF Branches

EVM without DPD [%] 22.09 22.39 23.39
EVM with RVTDNN2L

DPD [%] 1.23 1.04 0.74

NMSE [dB] −38.19 −39.63 −42.60

4. RVTDNN2L DPD Approach for MU Case

In MU FC HBF MIMO transmitter it is necessary to take into account the signals from
all users during the construction of the DPD module, due to the fact that during HBF the
data to be sent are formed on the basis of data from all users. In this paper we considered
a FC HBF MIMO system with only two users, but with certain minor changes it can be
adapted to the case of more than two users.

We proposed and analyzed two architectures for a multi-user system:

• DPD system with one RVTDNNL network with inputs from both users and outputs
for both users, shown in Figure 6 (arch1),

• DPD system with two RVTDNNL networks with inputs from both users and output
for one user, shown in Figure 7 (arch2).
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Figure 7. Architecture 2 of RVTDNN2L DPD for MU FC HBF MIMO transmitter with two NNs.

Levenberg-Marquardt optimization algorithm was applied for training RVTDNN2L.
Tansig activation function was used in both hidden layers. We tested model with different
number of neurons in hidden layers of network and proposed the optimal number to obtain
the best performance. Graphics and tables are given for three combinations of numbers of
neurons in hidden layers, i.e., for I = 18 neurons in the first hidden layer and II = 9 neurons
in the second hidden layer; I = 32 neurons in the first hidden layer and II = 15 neurons in
the second hidden layer; and I = 48 neurons in the first hidden layer and II = 21 neurons in
the second hidden layer. As for SU FC HBF MIMO, a clustered Saleh-Valenzuela channel
model is adopted. For MU FC HBF MIMO, the model contains Ncl = 6 clusters, with
Nray = 10 rays in each cluster. For the scheme in Figure 6, the proposed RVTDNN2L DPD
model with 4 inputs and 4 outputs was used, i.e., we considered I and Q components of
signals from both users, both inputs and outputs. While for the scheme in Figure 7, the
proposed RVTDNN2L DPD model has two NNs, one for each user, both with 4 inputs and
2 outputs, i.e., we considered I and Q components of output signals from both users, and I
and Q components of input signals for specific user.

The same PA model as for the SU case was used. Two 64 QAM modulate OFDM
signals with a bandwidth of 20 MHz were generated in Matlab. Simulations of a 64× 64 FC
HBF MIMO system, with 2 users and 2 RF chains were performed, for both architectures
shown in Figures 6 and 7.

Figures 8 and 9 show obtained power spectrum densities (PSDs) without DPD and
with proposed RVTDNN2L DPD model for both types of architecture. While Tables 4 and 5
summarize the performance of the proposed RVTDNN2L DPD models for each user
separately, in terms of EVMs and NMSEs. As can been seen, PA linearization is slightly
better with RVTDNN2L DPD model with two NNs compared to RVTDNN2L DPD model
with one NN. On the other hand, it should be noted that the architecture with two NNs
is more complex, in terms of number of coefficients and FLOPs, compared to architecture
with one NN, which is shown in Table 6.

From the above results, we conclude that compared to SU case it is necessary to
further increase the complexity of the RVTDNN2L DPD system for MU case in order to
efficiently linearize PAs, either by increasing the number of neurons in each layer, or by
introducing another RVTDNN2L DPD for another user. Based on the results of extensive
simulations, taking into account the complexity of the system, the best results were shown
by the architecture with 2 RVTDNN2L networks, with 32 and 15 neurons in the first and
the second hidden layer, respectively.
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Table 4. Performance of RVTDNN2L DPD for 64 × 64 MU FC HBF MIMO system—user 1.

RVTDNN2L
Arch1 Arch2

EVM [%] NMSE [dB] EVM [%] NMSE [dB]

I = 18, II = 9 4.07 −27.81 3.16 −30.02
I = 32, II = 15 3.08 −30.22 2.13 −33.45
I = 48, II = 21 2.48 32.11 1.78 −34.97

EVM without DPD is 17.43 %.

Table 5. Performance of RVTDNN2L DPD for 64 × 64 MU FC HBF MIMO system—user 2.

RVTDNN2L
Arch1 Arch2

EVM [%] NMSE [dB] EVM [%] NMSE [dB]

I = 18, II = 9 4.56 −26.81 3.47 −29.19
I = 32, II = 15 3.34 −29.52 2.24 −32.98
I = 48, II = 21 2.69 −31.40 1.97 −34.11

EVM without DPD is 18.58 %.
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Table 6. Performance and complexity of different RVTDNN2L DPD models.

RVTDNN2L
Arch1 Arch2

Ncoef FLOPs Ncoef FLOPs

I = 18, II = 9 301 945 562 1818
I = 32, II = 15 719 2041 1374 3962
I = 48, II = 21 1357 3603 2626 7038

5. Conclusions

In this paper, the different NN based DPD architectures are formulated and tested.
The RVTDNN2L DPD architecture in particular, which has been developed and im-
plemented for the first time, best compensates nonlinear distortion of PAs in FC HBF
mMIMO transmitters.

The developed RVTDNN2L DPD architecture was tested for linearization of FC HBF
mMIMO system with more than 2 RF branches, and it was shown that, even though
EVM without DPD increases with an increasing number of RF branches, the application
of the proposed RVTDNN2L DPD model decreases total NMSE. Both SU and MU FC
HBF mMIMO were analyzed and comprehensive simulations have been performed. It
was shown that the proposed RVTDNN2L DPD model efficiently linearizes SU, as well
as MU FC HBF mMIMO transmitters, where NMSE was of the same order of magnitude
as in the existing DPD solutions for HBF mMIMO. As a result of all the above contribu-
tions, this study has shown that the developed RVTDNN2L DPD solution has very good
PA modeling and linearization performance, in terms of NMSE and EVM, for FC HBF
mMIMO transmitters.
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Appendix A

Algorithm 1: NN learning algorithm for PA simulation

1. Determine the structure of NN as RVTDNN2L with 32 neurons in the first hidden layer and
15 neurons in the second hidden layer.

2. Get input data Xn and output data Yn.
3. Define the cost function as MSE (Mean Square Error) function.
4. Define the optimization algorithm as LM (Levenberg-Marquardt) optimization algorithm.
5. Training NN:
- calculate NN output
- calculate cost function
- judgment: if performance requirements are met, exit the loop
- update network coefficients.

Appendix B

Matlab code for generating OFDM signal:
function [OFDMsignal]= createOFDM(Ndata, Nused_sc, FFT, M, m)
% Ndata=7200; % # of all transmitted data
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% Nused_sc=1200; % #of used subcarrier 5MHz/15kHz LTE
Nsim=Ndata/Nused_sc;
% FFT=1024;
% M=64;
% m=2;
G=1/2ˆm;
CPx=G*FFT;
P1=zeros(Ndata,1);
P1 = randi(M-1, Ndata, 1);
% digital symbol mapped as analog symbol
Map = qammod(P1,M);
I1=imag(Map);
Q1=real(Map);
C1=I1.ˆ2+Q1.ˆ2;
U=mean(C1);
V=sqrt(U);
I=I1/V;
Q=Q1/V;
X1=[I Q];
X2=zeros(Ndata,1);
X2=X1(:,1)+i*X1(:,2);
X3=zeros(FFT,1);
x4=zeros(FFT,1);
m=zeros((FFT-Nused_sc),1);
for ii=0:(Nsim-1)

X3=[X2(ii*Nused_sc/2+1 : Nused_sc/2+ii*Nused_sc/2,1); m; X2(Nused_sc/2+ii*Nused_sc+1:
Nused_sc+ii*Nused_sc,1)];

x4=ifft(X3,FFT);
x5(ii*(FFT+CPx)+1 : CPx+ii*(FFT+CPx),1)=x4(FFT-CPx+1 : FFT,1);
x5(CPx+ii*(FFT+CPx)+1 : FFT+CPx+ii*(FFT+CPx),1)=x4;

end;
OFDMsignal = x5(:)′;
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