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Abstract: In recent years, the high improvement in communication, Internet of Things (IoT) and cloud
computing have begun complex questioning in security. Based on the development, cyberattacks
can be increased since the present security techniques do not give optimal solutions. As a result,
the authors of this paper created filter-based ensemble feature selection (FEFS) and employed a
deep learning model (DLM) for cloud computing intrusion detection. Initially, the intrusion data
were collected from the global datasets of KDDCup-99 and NSL-KDD. The data were utilized for
validation of the proposed methodology. The collected database was utilized for feature selection to
empower the intrusion prediction. The FEFS is a combination of three feature extraction processes:
filter, wrapper and embedded algorithms. Based on the above feature extraction process, the essential
features were selected for enabling the training process in the DLM. Finally, the classifier received the
chosen features. The DLM is a combination of a recurrent neural network (RNN) and Tasmanian devil
optimization (TDO). In the RNN, the optimal weighting parameter is selected with the assistance of
the TDO. The proposed technique was implemented in MATLAB, and its effectiveness was assessed
using performance metrics including sensitivity, F measure, precision, sensitivity, recall and accuracy.
The proposed method was compared with the conventional techniques such as an RNN and deep
neural network (DNN) and RNN–genetic algorithm (RNN-GA), respectively.

Keywords: intrusion detection; recurrent neural network; deep learning model; filter-based ensemble
feature selection; cloud computing

1. Introduction

Due to advancements in discrete derivation, many users share similar cloud assets,
and the use of the cloud grows as it begins with a distributed ledger. Network traffic may
rise as harmful network attacks become more sophisticated and widespread. The primary
benefit of distributed computing, which enables efforts to spend investment funds by using
benefits on demand through the Internet, is that it enjoys tremendous benefits such as
adaptability, speed flexibility and estimated administrations [1]. The cloud’s resources and
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data correspondence are extremely difficult operations as the number of intrusions steadily
rises [2].

As shown in Figure 1, numerous security breaches have recently been discovered in the
virtual enterprise layer of distributed computing. To reveal attacks on the cloud foundation,
various intrusion detection architecture devices and methods are accessed at the cloud
stage in the current scenario. Inadequacy and waste are the consequences of conventional
or existing IDS [3]. In most cases, IDS works with the firewall to create a mandatory security
setup. A conceptual approach to enhancing the architecture of distributed computing’s
interrupt detection has emerged as a result of these considerations. It is able to monitor
system activity and actually detect network interference [4].
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This exploration work brings together security attacks related to the public cloud
climate and proposed arrangements and ideas in the network [5]. The literature reveals the
amount of incalculable insurance against network attacks. Despite the impressive efforts of
conservation experts in the last twenty years, the issue of structural conservation [6] remains
untested. Concerns about the dependability of information assurance components in this
environment have been highlighted in light of attacks on distributed system administrations
and frameworks. The system formulated in this review [7,8] (cloud computing, attack, and
intrusion authentication: CCAID) is aimed to work on the presentation of an intrusion
identification framework that works in distributed computing conditions. Extraordinary
advances in correspondence, distributed computing and IoT have opened up fundamental
difficulties in security [9]. With these turns of events, cyberattacks are developing extra
quickly because current security components do not provide effective arrangements. For a
variety of security applications, such as intrusion recognition, several artificial intelligence
(AI)-based solutions have been presented [10].

The main contributions and methodology of the research are as follows:

â Development of FEFS and DLM for intrusion detection in the cloud computing
environment. Initially, the worldwide datasets of KDDCup-99 and NSL-KDD are
used to gather the incursion data.

â The data are utilized for validation of the proposed methodology. The collected
database is utilized for feature selection to empower the intrusion prediction. The
FEFS is a combination of three feature extraction processes: filter, wrapper and
embedded algorithms. Based on the above feature extraction process, the essential
features are selected for enabling the training process in the DLM.

â Finally, the classifier receives the chosen features. The DLM is a combination of RNN
and TDO. In the RNN, the optimal weighting parameter is selected with the assistance
of the TDO.
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The additional material for the article is organized as follows. A detailed explanation
of the literature review portion is provided in Section 2. Section 3 provides an explanation
of the entire process model. In Section 4, the projected technique’s results are described.
Section 5 of the paper contains a summary.

2. Literature Review

Various techniques are developed by researchers for optimal intrusion detection
in cloud computing environments. A few techniques are analyzed and presented in
this section.

Xuan-Ha Nguyen et al. [11] have introduced a real guard, a DNN-based network
intrusion detection framework (NIDS) that worked directly at adjacent gates to protect
IoT gadgets within the enterprise. The strength of the concept was its ability, with a little
computational know-how, to precisely and sequentially identify various digital threats.
This was accomplished through a lightweight organ extraction component and a productive
attack discovery model controlled by deep brain systems.

Adeel Abbas et al. [12] have introduced an ensemble-based intrusion detection model
to recognize retaliatory exercises based on predefined attack designs. In the proposed
model, a decision tree, naïve Bayes, and logistic regression are informed by offering a ballot
classifier in the context of distinguishing the model’s exhibition from some current major
state-of-the-art techniques. Additionally, the CICIDS2017 dataset was used to examine the
suitability of the suggested model. The results represent a huge betterment in precision
compared to existing models for parallel and multi-class characterization situations.

Wai Weng Lo et al. [13] have introduced an E-GraphSAGE that allows graph neural
networks (GNNs) to acquire some the edge attributes of a graph and topological data for
network interference identification in IoT enterprises. For better information, the proposal
was the first efficient, effective and widely evaluated approach to apply GNNs to the
problem of enterprise intrusion recognition for IoT using stream-based information.

Vinayakumar Ravi et al. [14] have proposed a deep learning-based interval model for
network attack location and corporate attack characterization. In addition to using kernel-
based principal component analysis (KPCA), which includes a method to identify the best
features, the suggested model integrates components from layers of discontinuous models.
The best parts of the intermediate models were eventually integrated, and an ensemble
meta-classifier was used to finish the characterization. When compared to current methods
and widely used AI and deep learning models, experimental research and findings of the
proposed technique on multiple benchmark network interference datasets demonstrate
that it outperformed them.

Sumegh Tharewal et al. [15] have introduced a near-end process optimization strategy
for the industrial Internet of Things of an intrusion detection system in light of a deep
reinforcement learning (DRL) computation. This technique integrates the sensing capability
of deep learning to effectively detect various types of cyberattacks on the industrial Internet.
In this system, the DRL-IDS interference identification framework is based on a component
determination technique from the LightGPM perspective, which selects the most attractive
list of capabilities from modern Internet of Things information. When deep learning is
matched with computations, it differentiates between interruptions.

Pham et al. [16] gave a wrapper FS method that used gain ratio and naïve Bayes
to find relevant features. Utilizing two optimization techniques, boosting, and bagging
the ensemble, the -e technique, which utilized tree-based approaches as the fundamental
classifier, was evaluated. Using the NSL-KDD dataset, the model’s classification precision
and false alarm (false positive) rate were evaluated. The intrusion model for ML recognition
was also developed collaboratively.

Besharati [17] suggested using a host-based intrusion detection system (IDS) for a CC
setup that used logistic regression to eliminate variables that did not help find attacks. The
ML intrusion detection model used DT, linear discriminant analysis and an ANN as part
of ensemble bagging. The F-score, which is the harmonic mean of precision and recall,
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classification accuracy, precision (the ratio of the total number of harmful network traffic
packets successfully “detected” to the number of harmful network traffic packets accurately
“detected” as malignant) and classification accuracy were used to validate it.

Belouch [18] made an effort to improve the FS mechanism by selecting various sets of
characteristics based on the type of traffic or attack [18]. To find characteristics unrelated to
the desired outcome, the FS method employed an evolutionary search strategy. The two-
stage classification procedure was implemented by the ML intrusion detection model using
the reduced error pruning tree (REPTree) approach. On the NSL-KDD and UNSW-NB15
datasets, the -e model was evaluated and approved based on classification accuracy as a
performance indicator.

According to Vijayanand et al. [19], whereas the FS utilized a genetic algorithm, the ML
intrusion detection system made use of multiple SVM classifiers. Identification accuracy,
false positive rate and negative predictive value (for each kind of attack) were the -e
performance assessment criteria. On the ADFA-LD and CICIDS2017 datasets, the -e models
were compared to each other.

According to Aljawarneh et al. [20], network output and a variety of classifiers, such as
naïve Bayes, J48, AdaBoost and RT, were also suggested as ways to enhance the FS method.
It was decided to go with the classification result with the highest accuracy. The -e ML
intrusion detection system was trained and validated using the NSL-KDD dataset.

A wrapper and filter were also utilized by Moustafa and Slay [21]. Using a mining
technique, the two datasets (NS KDD and UNSW-NB15) were compressed to produce
central points for input variables. Unspoken assumption (EM) grouping, computed relapse
and naïve Bayes were the classifications that were communicated in the organization IDS.
Evaluation measurements were taken using order accushocking and deceive rate, which is
the mathematical normal of the false positive rate and false negative rate.

According to Mogal et al. [22], attributes that were insignificant in light of the false
alarm rate were eliminated by making use of the apriori method and the center points of
attribute values. Naïve Bayes and logistic regression served as classifiers in the ML model.
Using the KDDCup-99 and UNSW-NB15 datasets, classification accuracy and processing
time were used as metrics to evaluate the IDS recognition engine.

3. Proposed Intrusion Detection Model

Cloud computing offers customers a novel and maybe simpler way to manage, save
and access their information. Perfect resource allocation can be key for cloud computing
design to empower the condition of efficient computing origin, affordability and scalability
on demand with a quality of service (QoS) assurance. As assaults become more sophisti-
cated in the cloud computing environment, it can be crucial to manage their prevention and
to strengthen the safety of the data that are kept and transferred there. Cloud management
may be disturbed, and data loss may occur as a result of different attacks such as distributed
denial of service (DDoS) and denial of service (DoS). As a result, in this work, FEFS and
DLM are built for intrusion detection in the cloud computing environment. The whole
design of the intrusion detection technique is depicted in Figure 2.
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3.1. Model Training and Testing Dataset

This section explains how to distinguish training and testing datasets for the examina-
tion using the database’s stored data. The database is initially gathered from the data source.
The wrapper, filter, and embedded technique of FEFS are then taken into consideration
when selecting the essential features. In the cloud computing setting, the classifier receives
the selected features for intrusion detection. The intruder is identified, and the performance
is evaluated on the basis of the training and testing phase. The following section provides
a brief explanation of the approach.

3.2. Dataset Description

This intrusion detection model was utilized with datasets of KDDCup-99 [23] and NSL-
KDD [24] that were collected from the New Brunswick University public repository. These
data were utilized for training and testing of intrusion detection in a cloud computing
environment. The various parameters of each feature that define the characteristics of
network packets are contained in this database. Numerous features are shown as numerical
parameters, while three parameters are shown as non-numeric ones.

It has been extremely challenging to acquire assessment datasets due to the consid-
erable effort security professionals have put into developing data security measures for
real-world network settings and computer systems, such as encryption, data anonymization
and various data privacy regulations. Consequently, it is difficult to obtain actual network
traffic and computer system data. However, in recent decades, a variety of simulated
datasets have been developed to address the aforementioned issues. Nearly all of these
datasets replicate the most important aspects of actual network traffic.

As a result, by replacing the qualitative feature thread parameters with numerical
parameters, the input dataset is improved. In order to select all of the features, the feature
selection method, which is applicable to network traffic in cloud environments, used five
of them from the KDDCup-99 and NSL-KDD databases. This database contains 148517
packets of information labeled as attack packets or normal packets. The four types of
well-known attack packets are as follows:

â Probe attack: In this category of outbreak, host ports can be checked for exposed docks
that can be secondhand to identify probable vulnerabilities in the cloud computing
organization.

â Denial of service attack: A type of assault that causes resources or services produced
by cloud computing system users to become unavailable.

â User to root attack: An attempt to strengthen the base account hijacking those results
from a hijacked user explanation.

â Remote to local attack (R2L): A system package is sent to a system to target a user
explanation and gain access to the computer’s contents.
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Some of the features of KDDCup-99 and NSL-KDD are given in Table 1.

Table 1. Characteristics of the database.

Feature Count Feature Name Description Type

Feature 1 Hot The total number of the containers
which are hot indicators Numeric

Feature 2 Urgent The quantity of the urgent packages as
a whole Numeric

Feature 3 Incorrect break The total number of incorrect
connections’ fragments Numeric

Feature 4 Land To validate the connection as from a
similar host or not Numeric

Feature 5 Dst-bytes The number of information bytes sent
from the source to the destination Numeric

Feature 6 Src-bytes The number of bytes of data
transmitted from source to destination Numeric

Feature 7 Flag The error or normal status of the
connection String

Feature 8 Service The kind of network service at the
destination String

Feature 9 Type of the
protocol A packet’s leading connection protocol String

Feature 10 Duration The length of the connection
procedure Numeric

3.3. Feature Extraction

Feature selection computes the information that will be extracted from the network
structure for validating the intrusion discovery classically. The major goal of this research
was to improve the intrusion detection model’s overall presentation by managing an ideal
combination of attributes that effectively influence activity in the original packet flow. To
reduce information redundancy and improve performance, feature selection techniques that
are semi-supervised, unsupervised and supervised were used. The embedded, wrapper
and filter techniques are these feature selection methods. Wrapper and filter techniques
that are learned from network data were used in the intrusion detection model with
a combination of various methods for selecting features that may have an impact on
the accuracy of predicting entities, and a useful set of relevant features that are mostly
connected to the information in the target output. The combined feature selection technique,
which consists of an embedded technique, a wrapper and a filter, was developed in this
study to identify the effective features for identifying an attack in the cloud computing
system. The correlation between all characteristics and classes was calculated by a subset
evaluator. During feature evaluation, the attribute–class association with the highest
correlation is more likely to be chosen. The genetic algorithm determines the significance
of each property using this feature evaluation. The rule evaluation stage returns the feature
subset with the fewest features if two-element subsets share the same wellness equation.
Finally, the model is generated, and attacks are classified using the selected characteristics.

3.3.1. Embedded Algorithms

The ensemble algorithm of AdaBoost [24] was utilized as the feature selection tech-
nique for choosing the essential features. This feature extraction technique empowers the
classifier training behaviors. To obtain the final results, at the conclusion of each cycle, the
boosting framework incorporates the output of inferior classifiers into a stacked total.
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3.3.2. Wrapper

In the wrapper method, the random forest algorithm (RF) [25] is a technique which is
designed by a combination of outcomes of a large number of decision trees learned with
various training clusters. This is developed based on various sub learning clusters that can
be generated. In the expansion of the trees, the characteristics can be chosen at random.
In the technique, every node can be divided into branches with the consideration of the
optimal parameter among the randomly chosen parameter from every node. The derived
trees can be achieved by randomly chosen variables. The features are chosen from the input
data using the RF algorithm.

3.3.3. Filter

A filer information gain ratio [26] that takes into account the entropy of a particular
feature of a session can be used to complete the feature selection. Physics may be used
to calculate entropy, which is a measure of how disorderly a parameter is. Entropy is a
low-valued parameter for describing features that belong to a particular class. When charac-
teristics link to more than one class, the entropy parameter is larger. Quantifying the value
of each feature in identifying the session is made easier with the help of information gain.

3.3.4. Parameter Derivation

The entropy parameter for each feature is taken into account when it is computed.
Information gain is calculated as the reduction in the characteristics of the complete pair
of impure data items weighted regular entropy. As a result, we were able to determine
which characteristics with high data gain parameters are the most essential for detecting
assembly data. A parameter that can be used to evaluate a feature’s relevance in relation
to other characteristics in a dataset is the information gain ratio (IGR). IGR was used as a
parameter rather than data gain in this study due to the tendency of information gain to
favor features with a large number of distinct parameters.

IGR (EA, F) =
GAIN(EA, F)

SPLIT INFO (EA, F)
(1)

Here, F can be defined as the specific features and EA is defined as the dataset feature
information. The feature selection process is formulated as follows:

GAIN (EA, F) = Entropy (EA)− ∑
Ve Parameters (F)

|cEA, V|
|EA|∗Entropy

(EA) (2)

E, V =

{
AεE

Value(A, F)

}
= V (3)

The entropy formula based on Shannon’s entropy is presented as follows:

EX = −∑ PI Log2(PI) (4)

Split in f o (EA, F) = −|EA, F||EX|VεValues (F)Log2|EA, F||EA| (5)

Based on this formulation, the features are selected from the input data.

3.4. Deep Learning Neural Network (DNN)

For the purpose of identifying an intruder from the cloud computing environment,
the selected features are sent to the DNN. RNN and TDO are combined into the DNN. With
the help of the TDO, the training process in the RNN is improved. By choosing the best
weighting parameter for the network structure in the RNN, the training process is made
easier. The suggested classifier is explained in detail in the following section.

An indicator’s calculation relies on a constant known as an “input.” It is possible for
indicators to have one, multiple or none at all. A distinct name is given to each input.
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There are true/false, string and numerical input options. To alter the indicators for each
classification, the input values are altered. The fact that fundamental modifications to the
study’s logic could be made without having to update the study’s actual code is one of
the primary advantages of using inputs. Input values are used by most indicators, but
not all of them; please refer to default studies’ inputs for additional details. For multiple
classifiers, the inputs can be changed before or after the indicator is installed. Figure 3
shows the architecture of deep learning neural network.
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3.4.1. Recurrent Neural Network

Recurrent neural networks, sometimes known as RNNs [27], are a class of neural
network used for processing sequence data. Sequence information is described as a close
relationship between before and after information that might show the degree of a phe-
nomenon or entity. An RNN has three layers: input, output and hidden. From these
layers, the concealed layer performs the effective operation; it is an output layer of the
final second and does not contain the output layer at the same time. The RNN processes
the sequence information, which is presented in the memory and applied to the output
and data information characteristics due to the RNN’s depth provide the output and input
process, defined as a depth network. The model development of the RNN is presented in
the below figures.

Conventional neural networks generate connections only among layers and RNNs
connect layers and neurons. Here, the hidden layer is considered for memory storage
purposes in the complete network and the RNN can be unfolded, which is utilized for
supervised classification training of the recurrent neural network, to develop a directional
neural network which saves the previous data and applies them, distinguishing it from
conventional feedforward neural networks. For conventional neural networks, learning of
samples is highly efficient, with high credibility and more realistic processing of complex
feature relationships. RNNs utilize the reverse propagation technique to compute the
forward propagation technique, related to their order and time of network propagation.
Moreover, in general problem solving, an RNN is not an efficient method because it has
limited capability and the hidden layer does not manage the complete model. To solve
these problems, in the RNN, the heaviness is improved with the deliberation of TDO. This
deep recurrent neural network structure is presented in the below figure.

The proposed RNN has the ability to encode a lot of previous data with the operation
of temporal space. In the training process of the RNN, the temporal backpropagation
technique is trained to manage the recurrent layer. The error values are generated with
the backpropagation technique and are reduced with the assistance of the TDO and this
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method propagates in two different ways for the previous period: it transmits and the
former layer is forwarded to the current layer [28].

The input layer is connected with the hidden layer which is presented as follows:

SJ(T) = F
(

NetJ(T)
)

(6)

SJ(T) = F
(

NetJ(T)
)

(7)

The hidden layer is connected with the output layer, which is presented as follows:

Yk(T) = G(NetK(T)) (8)

NetK(T) =
M

∑
J

SJ(T)WKJ + BK (9)

Here, BK and BJ can be defined as deviations, G and F can be defined as the output and
hidden layer commencement function. The initiation meaning empowers the non-linearity
of the complete neural network that empowers the expression capability.

Choosing the Loss and Activation Function

The loss function is used in this article as the network’s learning sum function and is
shown as follows:

C =
1
2

n

∑
p

0

∑
k
(DPK −YPK)

2 (10)

The Fitness Function for Training the Network

A neural system was created with more than two layers to compute a large amount
of historical data that can be transmitted with an error parameter. The error function is
therefore defined as follows:

δ = − ∂C
∂(Net)

(11)

δPJ(T − 1) =
M

∑
H

δPH(T)UHI F‘(δPJ(T − 1)
)

(12)

Here, J can be defined as the hidden layer node index with the period of time T − 1,
H is the hidden layer node index with the period of time T.

Weight Matrix Update Computation

In the analysis, the index P of the learning sample cannot be combined. The error
parameter of output layer can be presented as follows:

Eo(T) = D(T)−Y(T) (13)

The weight of output layer is presented as follows:

w(T + 1) = w(T) + ηS(T)Eo(T)t (14)

The error function of the output layer to the hidden layer is presented as follows:

EH(T) = DH
(
Eo(T)tV, T

)
(15)

The equation below is used to find the error vector:

dHJ(X, T) = XF‘(NetJ
)

(16)
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The weight matrix can be computed based on the below equation:

V(T + 1) = V(T) + ηX(T)H(T)t (17)

The cyclic weight matrix can be computed based on the below equation:

U(T + 1) = U(T) + ηS(T)H(T)t (18)

The research procedure is utilized to predict intruders, the input for the previous user
information and output is a prediction of intruders from the system. In the RNN, the mass
structure is optimized with the deliberation of TDO. A detailed explanation of the TDO is
presented in the below section.

3.4.2. Tasmanian Devil Optimization

In the RNN, weight optimization is achieved with the assistance of the TDO algorithm.
A brief explanation of the TDO is given in this section. The Tasmanian devil is a marsupial,
carnivorous member of the Dasyuridae family that dwells in Tasmania, an island state.
It is an opportunistic mammal that hunts for prey and eats carrion. It has two feeding
strategies. The algorithm computes carrion and feeds on it in the initial technique. Using
its second hunting and feeding strategy, it attacks its target [29–31]. In the section below,
the mathematical modeling of the feeding method is described.

In this section, the procedure and process of the natural characteristics of Tasmanian
devil feeding are presented. The optimization procedure can attain an efficient answer for
an optimization problem. The devil can gain access to food due to this behavior, method
and personality. It is also an optimization technique with the goal of computing the most
effective solution, and it is a nutritional procedure with the possibility of computing the
food source. The exploration and exploitation of the problem-solving space as well as
the management of the best solution are two key objectives of the optimization process.
It defines the exploitation index in the process to find the search space’s most effective
position. The devil search features are used in computing food sources in diverse spaces.
Additionally, the pursuit behavior between the prey and the devil in a constrained area can
be equivalent to the exploiting indices in geotargeting with the purpose of convergence to
the ideal response. This outlines which mathematical modeling of the devil technique to
produce the food supply can be susceptible to creating an optimizer to achieve effective
answers to optimization problems.

Stage 1: Initialization

A population approach could be used with the suggested TDO. The first generation of
the search agent may be generated at random based on the issue’s requirements. Members
of TDO’s population manage candidate parameters for issue variables associated with their
location in the search location. They are problem solvers who are searching for solutions to
issues. Therefore, each individual within a population may be represented mathematically
as a vector with a parameter count equal to the number of issue variables. On the basis of
the following matrix, the set of TDO members is lastly designed.

S =


S1
· · ·
SI
· · ·
SN


N×M

=


S1,1 · · · S1,J · · · S1,M
· · · · · · · · · · · · · · ·
SI,1 · · · S1,J · · · SI,M
· · · · · · · · · · · · · · ·

SN,1 · · · SN,J · · · SN,M


N×M

(19)

where M can be described as a count of variables of specified issues, N can be described
as the count of searching devils, S1,J can be defined as the candidate parameter, SI can
be defined as the candidate solution and S can be defined as the population of devils.
The primary goal of the problem is calculated by putting each candidate solution into
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the parameters of the objective function’s variables. Using the vector that is presented as
follows, the parameters for the objective function [24] are designed in the results:

f =


f1

. . .
f I

. . .
fN


N×1

=


f (S1)

. . .
f (SI)
. . .

f (SN)


N×1

(20)

Here, f I can be defined as the parameter of the objective function achieved through the
candidate solution, f can be defined as the vector of parameters of the objective function.
In order for the objective function to display the calibre of the potential solutions, the
parameters must first be validated. Considered to be the best member of the population,
the candidate solution enhances the computation of the objective function’s ideal parameter.
In each iteration, the population’s best individual can be improved in relation to the best
parameters. Two methods of Tasmanian devil feeding can be created for the population
upgrading process in TDO. For many devils, feeding on carrion or hunting prey may be
necessary. In TDO, the probability of selecting either of these techniques is equivalent to
50%. Related to this theory, in every iteration of TDO, every devil can be upgraded based
on two techniques.

Method 1: Exploration stage (eating carrion as food)
The devil chooses to use a hunting technique to feed on carrion in the search area.

Different kinds of animals live near a devil that hunts many prey, therefore it is unable
to eat all prey. Following that, this animal still succeeds in obtaining adequate food from
its target. Due to this, the devil decides to attack carrion. In order to calculate carrion, a
devil must scan the area of the habitat, using features similar to those used in a technique
search to solve problems. This method typically strengthens TDO exploration’s capacity
for sifting through many search locations to identify the typical ideal spot. The technique
for consuming carcasses is currently being developed. Each devil in the TDO design has a
spot that can be offered as a carrion space for any remaining population members in the
search location. Random selection of the simulation is presented as follows:

DI = SK, I = 1, 2, . . . , N, Kε{1, 2, . . . , N|K 6= I} (21)

Here, DI is carrion chosen by the devil.
A new location for the devil can be computed in the search location based on the

selected carrion. The optimal objective parameter for the carrion determines whether the
devil will migrate toward the carrion or away from it in this strategy. Simulating the devil’s
movement style is possible. After calculating the devil’s new location in the final stage of
the first technique, the location can be accepted, and the goal function’s parameter can be
set to be as optimal as possible there. The updating process is designed and presented as
follows:

SNEW, T1
I,J =

{
SI,J + U.

(
DI,J − I.SI,J

)
fSI < f I ;

SI,J + U.
(

DI,J − I.SI,J
)

Otherwise
(22)

SI =

{
SNEW, T1

I,J f NEW,T1
I < f I ;

SI Otherwise
(23)

Here, I can be defined as a random variable that is 1 or 2, U can be defined as the
random variable in interval [0, 1], fSI can be defined as the objective function parameter
of the chosen carrion, f NEW,T1

I is the objective function structure, SNEW, T1
I,J can be defined

as the parameter of the variable, SNEW, T1
I can be defined as the novel status of the devil

related to the initial technique.
Method 2: Exploitation technique (eating via consuming prey)
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The devil’s second strategy is to chase and consume prey. There are two phases to
the devil’s attack qualities. It selects the target and assaults it during the early phase after
scanning the area. The second stage comes next, where after controlling the victim, it
attacks it to kill it in addition to the original devouring. Designing the beginning stage is
comparable to modeling the starting procedure of the carcass that is selected. As a result,
the prey is chosen in the early phase and attacked. In the second method, the devil’s
updating procedure, the position of the surviving population members can be taken as the
position of the prey. The following is how the prey selection process is portrayed.

PI = SK, I = 1, 2, . . . , N, Kε{1, 2, . . . , N|K 6= I} (24)

Here, PI is the prey chosen by the devil.
After computing the prey location, a novel location can be computed for the devil. The

devil advances toward the chosen prey while computing this unique position, and away
from it if the objective function parameter is different. The new location computed for the
devil changes the last location and it enhances the parameter of the final function. This last
phase of the second technique is designed as follows:

SNEW, T2
I,J =

{
SI,J + U.

(
DI,J − I.SI,J

)
fPI < f I ;

SI,J + U.
(

DI,J − I.SI,J
)

Otherwise
(25)

SI =

{
SNEW, T2

I,J f NEW,T2
I < f I ;

SI Otherwise
(26)

Here, fPI is the objective function parameter of the chosen carrion, f NEW,T1
I is the

objective function limitation, SNEW, T1
I,J can be defined as the parameter of the variable,

SNEW, T1
I can be defined as the novel status of the devil related to the initial technique.

The additional phase and the replication of pursuing prey are the key differences
between this strategy and the initial one. The pursuit of prey close to the attack site may
be comparable to the local search at the search site. The TDO’s capacity to converge on
the best candidate solutions is typically designed with these devil features. To achieve this
chasing procedure, the devil manages the prey and is present in the attack place. In this
phase, devil location can be defined as the neighborhood center here, and the prey chasing
procedure takes place. The neighborhood radius presents the periods in which the devil
manages the prey that is computed. Hence, a novel location based on the chasing procedure
in the neighborhood can be computed for the devil. The novel computed location can be
acceptable to the devil, and it is given a better parameter for the objective function than its
last location. The location updating process is simulated for the devil as follows:

U = 0.01
(

1− T
t

)
(27)

SNEW
I,J = SI,J + (2U − 1).u.SI,J (28)

SI =

{
SNEW

I f NEW
I < f I

SI otherwise
(29)

Here, f NEW
I is the impartial meaning parameter, SNEW

I,J is a parameter, SNEW
I can

be defined as the new status of the devil in the neighborhood, t can be defined as the
maximum amount of iterations, T can be defined as the iteration number and U can be
defined as the neighborhood region of the constituent of operation position. Algorithm 1 is
the pseudocode of the Tasmanian Devil Optimization (TDO) which in-volves two different
methods, one is Exploration phase, and the other is Exploitation state.
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Algorithm 1: Pseudocode of TDO

Initiate TDO
Input the optimization issue data
Initiate the population’s size and the amount of iterations
Computation of the objective function and setting up the devil position
For I = 1:N
For T = 1:t
Probability<0.5, If probability = RAND
Method 1: Exploration phase
Choose carrion
Compute new status of devil
Update the devil
Else
Method 2: Exploitation state
Phase 1: Choosing a target and assaulting
Choose the devil’s prey
Compute new status
Update the devil
Phase 2: Prey chasing
Update neighborhood radius
Compute new status
Update the devil
End if
End for I = 1:N
Store the optimal solution
End for T = 1:t
Save the optimal solution achieved by TDO
End TDO

Computational Complexity

This section validates the computational simplicity of TDO. This initialization is
equivalent to o(n.M). Here, M can be defined as the number of problem variables, n can be
defined as the number of devils. The RDO contains an issue-solving procedure with the
number of iterations t. The computational complexity of the process of updating population
variables on their route to the prey or carcass is similar to o(n.M.t). The second technique’s
prey chasing process has computing complexity that is similar to o(Nx2.M.t). Here, Nx2 is
defined as the number of devils who have utilized the 2nd feeding technique. The total
computational complexity of TDO is therefore equal to o((n.M)((1 + t) + (t.Nx2))).

Genetic Algorithm for Optimizing Recurrent Neural Network

Recent efforts have focused on outsourcing machine learning, from Bayesian statistics
through feature selection and optimizer tuning. Several programs are available to let users
effectively run hundreds of trials. Deep neural network design, similarly, is frequently
constructed by professionals by trial and error. This approach, although producing cutting-
edge models in a number of disciplines, is night before going to bed. Recent developments
in processing capacity have enabled scientists to employ supervised learning and aspects
to search for optimal neural networks automatically. We look at how a genetic algorithm
(GA) may be used to determine the appropriate window size and number of units and a
recurrent neural network with long short-term memory (LSTM) [32,33]. For this goal, we
train and evaluate time series prediction models. The GA is implemented using DEAP,
a Python module. The methodology’s major purpose is to familiarize the reader with
utilizing a GA to select relevant ideal settings; hence, just two factors are explored. In
addition, practical and theoretical RNN experience is assumed.
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4. Performance Evaluation

The effectiveness of the suggested strategy is assessed and supported in this section
using the findings from the simulation. A couple of performance measures, including F
measure, specificity, sensitivity, and accuracy, can be used to demonstrate the predicted
technique’s capacity to detect intrusions in the cloud computing environment. In MATLAB,
effective assessing of the proposed technique is put into practice. The projected method is
put up against the traditional methods, such as RNN, DNN and RNN-GA, in turn. With
FEFS and DLM taken into account, the proposed technique is created for identification of
intrusion detection in the cloud computing environment. RNN with TDO was created in
the DLM for effective intrusion detection. With the help of the TDO, the weight param-
eter of the RNN is chosen. In the cloud computing environment, the intrusion is finally
detected, reducing data theft, and boosting system security. Table 2 lists the technique’s
implementation parameters.

Table 2. Implementation variables.

S. No Methods Description Parameters

1

Recurrent neural network

Learning rate 0.001

2 Minibatch size 10

3 Loss function Tanh

4 Type of neurons Bidirectional LSTM

5 Learning rate 0.01

6 Activation function
output layer Softmax

7

Tasmanian devil optimization

Number of iterations 100

8 Number of populations 50

9 Constant number 0.5

10 Convergence parameter 2

11 Upper limit 10

12 Lower limit −10

To validate the technique, a confusion matrix is utilized in the system. Two datasets
are considered for checking the performance of the system: the KDDCup-99 database and
NSL-KDD dataset. This structure with a confusion matrix is given in Figures 4 and 5.

The proposed feature selection and ensemble method’s cross-validation performance
are depicted by the confusion matrices in Figures 6 and 7. The performance is described in
detail in the following section. When compared to other approaches, the findings show
that the proposed method significantly improved performance. The table summarizes
the findings of a comparison of datasets with full features and other feature selection
measures. The suggested ensemble approach outperformed all other independent FS
measures, according to the findings, with a high accuracy rate of 0.995, a detection rate of
0.975 and a lower false alarm rate.
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The comparison analysis of accuracy is given in Figure 8. The proposed procedure
was compared with the traditional practices such as RNN-GA, RNN and DNN. The
proposed technique achieved 0.95% accuracy in intrusion detection in the cloud computing
environment. Similarly, the RNN-GA, RNN and DNN achieved 0.92%, 0.89% and 0.87%
accuracy in intrusion detection of cloud computing. The proposed system achieved the best
parameters of accuracy. The comparison analysis of the F measure is given in Figure 9. The
proposed technique was compared with the traditional techniques such as RNN-GA, RNN
and DNN. The proposed technique achieved 0.92% F measure in intrusion detection in the
cloud computing environment. Similarly, the RNN-GA, RNN and DNN achieved 0.91%,
0.88% and 0.85% F measure in intrusion detection of cloud computing. The proposed
technique achieved the best parameters of the F measure. The comparison analysis of
precision is given in Figure 10. The proposed technique achieved 0.92% precision in
intrusion detection in the cloud computing environment. Similarly, the RNN-GA, RNN and
DNN achieved 0.89%, 0.89% and 0.84% precision in intrusion detection of cloud computing.
The proposed technique achieved the best parameters of precision.
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Table 3 compares the proposed combination of a recurrent neural network (RNN) and
Tasmanian devil optimization (TDO) to that of the current DNN, RNN and RNN-GA.

Table 3. Performance metrics comparison.

Accuracy F Measure Precision Recall Sensitivity Specificity

DNN 0.87 0.85 0.84 0.83 0.81 0.82

RNN 0.89 0.88 0.89 0.88 0.85 0.87

RNN-GA 0.92 0.91 0.89 0.91 0.90 0.92

Proposed 0.95 0.92 0.92 0.93 0.91 0.93

Figure 11 shows the comparison analysis of recall. The proposed technique was
compared with the traditional techniques such as RNN-GA, RNN and DNN. The proposed
technique achieved 0.93% recall in intrusion detection in the cloud computing environment.
Similarly, the RNN-GA, RNN and DNN achieved 0.91%, 0.88% and 0.83% recall in intrusion
detection of cloud computing. The proposed technique achieved the best parameters
of recall.
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Figure 12 shows the comparison analysis of sensitivity. The proposed technique was
compared with the traditional techniques such as RNN-GA, RNN and DNN, which showed
0.90%, 0.85% and 0.81% sensitivity in intrusion detection of cloud computing. The proposed
technique achieved the best parameters of sensitivity.

Figure 13 shows the comparison analysis of specificity. The proposed technique
achieved 0.93% specificity in intrusion detection in the cloud computing environment.
Similarly, the RNN-GA, RNN and DNN achieved 0.92%, 0.87% and 0.83% sensitivity
in intrusion detection of cloud computing. The proposed technique achieved the best
parameters of specificity.

Results of comparing the chosen combination rules’ accuracy to the assaults in the
NSL-KDD dataset were calculated as in Table 4. For instance, all the combination rules
performed well on the benign samples. The average probability, which was 0.95% for
routine situations and 0.94% for probe assaults, was used to indicate the highest level of
performance accuracy. However, the other attacks, especially U2R, did not have the same
remarkable performance accuracy. This may be due to the low number of instances of this
attack in the dataset.



Electronics 2023, 12, 556 19 of 21

Electronics 2023, 12, x FOR PEER REVIEW  20  of  23 
 

 

Figure 11 shows the comparison analysis of recall. The proposed technique was com‐

pared with the traditional techniques such as RNN‐GA, RNN and DNN. The proposed 

technique achieved 0.93% recall in intrusion detection in the cloud computing environ‐

ment. Similarly, the RNN‐GA, RNN and DNN achieved 0.91%, 0.88% and 0.83% recall in 

intrusion detection of cloud computing. The proposed  technique achieved  the best pa‐

rameters of recall. 

 

Figure 12. Sensitivity performance of confusion matrix. 

Figure 12 shows the comparison analysis of sensitivity. The proposed technique was compared with 

the traditional techniques such as RNN‐GA, RNN and DNN, which showed 0.90%, 0.85% and 0.81% 

sensitivity  in  intrusion detection of cloud computing. The proposed  technique achieved  the best 

parameters of sensitivity. 

 

Figure 13. Specificity performance of confusion matrix. 

Figure  13  shows  the  comparison  analysis  of  specificity.  The  proposed  technique 

achieved 0.93% specificity  in  intrusion detection  in  the cloud computing environment. 

Similarly, the RNN‐GA, RNN and DNN achieved 0.92%, 0.87% and 0.83% sensitivity in 

Figure 12. Sensitivity performance of confusion matrix.

Electronics 2023, 12, x FOR PEER REVIEW  20  of  23 
 

 

Figure 11 shows the comparison analysis of recall. The proposed technique was com‐

pared with the traditional techniques such as RNN‐GA, RNN and DNN. The proposed 

technique achieved 0.93% recall in intrusion detection in the cloud computing environ‐

ment. Similarly, the RNN‐GA, RNN and DNN achieved 0.91%, 0.88% and 0.83% recall in 

intrusion detection of cloud computing. The proposed  technique achieved  the best pa‐

rameters of recall. 

 

Figure 12. Sensitivity performance of confusion matrix. 

Figure 12 shows the comparison analysis of sensitivity. The proposed technique was compared with 

the traditional techniques such as RNN‐GA, RNN and DNN, which showed 0.90%, 0.85% and 0.81% 

sensitivity  in  intrusion detection of cloud computing. The proposed  technique achieved  the best 

parameters of sensitivity. 

 

Figure 13. Specificity performance of confusion matrix. 

Figure  13  shows  the  comparison  analysis  of  specificity.  The  proposed  technique 

achieved 0.93% specificity  in  intrusion detection  in  the cloud computing environment. 

Similarly, the RNN‐GA, RNN and DNN achieved 0.92%, 0.87% and 0.83% sensitivity in 

Figure 13. Specificity performance of confusion matrix.

Table 4. Accuracy comparison of different combination rules based on the NSL-KDD test dataset.

Attack Type Average of
Probabilities

Majority
Voting

Product of
Probability

Minimum
Probability

Maximum
Probability

Normal 0.95 0.95 0.93 0.92 0.93

DoS 0.94 0.94 0.92 0.91 0.92

Probe 0.94 0.92 0.91 0.89 0.87

R2L 0.93 0.91 0.89 0.87 0.84

U2R 0.69 0.87 0.86 0.76 0.77

Despite the limited number of R2L and U2R instances available, the majority vot-
ing rule unexpectedly outperforms the average probabilities on the NSL-KDD dataset.
It has outstanding performance accuracy of 0.95%, 0.92% and 0.86% for DoS, R2L and
U2R, respectively. Lastly, of all the combination rules, the U2R and R2L attacks had the
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lowest accuracy ratings. We established a convincing connection between this and the few
instances of these attacks that were included in the aforementioned dataset. Lastly, in con-
trast to the selected studies and numerous other approaches, by achieving greater overall
accuracy, our proposed method has outperformed the other chosen methods. Therefore,
it is reasonable to assert that the proposed method outperforms several of the systems
used for this assessment in terms of performance accuracy, precision, F measure, recall,
sensitivity, and specificity.

5. Conclusions

We developed FEFS and DLM for intrusion detection in a cloud computing environ-
ment. Initially, the worldwide datasets of KDDCup-99 and NSL-KDD were used to gather
the incursion data. The data were utilized for validation of the proposed methodology. The
collected database was utilized for feature selection to empower the intrusion prediction.
The main aim of the technology is to prevent cyberattacks that may become more frequent
since current security measures might not provide the best answers. The FEFS is a combina-
tion of three feature extraction processes: filter, wrapper, and embedded algorithms. Based
on the above feature extraction process, the essential features were selected for enabling the
training process in the DLM. Finally, the selected features were sent to the classifier. The
DLM is a combination of RNN and TDO. In the RNN, the optimal weighting parameter is
selected with the assistance of the TDO. Performance metrics including precision, recall,
accuracy, sensitivity, specificity, and F measure are used to measure the effectiveness of
the suggested method, which is implemented in MATLAB. The proposed approach is
contrasted with traditional methods such as RNN-GA, RNN and DNN. According to per-
formance metrics, the suggested strategy produces effective results. Future improvements
to accuracy will focus on intrusion detection models in cloud computing environments.
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26. Çavuşoğlu, Ü. A new hybrid approach for intrusion detection using machine learning methods. Appl. Intell. 2019, 49, 2735–2761.

[CrossRef]
27. Krishnaveni, S.; Vigneshwar, P.; Kishore, S.; Jothi, B.; Sivamohan, S. Anomaly-Based Intrusion Detection System Using Support

Vector Machine. In Advances in Intelligent Systems and Computing; Springer: Berlin, Germany, 2020; pp. 723–731. [CrossRef]
28. Shang, K.; Chen, Z.; Liu, Z.; Song, L.; Zheng, W.; Yang, B.; Liu, S.; Yin, L. Haze Prediction Model Using Deep Recurrent Neural

Network. Atmosphere 2021, 12, 1625. [CrossRef]
29. Fan, C.; Wang, J.; Gang, W.; Li, S. Assessment of deep recurrent neural network-based strategies for short-term building energy

predictions. Appl. Energy 2019, 236, 700–710. [CrossRef]
30. Dehghani, M.; Hubalovsky, S.; Trojovsky, P. Tasmanian Devil Optimization: A New Bio-Inspired Optimization Algorithm for

Solving Optimization Algorithm. IEEE Access 2022, 10, 19599–19620. [CrossRef]
31. Rout, T.M.; Baker, C.M.; Huxtable, S.; Wintle, B.A. Monitoring, imperfect detection, and risk optimization of a Tasmanian devil

insurance population. Conserv. Biol. 2018, 32, 267–275. [CrossRef] [PubMed]
32. Rani, S.; Babbar, H.; Srivastava, G.; Gadekallu, T.R.; Dhiman, G. Security Framework for Internet of Things based Software

Defined Networks using Blockchain. IEEE Internet Things J. 2022. [CrossRef]
33. Han, Z.; Yang, Y.; Wang, W.; Zhou, L.; Gadekallu, T.R.; Alazab, M.; Gope, P.; Su, C. RSSI Map-Based Trajectory Design for UGV

Against Malicious Radio Source: A Reinforcement Learning Approach. IEEE Trans. Intell. Transp. Syst. 2022. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/s22020432
http://doi.org/10.1007/s13369-021-06086-5
http://doi.org/10.1016/j.compeleceng.2022.108156
http://doi.org/10.1155/2020/6689134
http://doi.org/10.1007/s12652-018-1093-8
http://doi.org/10.14569/IJACSA.2017.080651
http://doi.org/10.1016/j.cose.2018.04.010
http://doi.org/10.1016/j.jocs.2017.03.006
http://doi.org/10.17148/IJARCCE.2017.64102
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html
https://doi.org/10.1016/j.jocs.2017.03.006
http://doi.org/10.1007/s10489-018-01408-x
http://doi.org/10.1007/978-981-15-0199-9_62
http://doi.org/10.3390/atmos12121625
http://doi.org/10.1016/j.apenergy.2018.12.004
http://doi.org/10.1109/ACCESS.2022.3151641
http://doi.org/10.1111/cobi.12975
http://www.ncbi.nlm.nih.gov/pubmed/28657164
http://doi.org/10.1109/JIOT.2022.3223576
http://doi.org/10.1109/TITS.2022.3208245

	Introduction 
	Literature Review 
	Proposed Intrusion Detection Model 
	Model Training and Testing Dataset 
	Dataset Description 
	Feature Extraction 
	Embedded Algorithms 
	Wrapper 
	Filter 
	Parameter Derivation 

	Deep Learning Neural Network (DNN) 
	Recurrent Neural Network 
	Tasmanian Devil Optimization 


	Performance Evaluation 
	Conclusions 
	References

