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Abstract: Electronic medical records (EMRs) help in identifying disease archetypes and progression.
A very important part of EMRs is the presence of time domain data because these help with identifying
trends and monitoring changes through time. Most time-series data come from wearable devices
monitoring real-time health trends. This review focuses on the time-series data needed to construct
complete EMRs by identifying paradigms that fall within the scope of the application of artificial
intelligence (AI) based on the principles of translational medicine. (1) Background: The question
addressed in this study is: What are the taxonomies present in the field of the application of machine
learning on EMRs? (2) Methods: Scopus, Web of Science, and PubMed were searched for relevant
records. The records were then filtered based on a PRISMA review process. The taxonomies were
then identified after reviewing the selected documents; (3) Results: A total of five main topics were
identified, and the subheadings are discussed in this review; (4) Conclusions: Each aspect of the
medical data pipeline needs constant collaboration and update for the proposed solutions to be useful
and adaptable in real-world scenarios.

Keywords: time series; electronic medical records; systemic review; artificial intelligence; machine
learning

1. Introduction

Translational medicine (TM) includes collaboration between medical clinicians, biomed-
ical engineers, and scientists to develop artificial intelligence (AI) models that account for
differing data sources, data collection methods, and other real-world factors. In some cases,
TM reduces the time from solution development to deployment. It does so by allowing
effective communication between different players for shared goals. It is characterized by
integrating digital biomarkers, multi-omics profiling, model-based data, AI, biomarker-
guided trial designs, and patient-centric companion diagnostics. Therefore, the taxonomies
identified in this review are guided by translational medicine [1]. Ref [2] presents the
following components of the complete medical record including: connected fitness devices,
patient-focused personal health records, individual behavioral patterns, pharmacy-focused
medical adherence data, provider-focused medical records, connected medical devices, and
genomic information.

In these complete electronic medical records (EMRs), the use of time-series data is
essential because most of the biomarkers are tracked as trends in time [3]. EMRs help in
disease monitoring, pandemic monitoring, adjustment of lifestyles, hospitals, intensive
care units, and integration of healthcare services. Machine learning (ML) is “The ability
of computers to advise decisions based on the available data” [4]. ML has been used in
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applied clinical studies for some time now [5], and recent renewed interest has been driven
by increased data availability [6] and an increase in computational capacity [7]. The most
common medical data types are images, such as computerized tomography (CT) scans, time-
series data, and blood, urine, and metabolic panels. Some noteworthy literature reviews
cover computer vision techniques to assist clinical decision-making [8–10]. However, there
is a need to review the broader research landscape relating to the application of ML in time-
series data in EMRs to give the relevant taxonomies, patterns in literature, emerging trends,
and knowledge streams in this field. Time series can be defined as repeated readings from a
device over a period of time. The frequency of the readings can be periodic or non-periodic
and range from thousands of times per second (e.g., accellerometry) to a few times a day
(e.g., glucose monitoring).

Our review of the relevant studies has found numerous pertinent publications [11],
including a previous work by Davy et al. (2015) that investigates the effectiveness of
chronic care AI models employed in primary healthcare [12]. A more recent work by Chen
et al. (2020) reviews the use of probabilistic ML models applied to healthcare data [13],
while Wang et al. (2021) examined the latest advancements in graph-based analytics in
healthcare [14]. The application of telemedicine in maintaining electronic health records
was recently reviewed by Gu et al. (2019) using a cite space analysis [15]. Cite space was
also used in a scientometric review of the application of latent discriminant analysis in
healthcare data by Tean et al. (2019) [16]. Emerging challenges when using unstructured
EMRs were deliberated by Adnan et al. (2020) in the context of using big unstructured data
in healthcare [17].

In comparison to the studies above our study has three novel features:

1. It identifies taxonomies within the field after a systemic search of research databases.
2. It finds these taxonomies based on the principles of translational medicine so that the

reader may find all the information needed for a translational solution in one place.
3. It identifies the core challenges and advancements in each taxonomy and provides a

rigorous volume of the literature to serve as a baseline.

The following are the research questions we will try to address:

1. What paradigms fall under the umbrella of AI in time series and graph-based health-
care data?

2. What are the latest advances in these domains?
3. What are the latest challenges in these taxonomies?

Although earlier literature reviews have covered the application of specific algorithms
and problems in EMRs, as shown in Table 1, a need exists to develop taxonomies and
discuss recent findings.

Table 1. Comparison with earlier works.

References Time Series Disease Specific Translational
Medicine

[12] 3 X X
[18] 3 3 X
[19] X 3 X
[16] X 3 X
[15] 3 3 X
[17] 3 3 X

Our work 3 X 3

2. Materials and Methods

A paradigm is a collection of elements based on a common lexeme [20]. Identifying
the paradigms of fields interacting with each other is imperative to achieving overarching
solutions. In this review, these paradigms are based on an industry perspective of TM [1]
and TM principles. The three Ts in TM are developing treatments and interventions, testing
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the proposed interventions’ effectiveness, and deploying these applications in the real
world [21]. In this review, all the paradigms in the field considered are presented by
Figure 1, and the challenges in applying AI-based solutions to TM are also discussed.
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Figure 1. PRISMA review process for selection of records from research databases.

In this review, the literature was searched from the following databases: PubMed,
Scopus, and Web of Science, and the papers between 2015–2022 were selected. The search
terms were ((“Physiological sensors” OR “Biomedical sensors” OR “Bio-medical Sensors”)
AND (“Machine Learning” OR “ML” OR “Artificial Intelligence” OR “AI” OR “Deep
learning” OR “DL” OR “Reinforcement learning” OR “Electronic health records”) NOT
(“Security and Privacy”) NOT (“images”) NOT (“Robot”)). The search was limited from
2015 to November 2022. Only articles were included, and reviews were not made part of
the search criteria. The proceedings of various conferences were excluded from the search.
Applying these filters and only selecting English language records resulted in 320 articles
being removed, resulting in the number of articles selected for review totaling 164. These
records were then collected and thoroughly read to answer the following questions:

• What is the type of data?
• What kind of algorithm is used?
• What pre-processing methods are used?
• What post-processing methods are used?
• What data privacy standards are observed?
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• What interoperability or fusion techniques are used?

By answering these questions in the form of a table, the top three methods are identified
within each paradigm. However, if the top three topics in a paradigm are repeated in any
other paradigm, the next three topics are also discussed in the section to give a holistic
overview of the topic. For example, the top three topics in the subtopic: time-series data
and structured data are the same and, therefore, positioned in the structured data section.

An Ishikawa Fishbone Diagram (Figure 2) presents the different paradigms on the topic.
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Figure 2 is a representation of the paradigms found in the literature under the topic at
hand. The inclined axes represent the major topics in the field, for example, types of data
and levels of automation. These inclined axes are also divided, shown as horizontal arrows,
to identify the relevant subtopics.

3. Results

After collecting the records through the process previously described, then reading
their methods and results, using TM principles, we enabled the paradigms to then be
identified. The subsequent discussion is arranged as follows; first, we identify the most
commonly occurring topics in the records that we have collected within each paradigm, and
then the challenges within the paradigms are elaborated upon. This review is a combination
of a narrative review built on systematic data collection.

3.1. Types of Data

One of the most obvious choices of paradigms is the type of data, which can depend
upon the source of data (different types of sensors), organization of data (structured,
unstructured), and representation of data (time series, images, graph representations).

Representation of Data

The way that the data are represented makes them suitable for a particular type of
analysis to then be undertaken. The inductive biases of different ML models can be matched
to different types of data representation. For example, as we will see in later parts of this
review, the graph-based data representations are widely used for phenotyping (phenotype
of the collection of observable effects of a disease), since the inductive bias of a graph-based
ML model suits the relational nature of the problem of phenotyping. Thus, the first axis,
along which we separated the data, is according to how it is being represented. This can
take tabular, time series, or graph forms.
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1. Time series (tabular representation): Time-series data contain information from physi-
ological events in the form of time-varying biomarkers. Three leading solutions are
specific to this data type: motif or pattern detection, data generation/imputation,
and time-series forecasting. Generative AI models can potentially overcome the lack
of access to time-series data by synthetically producing the missing and unknown
data; however, accuracy by patient needs to be proven for each application, where
missing data can be missing readings within a time series or the complete absence of
a time-series recording in the EHR. Guided evolutionary networks (GENs) combine
artificial neural networks and optimization algorithms such as genetic algorithms.
These are used to fuse various information sources [22,23]. GENs are also used to
discover time-series motifs in ECG data [24]. Ref. [25] uses a multilayer perceptron for
time-series forecasting in healthcare data. The following Table 2 presents a comparison
of the representative literature.

Table 2. Comparison of the time-series solution.

References Applications Sensors Generative Predictive Clinical Imputation

[26] Motif Discovery ECG 3 X 3 X
[22] Motif Discovery ECG and EEG 3 3 X 3

[24] Anomaly Detection ECG X 3 3 X

[25] Expenditure
Calculation Healthcare data X 3 3 X

[27] Benchmarking MIMIC-III X 3 3 X
[28] Imputation ECG, MIMIC X 3 3 3

2. Graph representation: Healthcare data are relational, which makes them suitable
for graphical representation. Relational data are characterized by the relations or
dependence that exists amongst the rows and columns [29]. Graph-based techniques
are used for developing graph-based representations of healthcare data, identifying
clinical pathways and phenotypes of disease, and performing predictive modelling of
disease and interventions. For example, refs. [30,31] are some typical graph representa-
tions of healthcare data. Ref. [32] determines the temporal phenotypes based on graph
representations of healthcare data. Ref. [33] is a fog-based temporal network graph
analysis for the Chikungunya virus in India. Ref. [34] uses a proximity-preserving
graph embedding to represent electronic health records for hypertension. Ref. [35]
incorporates metadata of the patients along with their vitals and lab results to learn a
graph representation of electronic healthcare data. Ref. [36] is a study that employs
cryptographic techniques for information embedding in the healthcare data. Ref. [37]
is another knowledge-graph-based phenotyping technique for subarachnoid hemor-
rhage. Ref. [38] is a graph-based visualization for sensitive outcomes in medicine for
healthcare data. Ref. [39] is a graph-based channel fusion for wrist pulse detection.
Ref. [40] uses graphs for learning a lower dimensional representation of drug–disease
interaction. As illustrated in [41], the main applications of graphs in medical interven-
tions are drug–drug interaction, drug–disease interaction, protein–protein interaction,
medical term classification, and protein function prediction. The three main methods
to realize these ends are matrix factorization, random walk, and neural network-
based methods. These include Laplacian methods, as demonstrated in [42], deep
walk methods, as shown in [43], and neural networks, as illustrated in [40]. Graph
algorithms commonly used can be categorized into temporal data mining [44], causal
and contextual [45], and patient enteric graphs [46]. It is worth noting that there is
no unique graph representation for sensor data or electronic medical records. Hence,
most research focuses on developing graph-based presentations. One crucial research
area is benchmarking and creating a numeric qualitative marker of adequate repre-
sentation. There are several limitations of time-series- and graph-based healthcare
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data; these include data sparsity [47], noise [48], limited generalizability [49], and lack
of context [49].

The following Table 3 presents a comparison of the representative literature.

Table 3. Comparison of graph-based solutions.

References Application Techniques
Used Data Contributions Predictive Descriptive

[32]

Temporal
Phenotyping

Attention
Models

MIMIC-III

10% greater than RNN in
disease prediction and
3% improved areas
under ROC

3 3

[38] Hinge Loss

Predicted congestive
health failure with an
80% accuracy. The area
under the curve for
patient readmission
increased by over 50%
from the spectral
clustering

3 3

[36] Graph
representation Note Binning STRIDE Developed term and

concept mappings X 3

[39] Feature fusion Multi-Channel
feature fusion

Pressure and
Photo–electric
Sensors

93.1% accuracy in
predicting diabetes from
pulse detection data.

X X

3.2. Structure of Data

Another way to classify the type of healthcare data is the structure of available data.
Most healthcare data are not structured against a set of rules. The structure of data dictates
the kind of preprocessing required or the kind of algorithms that can be used.

A. Structured data: This follows a definite set of rules or schemes [50]. The main
issues when using ML and structured data are data generation, data fusion, pattern
detection, privacy preservation, and prediction of outcomes. Privacy preservation is
guided by HIPAA rules [51]. Generative algorithms are used extensively to impute
the missing data in the structured datasets [52,53]. Data fusion is another typical
application of ML for combining two different kinds of structured data [54,55].
Federated learning that trains the models based on data from various decentralized
devices is used extensively for privacy preservation of healthcare data [56–59]. ML
and structured data are also valuable in predicting the outcomes of interventions,
for example, [60] analyzes the user’s choice in the event of alerts from clinical
decision systems for potential drug–drug interference. Ref. [61] uses structured and
unstructured data to find the social determinants of health characterized by social
behavior, demographic features, and environmental factors of medical status and
health care access. Ref. [62] is a systemic review of records from PubMed and Web
of Science on the detection of strokes from structured data that found the leading
keyword to be mortality and the most used algorithms to be neural networks, support
vector machines, and XGBoost. Ref. [63] is another review that looked at the statistical
and predictive machine learning models for cancer risk and found the cox model [64]
is the most commonly used algorithm for predicting disease onset based on the input
features. Ref. [65] used AI to auto-complete structured clinical records based on
context. Ref. [66] is a model to detect probable cases of dementia using structured
and unstructured data that uses a latent Dirichlet algorithm for feature extraction
and a logistic regression model. The key issues of research for structured data in
healthcare are detecting phenotypes from electronic health records [67,68], privacy
and encoding of information [69–72], data harmonization from various sources [72],
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synthetic data generation for research [73–75], and fairness and bias in the structured
data [76].

B. Semi-structured data: These EMRs have no specific structure, enabling categorical
data, meta-data, and numerical data to be entered in any field. The key areas in
application of ML in unstructured data is in the conversion to structured data,
predictive modeling, and interoperability of different kinds of data sources. For
example, an application of ML with unstructured data for predictive modeling is
used [77] to derive contextual information to generate semi-structured data from
electronic medical records. Ref. [78] is a method to allocate resources from the
knowledge of semi-structured healthcare data. Ref. [79] uses HL7 standards to
develop the interoperability of structured, semi-structured, and unstructured data to
develop obesity phenotypes. Ref. [80] is another such system that uses open EMRs to
this end. Ref. [81] detects autism from semi-structured and unstructured data using
a combination of skip-gram models.

C. Unstructured data: Most EMRs are unstructured [82]. Key research areas for ML
applications in unstructured data are conversion amongst the various kinds of data
structure and predictive modeling. An example of predictive modeling using un-
structured data [83] employs unstructured EMRs to phenotype depression in youth.
Latent Dirichlet Analysis (LDA) and other dimensionality reduction methods are
used to obtain the hidden information between different kinds of data and then
leverage it for predictive modeling [84–87]. A priori algorithms and other Bayesian
methods are used to convert unstructured data to structured data [37,88,89], and
in so doing, these works can also combine with structured data to make predic-
tions [90,91]. Another technique that is relevant to the conversion of unstructured
data to structured data is distant supervision. Distant supervision is a method for la-
beling the data by utilizing the known structures of similar data [92,93]. Exploratory
text analysis is also used for pattern analysis for predictive modeling in this [94,95].

The following Table 4 compares these techniques:

Table 4. Comparison of unstructured data.

References Application Techniques
Used Evaluation Metrics Structured Data

[83]
Detection of

clinical
depression

NLP Specificity:97%.
Sensitivity:45% X

[84] Disease
prediction LDA

AUC 0.94,
Sensitivity 0.87 and

Specificity 0.87
3

[94] HPV detection NLP AUC: 0.861 X

[92] Breast cancer
detection NLP

AUC 0.91,
Sensitivity: 0.861,
Specificity 0.878,
Accuracy 0.870.

3

The different ML techniques used in conjunction with unstructured data are cluster-
ing, classification, boosting, and a combination of these three. Clustering can help with
phenotyping and grouping together different clinical pathways. Classification requires
labeling the data, which can be taxing for a large volume of clinical notes. Boosting models
can leverage the different structures present in unstructured data to make meaningful
predictions, especially, risk and mortality.

Natural language processing techniques are extensively applied to unstructured data
to detect disease onset. Data harmonization and standardization is also an essential topic
of discussion in unstructured healthcare.
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In the healthcare context, structured and semi-structured data are typically easier to
work with and analyze because they have some inherent structure. Unstructured data,
such as free-text notes in electronic health records, can be more challenging to work with
because they require more effort to extract meaningful information.

3.3. Types of Sensing Elements

Types of data are dependent on the types of sensing elements used. There are many
types of sensing elements including wearable sensors, mobile device sensors, ingestible
sensors, medical devices from hospitals, and a combination of all or some of the factors
mentioned earlier.

• Wearable sensors: These bridge the gap between assessment and onset prediction.
The data sources measure the biomarkers from the physiological signals in real-time,
making this a vital component of multi-omics profiling [96].

• Mobile devices: Along with real-time monitoring using mobile sensors, mobile de-
vices also allow for input from the user, making them helpful in tracking medical
adherence [97].

• Ingestible sensors: Drug adherence [98] and monitoring [99] are some applications of
ingestible sensors.

• Medical devices from hospitals: These include connected medical devices intended to
enhance healthcare quality for people in the hospital [100].

• Combinations: The combination of the sensors enables the Internet of Medical De-
vices [101].

The critical limitations of wearable sensors are the contextualization of data and
integration with the existing clinical care pathways; hence, a challenge exists to show
clinical efficacy. Most historic clinical data are taken from a patient at rest (e.g., resting
heart rate) with the assumption that only disease can shift homeostasis, and most wearable
data are ambulatory (e.g., heart rate during a workout) with confounders such as physical
activity making traditional clinical interpretation challenging. Interoperability is another
crucial aspect that needs to be addressed when deciding on different sensing elements.
This will help increase the generalizability of models by allowing them access to various
kinds of data.

3.4. Data Preprocessing

As we have seen previously, data can come from various sources and in various forms.
For the successful application of ML, these data must be harmonized and standardized.
Data harmonization standards and intelligent interoperability techniques are the two
classes along the knowledge stream. Another axis to classify data preprocessing techniques
is the data fusion methods, which include feature level, data level, and decision level fusion.
One more way to organize the data prior to analysis is through preprocessing techniques.
These include filtering, feature extraction, and natural language processing techniques.

1. Data harmonization standards: These standards describe the preprocessing technique
that prepares different kinds of data to become compatible with each other. It allows
the AI to access a diversity of information through access to researcher and institu-
tion knowledge [102]. Some standards are specific to the medical cases they deal
with [103–105]; however, there exists a set of medical means to ensure interoperability.
The most common standards are Health Level 7 (HL7), openEHR, and ISO/IEEE
11073 Personal Health Data (PHD) standards [106], International Statistical Classifica-
tion of Diseases version 10 (ICD-10) [107] and Current Procedural Terminology (CPT)
codes [108]

2. Intelligent interoperability: Here, ML or other algorithms are used to combine the
information from different data sources, and particularly EMRs. In intelligent inter-
operability of healthcare components, artificial intelligence or some other rule-based
systems are used to automatically draw the relevant information from the EMRs or
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sensor data. These systems use different algorithms to ensure the interoperability
of various data sources. The following Table 5 elucidates such strategies. Although
these systems allow for effective data communication while ensuring information
integrity, one key issue is allowing for the encoding of categorical features so that the
information is stored effectively.

Table 5. Comparison of interoperability techniques.

Name Properties References

Blockchain technology

Focused on patients rather than
healthcare providers. Data are linked to
the patient, aggregated, and then
sensitive information such as allergies is
published on the blockchain, ensuring
privacy and data immutability.

[109,110]

Internet of Things

It employs the principles of the internet
of things for data interoperability. It uses
the protocols of Message Queuing
Telemetry Transport (MQTT) to publish
the relevant patient information.

[111]

Dynamic Semantic Web
services

It uses the dynamic semantic web to
convert the data into the HL7 framework. [112]

Cloud Based Interoperability

It uses cloud-based models, for example,
amazon web services, Microsoft Azure,
and IBM Watson, to convert it into an
openEHR or HL7 standard.

[113]

Knowledge Graphs Knowledge graphs are used for the
interoperability of biomedical data. [37]

The methods used for interoperability include NLP, data mapping and transformation,
data quality assessment, predictive analytics, and anomaly detection. They are used to
promote one or more of these: Standardization of data, using application programming
interface (API), using middleware and frameworks such as the Da Vinci project, and
health information exchanges (HIEs). While effective, NLP techniques are very resource
intensive. Data mapping and transformations can be very narrow in application. Data
quality assessments can be used to compare inconsistencies but require constant updates
and maintenance. Predictive analytics can help improve care coordination and resource
allocation, but this is also effective in a narrow range of situations. Anomaly detection can
identify unusual or unexpected patterns in healthcare data, potentially flagging issues that
may need to be addressed, but can suffer from alert fatigue if the sensitivity is too high.
However, it requires certain contextual information to be more effective.

3. Data Fusion: A physiological event can be observed with the help of various sensors,
each sensing a unique aspect of the physiological event. The system has to fuse or
combine information from different sensing elements for a holistic understanding of
the event. This is done at multiple levels. In industry 4.0, healthcare systems, these
sensing elements are spread across time and space (wearable sensors, ambulances,
and hospitals). Fusing information from multiple sensors provides a more holistic
picture of healthcare, including detection, phenotyping, disease progression, and other
related data-powered solutions. Ref. [114] exhibits a combination of different layers
of data fusion in connected healthcare, from individual sensors to detect medical
events, to a network of connected devices, and finally, fusing information amongst
various institutions. Ref. [115] displays a sensor fusion model between communication
systems. Ref. [116] defines different levels of data fusion. These include signal level
fusion, feature level fusion, and decision level fusion. Kalman Filtering is a popular
statistics method for signal level fusion and is widely used in biomedical sensor
networks. Weighted averages are also widely used to penalize sensors with more
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noise in a sensor network [117–119]. Particle filtering, amongst various other variants,
is also used extensively for signal level fusion in sensor networks in healthcare [120].
Ref. [121] uses temporal evidence theory for signal level fusion for activity recognition.
Feature level fusion means each sensing element’s features are calculated and fused.
Ref. [122] calculates a linear combination of features to obtain a new feature. Ref. [123]
is a weakly supervised program for feature-level fusion. Decision level fusion is
a way to fuse decisions based on different information streams. There exist many
such systems in the context of healthcare [124,125]. The critical issue in all these is
developing a plastic nature of fusion techniques. A plastic fusion technique would be
flexible to change with the emerging problem because different features or data may
have other significance for each model.

There are several key limitations to data harmonization standards for electronic medi-
cal records for example:

• Complexity—Data harmonization standards can be complex and may require signifi-
cant resources to implement and maintain.

• Limited adoption—Not all electronic medical record systems may adopt the same
data harmonization standards, which can limit the ability to exchange data between
systems.

• Changing standards—Data standards can change over time, which can make it difficult
to maintain compatibility with other systems.

• Privacy and security concerns—The exchange of patient data between systems can
raise concerns about privacy and security. Careful measures must be taken to ensure
that patient data are protected when they are shared between systems.

• Cost—Implementing and maintaining data harmonization standards can be expensive,
particularly for smaller healthcare organizations.

• Intended use—some coding is designed for a different reason than it is used for, e.g.,
reimbursement versus treatment.

3.5. Decision Systems

The nature of decision systems is specific to the problem they deal with. One axis along
which the decision systems can be classified is the medical problems they solve, which
include data quality, phenotyping, medication adherence, graph representation of data,
detection of disease, and mortality prediction. One more axis along which the decision
systems can be classified is the nature of algorithms, natural language processing, time
series analysis, and graph neural networks.

1. Data Quality: The quality of the data acquired in healthcare is essential for the
credibility of the predicted outcomes. Data quality issues are hard to identify in data
with varying structures, shapes, dimensions, and sources. The dimensions of data
quality, as elaborated by [126], are completeness (whether the relevant information is
present), correctness (are the data correct), concordance (are they relatable to other
data sources), plausibility (is any element in the EHRs making sense in the presence
of other evidence), and currency (meaning how old are the data). These solutions will
help to identify data quality issues, log them, encode them in metadata for datasets,
help develop exclusion criteria of data based on its quality, and record the number of
such problems. Ref. [127] is one such work that creates a framework to carry out all
the tasks and uses probabilistic models to detect temporal stability and plausibility
in biomedical data. It employs probabilistic change detection using Jensen–Shannon
distance principles of statistical control of posterior beta distribution. Ref. [128]
uses probability distribution distance to the same end. Ref. [129] is a measure of
completeness by flagging incomplete data sources using the Delphi method. It also
measures the same DQ dimension using patterns in the number of patients and
compares them. Ref. [130] considers the data quality of radio frequency identification
(RFID) in nine phases within healthcare systems.
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2. Phenotypes: Phenotypes are the combination of an individual’s observable disease
traits. The data from the electronic health record are a set of data points related to
interventions and the change in the states measured in lab tests. The data help align
heterogeneous disease progression into temporal phenotypes. This allows data science
techniques to find the relation between disease, symptoms, and interventions. These
are also linked to mortality prediction, disease progression, and observation of medi-
cally complex phenotypes. Most temporal phenotype identification methods deploy
clustering techniques. Phenotypes are also used to identify rare diseases [131–133].
These methods are rule-based [133] and graph-theory-based [134].

One of the critical challenges in AI-based phenotype is the representation of data. The
data are being presented to domain experts, but developing a metric that identifies the
visual tools’ efficacy to represent the temporal phenotypes is worthwhile. For example,
in encoding information in the edges and nodes of a graph, silhouette diagrams [135] are
very different in richness and application compared to graphs. Graph theory is widely
used in these systems as it is very suitable for the relational nature of phenotypes. One key
concept is called category theory, which is a directed graph. The data used in temporal
phenotypes are time-based (hence, directed), comprising nodes and morphisms. It is
different from other graph representations as the morphisms encode the information of the
mappings [136]. Very little focused work in this domain comes from EMRs.

3. Deidentification: De-identification of electronic medical records in an automatic
manner is an active area of research where blockchain has recently been widely
used [137,138]. Ref. [139] compares deep learning, rule-based systems, and shallow
learning for de-identifying EMRs and argues that stacked learning is the most efficient
ensemble technique. Ref. [140] deploys self-attention networks and stacked recurrent
neural networks to de-identify the medical records. The main de-identification meth-
ods are neural networks, blockchain technology, and rule-based systems [140]. Some
Internet of Medical Things (IoMT) schemes uses IoT protocols to preserve privacy
while ensuring that critical information is relayed to the relevant stakeholder [141].

Challenges in this field remain the interplay of structured, unstructured, and semi-
structured data. These data come from various sources and categories and, in the case of
categorical features with other features, must be collated before solutions can be designed.

4. Adherence: Adherence to suggested and prescribed medical regimens is a crucial
component of healthcare. Healthcare is an integrated process; hence, adherence
is monitored by different sensing and AI techniques to ensure the efficacy of the
interventions. The following Table 6 represents the various AI methods used to
this end.

Table 6. Recent Works: AI in Adherence.

Name Summary Application References

Conversational Robot Chatbot used for drug adherence Drug Adherence [142,143]

Ethics
Deliberates over the ethical questions arising from
the usage of AI in Norm
Adherence

Ethics [144]

Lifestyle Modification
It uses a web app to help monitor adherence,
lifestyle modifications, for
Example, in the case of cancer.

Drug Adherence [145]

Medication Adherence
It uses machine learning to perform binary
classification of the medication adherence for
Parkinson’s disease patients.

Remote Monitoring [146]

Excercise Adherence
Uses machine learning models to estimate
likelihood to adhere to a physical exercise regimen
using accelerators and other data sources.

Predictive
healthcare [147]



Electronics 2023, 12, 554 12 of 21

Table 6. Cont.

Name Summary Application References

Medication Adherence
Uses machine learning models to identify the
likelihood of non-adherence to medication from
electronic health records

Predictive
healthcare [148]

Medication Adherence Uses data from wearable sensors to measure drug
adherence for a specific cause.

Remote
Monitoring [149]

Medication Adherence Uses cloud-based applications for medication
adherence in home hospitalizations

Remote
Monitoring [150]

The key challenge in this domain is access to relevant data as the disease progresses.
Here, the importance of different features coming from the same sensors and addi-
tional sensors can change as the condition changes its phase.

5. Diagnosis and mortality prediction: Disease prediction can help speed up the process
of health care and increase the prediction accuracy, leading to the correct treatment
being administered earlier. In the case of critical systems, the idea of mortality
prediction and their interplay with demographic information and phenotype can
help save lives. It can also help in understanding the progression of the disease and
can direct healthcare resources in the right direction. Ref. [151] contains a process
for disease prediction using electronic health records. It uses convolutional neural
networks (CNN) to this end. Ref. [152] uses hybrid machine learning techniques to
predict cardiovascular diseases. It uses a combination of random forest and linear
classification models. Ref. [153] develops a naive Bayes analytic model for disease
prediction using electronic health records.

Machine learning has been used to predict mortality for some time [154]. It has
significant implications for different phenotypes [155,156]. These algorithms are used
widely in brain injuries [157,158].

The critical challenges in disease and mortality prediction are the development of
explainable machine learning models. As these models make predictions, they need to be
explainable and validated as accurate for each patient prediction. Another crucial issue in
this domain is the development of ethical frameworks to enable them to be deployed in the
real world. Moral dilemmas such as those explained in [159] for self-driving cars should be
identified.

3.6. Explainability

The literature uses many exciting techniques in time-series, EHR, and graph-based
data. These techniques include feature significance and their interplay-based methods.
Deep learning important features, or DeepLIFT, is widely used to this end [160,161] as it
combines the importance of a feature as it passes through the layers of the neural network.
local interpretable model agnostic explanation, or LIME, introduced in [162], is also widely
used in electronic health records [163,164].

Attention mechanisms find the relevant neurons or the dataset components that are
the most pertinent information needed for classification. DeepSOFA, DeepHINT, and
Grad-CAM are such systems [165–167].

Least absolute shrinkage and selection operator (LASSO) is an explainability technique
that uses dimensionality reduction techniques to explain the outcomes of a neural network.
They are also used to describe healthcare outcomes [168].

Some explainability techniques draw the rules from the networks, and these systems
are also applied in healthcare [169,170].

Deep Taylor decomposition is one such explainability technique used in these sys-
tems [171]. Shapley values are also used in such scenarios. The key challenges in developing
these systems for graph neural networks are primarily encountered when this method is
used for phenotyping.
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There is currently a lack of standardized evaluation methods for interpretability tech-
niques, making it difficult to compare and contrast the effectiveness of different approaches.
Clinical relevance at present is limited to the identification of which traditional inputs are
significant.

3.7. Levels of Automation

Levels of automation for the said topic are discussed as follows:

1. Human Only: Here, there is no AI involved, for example, the calculation of muscle
atrophy using electromyogram (EMG) signals [172]. This process, however, involves
the signal processing techniques for the representation of data.

2. Shadow Mode: In shadow mode, the data generated by the interaction of the medical
practitioner and other sources are logged, and the data are labeled using the judgment
of a qualified physician. These data are used to train a machine learning or an opti-
mization algorithm. One such system developed by the ICL team is a reinforcement
learning framework optimizing interventions retrospectively that allows a regulatory
compliant pathway to clinical testing. This technique is used for sepsis treatment in
the ICU [54].

3. AI Assistant: This level of decision making assistance provides the physician with
suggestions. Some systems use these to detect cancers; for example, one such system
uses biomedical images and structured data to detect hepatocellular carcinoma in the
AI assistant model [173].

4. Partial Solutions: Based on the data, the AI comes up with a diagnosis independently,
but needs a physician’s input.

5. Full Automation: All the tasks in healthcare are provided by AI alone.

4. Conclusions

This review presents a paradigm of the application of AI in times-series and graph-
based healthcare data that is driven by translational medicine. It looks at the complete
pipeline, starting from data collection, harmonization, and quality dimensions. The decision
systems are deliberated over, including various kinds of phenotyping, mortality detection,
and other methods. We looked at the components related to the data, classifying them into
multiple axes. Recent advances and state of the art technology in the various lexemes of
the paradigms found were also reviewed.

Data can be classified along multiple axes, including structure, source, and dimension.
Most healthcare data are unstructured, which has been used in conjunction with structured
data to predict healthcare outcomes. Data preprocessing techniques can help combine
different types of data, denoising and harmonizing to increase the reusability.

Another issue that needs to be tackled in data collection and preprocessing is inter-
operability of various devices and sensors, and this review has elaborated on different
interoperability methods.

There are issues where collected data are fed to different decision systems. This part
of the pipeline was discussed by this review, especially where the graph-based solutions,
such as temporal phenotyping used to help identify risks for various morbidities and help
cluster disease presentation into various groups, are concerned. The most recent works
and reviewed literature focus more on applying these solutions in the real world. This
application becomes easier when the AI process making predictions can be explained,
hence, different explainability and interpretability techniques are compared here while
highlighting the lack of standard metrics of evaluation for such methods. The validation of
accuracy for each individual patient is an open area of research.

Based on the advances mentioned in this review, any future review may include the
identification of ethical dilemmas in healthcare interventions and personalized healthcare:
continuous healthcare monitoring and better intervention methods. Clinical use of ambula-
tory data continues to be a challenge for traditional medical practice. The debate between
generalizable AI models with the required precision to achieve individual specific health
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outcomes will likely continue. This work can influence the current healthcare system in a
positive manner; however, a way of combining these issues can first develop individual
specific models, then explain them using explainability techniques, and then cluster them
for general exploratory studies.

There are many challenges associated with healthcare data collection for the so-called
disease X [174,175]. The more evolved diseases can be stopped from progressing in real-
time using multi-omics-profiling and outlier detection [176]. Another challenge in dealing
with data derived from time-based sensor data is the integration of advancements in
real-time systems. To this end, translational medicine is already defining some solutions.
Another major challenge is generating data for groups for which these data are unavailable
using generative AI.
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