
Citation: Vivekanandhan, G.; Natiq,

H.; Merrikhi, Y.; Rajagopal, K.; Jafari,

S. Dynamical Analysis and

Synchronization of a New

Memristive Chialvo Neuron Model.

Electronics 2023, 12, 545. https://

doi.org/10.3390/electronics12030545

Academic Editors: Leonardo Pantoli,

Egidio Ragonese, Paris Kitsos,

Gaetano Palumbo and

Costas Psychalinos

Received: 30 November 2022

Revised: 9 January 2023

Accepted: 17 January 2023

Published: 20 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Dynamical Analysis and Synchronization of a New Memristive
Chialvo Neuron Model
Gayathri Vivekanandhan 1, Hayder Natiq 2, Yaser Merrikhi 3 , Karthikeyan Rajagopal 4,5 and Sajad Jafari 6,7,*

1 Centre for Artificial Intelligence, Chennai Institute of Technology, Chennai 600069, India
2 Department of Computer Technology Engineering, College of Information Technology,

Imam Ja’afar Al-Sadiq University, Baghdad 10001, Iraq
3 Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC H3G 1Y6, Canada
4 Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai 600069, India
5 Department of Electronics and Communications Engineering and University Centre of

Research & Development, Chandigarh University, Mohali 140413, India
6 Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic),

Tehran 1591634311, Iran
7 Health Technology Research Institute, Amirkabir University of Technology (Tehran Polytechnic),

Tehran 1591634311, Iran
* Correspondence: sajadjafari83@gmail.com

Abstract: Chialvo is one of the two-dimensional map-based neural models. In this paper, a memristor
is added to this model to consider the electromagnetic induction’s effects. The memristor is defined
based on a hyperbolic tangent function. The dynamical variations are analyzed by obtaining the
bifurcation diagrams and Lyapunov spectra. It is shown that the most effective parameters on
the dynamics are the magnetic strength and the injected current. The memristive Chialvo can
exhibit different neural behaviors. It is also proven that, like the primary Chialvo model, the
memristive version has coexisting attractors; an oscillating state coexists with a fixed point. In
addition, to understand how memristive neurons behave in a network, two memristive Chialvo
models are coupled with electrochemical synapses. By connecting two neurons and calculating
the synchronization error, we can determine the system’s synchronizability. It is indicated that the
electrical coupling is essential for the occurrence of complete synchronization in the network of
memristive Chialvo, and the sole chemical coupling does not lead to synchronization.

Keywords: memristive Chialvo model; dynamical analysis; multi-stability; coexisting attractors;
synchronizability

1. Introduction

Introducing mathematical models for neurons facilitates computational analysis of
brain behavior. Computational neuroscience has evolved significantly since Hodgkin and
Huxley determined the contribution of sodium and potassium ions in a neuron’s axon
and investigated its action potential in 1952 [1]. After the 4D Hodgkin and Huxley model,
various mathematical models have also been introduced, and their electrical circuits have
been implemented [2,3]. The 3D Hindmarsh–Rose [4], the 2D Morris–Lecar [5], and the
2D FitzHugh–Nagumo [6] models are examples of them in the continuous time domain.
There are also other neural models in the discrete-time domain, such as the Rulkov map [7],
the Zandi neuron map [8], the Cazelles–Courbage–Rabinovich map [9], and the Chialvo
map [10] models. Not only are map-based models fast, but they are also easy to use. In a
continuous model with dimensions lower than three, the chaotic oscillation of the neuron
cannot be modeled. In contrast, discrete models do not follow a similar rule to illustrate
chaotic oscillations. Hence, the networks of continuous neural models are time-consuming,
especially when coupled in a high-dimensional network or higher-order one [11,12]. Even
though some reduction methods reduce the cost of analyzing a high-dimensional network
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of oscillations [13], map-based models are generally faster and more efficient for analyzing
large networks.

By studying neurons in a network of oscillations, one can analyze different types of
synchronization, including partial synchronization [14], phase synchronization [15,16], lag
synchronization [17], and complete synchronization [18,19]. A complete synchronization
is a state where all the neurons in the network oscillate at the same dynamics simultane-
ously. Synchronization plays an essential role in the brain’s general functioning, including
working memory and motor planning [20–23]. A variety of types of synchronization
have also been observed in patients with epileptic seizures [24], Parkinson’s disease [25],
schizophrenia [26], and other brain disorders.

The brain transfers information between neurons via synapses, where neural inter-
actions occur. As the axon fires, the presynaptic neuron releases neurotransmitters in the
synaptic cleft (the gap between two synapses). Each neurotransmitter can activate its recep-
tors in the postsynaptic neuron. Then, based on involved ions, the postsynaptic neuron
can be either hyperpolarized or depolarized. These neurotransmitters can be electrical
or chemical. Also, in some cases, both neurotransmitters can exist simultaneously in the
same synapse. As well as chemical and electrical synapses, an axon can receive feedback
from itself via autapses [27]. Autapses are self-synapses in the neuron that are common
throughout the brain [28], both excitatory and inhibitory [29,30].

Neurons can also be affected by external stimuli, such as temperature [31], noise [32], or
electromagnetic changes [33]. The neuron model should be added with a memristor to study
the effect of electrical changes on magnetic flux. Prof. Chua first introduced the concept of
a memristor or a memory resistor as a fourth fundamental electrical component in addition
to resistance, inductance, and capacitance [34]. Meanwhile, the field of studying memristor-
based systems became very popular after Strukov et al. implemented it physically in
2008 [35]. By introducing continuous and discrete memristors, many advances were
accomplished in chaotic systems [36–38] and nonlinear electronic circuits [39–41].

Because of being nonlinear and having hysteresis loops, memristors are applicable in
various scientific fields. Memristor-based neural networks and analog memristor arrays
have lately been employed in machine learning or pattern recognition approaches [42–44]
and also in image encryption [45]. Numerous studies have also been conducted on the mem-
ristive model of both continuous and discrete mathematical neural models. Memristive
Hindmarsh–Rose [46–48], memristive Hodgkin–Huxley [49], memristive Rulkov [50–52],
and memristive Zandi [53] are some examples. The neuronal models can be used to sim-
ulate neuronal populations and reproduce their behaviors, which are relevant to many
brain disorders and cognitive tasks. However, most proposed models are flow-based,
resulting in a high computational cost. The map-based models can decrease this cost con-
siderably and are a good substitute for flow-based models, especially when investigating
neuronal networks. Therefore, improving the map-based models by adding the memristor
can be helpful for this purpose. Hence, this paper investigates the effect of an external
electromagnetic field on the Chialvo map-based model.

Here, we consider the hyperbolic tangent function as the memductance function. The
electromagnetic effects are mainly examined through the bifurcation diagram and Lya-
punov exponents for different parameters. It is shown that magnetic strength significantly
influences the neuron’s dynamics. The effects of the initial condition are also examined, and
coexisting attractors are shown. Moreover, by coupling two memristive Chialvo models,
the synchronous and asynchronous behaviors of the model are analyzed by computing
the synchronization error. Both electrical and chemical synapses are investigated to see
how each coupling affects its synchronizability. The dependence of the coupled neurons’
dynamics on their initial conditions is also revealed.

The dynamics of the memristive Chialvo are studied in Section 2, consisting of the
system’s fixed points and stability. The effect of different system parameters (especially the
magnetic strength) on the system dynamics is also investigated through numerically simu-
lating bifurcation diagrams and Lyapunov exponents, the neuron time series, and phase
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space. The effects of initial conditions in the system are also considered through the basin of
attraction diagram. In Section 3, the synchronizability of the system is examined when two
memristive neurons are chemically and electrically coupled. Computing synchronization
errors shows that chemical coupling strength is essential for complete synchronization to
occur. Finally, the conclusion of the paper is provided in Section 4.

2. Neuron Dynamics

Take n as the time step, the 2D map model of Chialvo is described as follows [10]:{
x(n + 1) = x2(n) exp(y(n)− x(n)) + I

y(n + 1) = ay(n)− bx(n) + c
(1)

where x represents the activation variable and y represents the recovery variable. The
four remaining parameters, i.e., I, a, b, and c, are, respectively, the injected ion current,
the time of recovery (a < 1), the activation dependence of the recovery process (b < 1),
and the offset. The model can illustrate both chaotic and periodic behaviors of the neuron.
Here, to analyze the electromagnetic effects on this map-based neuron, the x parameter in
Equation (1) is added with a discrete memristor. A memristor with hyperbolic tangent flux
controls, which is bounded, smooth, and nonlinear, is described in Equation (2) [50].

F(n) = tan h(φ(n))x(n)
φ(n + 1) = φ(n) + εx(n)

(2)

In Equation (2), φ is the flux variable, ε is the time scale factor for generating the
induced electromotive force in finite transients, and x is the voltage of the memristor.
Accordingly, the modified 3D memristive Chialvo model (3D-MCM) can be formulated
as follows: 

x(n + 1) = x2(n) exp(y(n)− x(n)) + I + ktan h(φ(n))x(n)
y(n + 1) = ay(n)− bx(n) + c

φ(n + 1) = rφ(n) + εx(n)
(3)

in which k is the magnetic strength parameter and r is the scale factor of flux.
The fixed point of the 3D-MCM is the point that all state variables (X = {x, y, φ})

satisfy X(n + 1) = X(n) = X∗, which leads to the following:
x∗ = x∗2 exp (y∗ − x∗) + I + k tan h(φ∗)x∗

y∗ = ay∗ − bx∗ + c
φ∗ = rφ∗ + εx∗

(4)

Considering the parameters in Table 1, the fixed point obtained by solving Equation (4)
is S = (x∗, y∗, φ∗) = (0.005, 2.536, 0.109). To analyze the stability of the model
equilibria, the Jacobian of the 3D-MCM is calculated as follows:

Js =

ktan h(φ)− x2 exp(y− x) + 2x exp(y− x) x2 exp(y− x) −kx(tan h(φ)2 − 1)
−b a 0
1 0 r

 (5)

The fixed point of the 3D-MCM is stable when all Jacobean eigenvalues at it are less
than unity. The eigenvalues of Js at the fixed point (S) are L1 = 0.1403, L2 = 0.9509,
L3 = 0.8899 showing that S is stable. The stability analysis of other fixed points can be
conducted similarly.

Table 1. The value of parameters for 3D-MCM.

a b c k ε r I

0.89 0.18 0.28 0.145 1 0.95 0.005
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To demonstrate the dynamics of the 3D-MCM as a result of the variation of four
system parameters (k, ε, r, and I), the bifurcation diagrams (Figures 1 and 2) and Lya-
punov exponents (Figure 3) are obtained. As shown in Figure 1, two initial conditions
(1.0, 0.8, 0.2) and (0.5, 0.2, 0.3) represent the bursting (purple) and quiescent (blue) state
of the system, respectively, indicating that the 3D-MCM has coexisting attractors when the
same parameter and different initial conditions are chosen. The straight blue line in the
bifurcation diagrams shows the stable fixed-point attractor s = (0.00, 2.54, 0.109), which
does not bifurcate by changing the parameters. Chaotic behavior and several periodic
windows can be observed at 0.1417 < k < 0.1682 in Figure 1a, where the largest periodic
window is approximately 0.1458 < k < 0.1480. For k > 0.1682, the system has two different
fixed points, while for k < 0.1417, both initial conditions lead to the single fixed point
s = (0.00, 2.54, 0.109). In Figure 1b for ε < 0.096, in Figure 1c for 0.7103 < r, and in
Figure 1d for 0.004069 < I < 0.01438, chaotic behavior with periodic windows can be seen.
Both initial conditions lead to one fixed point in Figure 1c for 0.7103 > r and Figure 1b
for ε < 0.096. Additionally, in Figure 1d for I < 0.004069 and I > 0.01781, a single fixed
point is obtained, whereas coexisting fixed points are evident for 0.01438 < I < 0.01781,
which both satisfy Equation (3), based on the parameters. To have better observation,
the bifurcation diagrams are plotted with respect to two bifurcation parameters, and the
system’s dynamics are plotted with particular colors in Figure 2 with (1.0, 0.8, 0.2) as the
initial condition. The purple color shows the chaotic oscillation, the red one is the periodic
oscillation, and the blue regions show the quiescent mode of the 3D-MCM. Figure 2a de-
picts the system bifurcation in the I-k plane in which some periodic oscillation (red region)
can be observed in the chaotic zone (purple regions), while there is no quiescent mode
(blue region) in the chaotic zone. In Figure 2b, which illustrates the system bifurcation in
the r-ε plane, chaotic and quiescent zones are somehow separated by periodic regions.

The Lyapunov exponents corresponding to each panel of Figure 1 are presented in
Figure 3. Using (1.0, 0.8, 0.2) as the initial condition, chaotic ranges with at least one
positive LE indicate aperiodic behavior in the mentioned ranges.

Figure 4 illustrates the periodic and chaotic dynamics of the 3D-MCM for the parame-
ters in Table 1 and two different values for k in the time domain and phase space. Figure 4a
shows the periodic orbits of the 3D-MCM at k = 0.148, and Figure 4b shows the chaotic
dynamics at k = 0.152 with the initial condition (1.0, 0.8, 0.2). Throughout the figures,
the transient parts of the 3D-MCM are represented by the bright gray points, while dark
blue ones indicate the steady states.

By analyzing 3D-MCM dynamics, it has been shown that the model demonstrates a
wide range of neuronal behaviors, including quiescence, periodic oscillation, and chaotic
oscillation. The map-based behaviors are more efficient than those of other neuron models,
especially in large-scale networks. As the 3D-MCM is a memristor-based model with
memory, it can be used in learning approaches or other fields needing memory. The
proposed 3D-MCM is compared to some other memristor-based and non-memristor-based
neuron models in Table 2. Most studies have demonstrated that memristor resistance has a
significant impact on system dynamics.
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Figure 1. The bifurcation diagram of 3D-MCM versus system parameters: (a) the magnetic strength, k;
(b) the scale factor of time, ε; (c) the scale factor of flux, r; and (d) the injected ion current, I. Excluding
each bifurcation parameter in the panels, the other parameters are set, as mentioned in Table 1. The
diagram in purple is plotted with the initial conditions (x(0), y(0), φ(0)) = (1.0, 0.8, 0.2), and the
one in blue is plotted with the initial conditions (x(0), y(0), φ(0)) = (0.5, 0.2, 0.3), indicating that
the 3D-MCM has coexistence of an oscillating attractor and a fixed-point attractor.



Electronics 2023, 12, 545 6 of 14

Electronics 2023, 12, x FOR PEER REVIEW 6 of 14 
 

 

 

Figure 2. Two-parameter bifurcation diagram of 3D-MCM versus system parameters: (a) the mag-

netic strength, 𝑘, and the injected ion current, 𝐼; (b) the scale factor of flux, 𝑟, and the scale factor 

of time, 𝜖. Excluding each bifurcation parameter in the panels, the other parameters are set, as men-

tioned in Table 1. Both diagrams are plotted for (𝑥(0), 𝑦(0), 𝜙(0)) = (1.0, 0.8, 0.2). 

 

Figure 3. The Lyapunov exponents (LEs) of 3D-MCM as a function of system parameters: (a) the 

magnetic strength, 𝑘; (b) the scale factor of time, 𝜖; (c) the scale factor of flux, 𝑟; and (d) the injected 

ion current, 𝐼 . The parameters are the same as in Figure 1. The initial condition is 

(𝑥(0), 𝑦(0), 𝜙(0)) = (1.0, 0.8, 0.2).  In each panel, the largest exponent is displayed in yellow, while 

the two smaller ones are displayed in red and dark blue. 

Figure 4 illustrates the periodic and chaotic dynamics of the 3D-MCM for the param-

eters in Table 1 and two different values for 𝑘 in the time domain and phase space. Figure 

4a shows the periodic orbits of the 3D-MCM at 𝑘 = 0.148, and Figure 4b shows the cha-

otic dynamics at 𝑘 = 0.152 with the initial condition (1.0, 0.8 0.2). Throughout the fig-

ures, the transient parts of the 3D-MCM are represented by the bright gray points, while 

dark blue ones indicate the steady states. 

Figure 2. Two-parameter bifurcation diagram of 3D-MCM versus system parameters: (a) the magnetic
strength, k, and the injected ion current, I; (b) the scale factor of flux, r, and the scale factor of time, ε.
Excluding each bifurcation parameter in the panels, the other parameters are set, as mentioned in
Table 1. Both diagrams are plotted for (x(0), y(0), φ(0)) = (1.0, 0.8, 0.2).
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Figure 3. The Lyapunov exponents (LEs) of 3D-MCM as a function of system parameters: (a) the
magnetic strength, k; (b) the scale factor of time, ε; (c) the scale factor of flux, r; and (d) the
injected ion current, I. The parameters are the same as in Figure 1. The initial condition is
(x(0), y(0), φ(0)) = (1.0, 0.8, 0.2). In each panel, the largest exponent is displayed in yellow,
while the two smaller ones are displayed in red and dark blue.
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Figure 4. Time series of x, y, and φ (Left column) and 2D state space projections of 3D-MCM in the
x-y plane and 3D state space projections in the x-y-φ plane (right column) with the initial conditions
(x(0), y(0), φ(0)) = (1.0, 0.8, 0.2). The periodic oscillation occurs for k = 0.148 (a), and the
chaotic oscillation occurs for k = 0.152 (b). The other parameters are set, as mentioned in Table 1. The
3D-MCM’s basin of attraction in the x-y plane is illustrated in Figure 5, where the initial condition
(x(0), y(0), 0.2) leading to chaotic bursting (quiescent) mode is illustrated in purple (blue). The
system’s parameters are set, as mentioned in Table 1. According to the diagram, selecting different
initial conditions with the same parameters results in different attractors.
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Figure 5. Basin of attraction of 3D-MCM in the x-y plane for φ(0) = 0.2. Choosing the initial
conditions (x(0), y(0), 0.2) in the purple region makes the system oscillate chaotically, and the ones
in the blue area lead to quiescence. The system parameters are mentioned in Table 1.

Table 2. Comparison of the proposed model with some other memristive neuron models.

Memristive Model Memductance
Function Discrete Summary Year

Morris–Lecar with
memristive autapse

[54]
Polynomial No

The dynamics of the proposed Morris–Lecar neuron
model with memristive autapse are investigated

theoretically with the help of time series, phase space,
and the bifurcation diagram. It demonstrates that

memristive autapse can cause multistability. Also, this
memristor can enhance the synchronizability of the

coupled memristive autaptic neurons.

2023

Memristive Rulkov
neuron [55] Sinusoid Yes

The HP memristor adds the Rulkov neuron to analyze
the memristor-based neuron. Phase portraits,

bifurcation structures, and spectral entropy complexity
are then used to study its dynamics. It shows that the

resistance of the memristor can postpone the
bifurcation point. Additionally, the memristive model

has a wider range of complexity.

2022

Memristive
Hindmarsh–Rose

[56]
Time-delayed No

The effect of a time-delay memristor is examined by
using the 2D Hindmarsh–Rose model. When the

external source is a DC source, it has been
demonstrated that the memristor may produce chaotic
or hyperchaotic currents by adjusting the time-delay

parameter. The bifurcation diagram, Lyapunov
exponents, and phase portraits are used to study the

dynamical behaviors of the suggested
memristor model.

2021

Memristive
improved

Izhikevich [57]
Polynomial No

The memristive version of the improved Izhikevich
model is analyzed to see how the external magnetic

field affects the neuron’s firing pattern. Model
dynamics are only examined using time series and

bifurcation diagrams.

2020
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Table 2. Cont.

Memristive Model Memductance
Function Discrete Summary Year

3D Memristive
Chialvo Model

Hyperbolic
tangent Yes

In this paper, the 3D memristive Chialvo model is
proposed to study the impact of hyperbolic tangent
fluctuation on neuron dynamics. The stability of the

system’s fixed point is first analyzed. The variation of
the model based on system parameters, particularly
the magnetic strength, is then examined using single

and double-parameter bifurcation diagrams and
corresponding Lyapunov exponents, in addition to

time series analysis.

-

3. Synchronizability of the 3D-MCM

An analysis of synchronizability can be done by coupling at least two neurons. Hence,
the effect of flux φ on the collective behavior of 3D-MCM synchronization is investigated
by connecting a pair of neurons with electrochemical synapses, as follows:

xi(n + 1) = x2
i (n) exp(yi(n)− xi(n) + I + ktanh(φi)xi(n)

+gel (xi′(n)− xi(n))

+gch(V∗s − xi(n))
(

1
1+exp(−β(xi′ (n)−θs))

)
yi(n + 1) = ayi(n)− bxi(n) + c

φi(n + 1) = rφi(n) + εxi(n)

(6)

In Equation (6), which shows the two coupled 3D-MCM, xi is the states of i-th neuron
and xi′ denotes the other neuron states, where i = 1, 2. Also, gel and gch are, respectively,
electrical, and chemical coupling. Here, the coupled model parameters are mentioned in
Table 3.

Table 3. The value of parameters for two coupled 3D-MCM.

a b c k ε r I V∗s β θs

0.89 0.18 0.28 0.145 1 0.95 0.005 −1.4 50 −1.4

The synchronizability of 3D-MCM is determined by the synchronization error, which
is defined as:

error = 〈
√
(x1 − x2)

2 + (y1 − y2)
2 + (φ1 − φ2)

2〉
n

(7)

in which 〈.〉n indicates the mean over samples. The effects of chemical and electrical
coupling strengths on synchronizability are examined through error. First, the error is
calculated concerning only one coupling to investigate how each coupling strength affects
the coupled neurons’ synchronizability. Then, the effect of both chemical and electrical
coupling strengths on its synchronizability is analyzed.

Figure 6a shows the error in the absence of chemical coupling (gch = 0) and varying
gel , while Figure 6b shows the error for the opposite condition (gel = 0 and varying
gch) when the initial conditions are chosen as (x1(0), y1(0), φ1(0)) = (1.0, 0.8, 0.2) and
(x2(0), y2(0), φ2(0)) = (0.5, 0.2, 0.3). In Figure 6a, error = 0 indicates that the neurons
are synchronous when gel > 0.0436, while in Figure 6b, the error is always positive, which
shows that the neurons cannot be synchronized in the absence of gel .
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Figure 6. Synchronization error of two 3D-MCMs as a function of only one coupling strength,
while the other one equals zero when parameters are set, as mentioned in Table 3, with
(x1(0), y1(0), φ1(0)) = (1.0, 0.8, 0.2) and (x2(0), y2(0), φ2(0)) = (0.5, 0.2, 0.3) as initial con-
ditions. (a) Error in the absence of gch as a function of gel and (b) error in the absence of gel as a
function of gch.

The synchronization error of the network is also calculated when both chemical and
electrical couplings vary. Black regions in Figure 7a indicate zero error, hence the complete
synchronization of two neurons. As gel increases, the synchronization error gets lower. It
confirms that the network cannot be fully synchronized without the gel parameter. Figure 7b
indicates the error in the k-gel plane when gch = 0.00012. According to Figure 1a, in this
diagram, k is chosen in the chaotic range of a single 3D-MCM. The black spots in the
error plane, where error = 0, illustrate that by adjusting chemical coupling strength, two
neurons can be synchronized whether the single neuron is in its quiescent mode or oscillates
chaotically or periodically. The error in Figure 7a indicates that if electrochemical coupling
in the synapses is considered, for larger gch, larger gel is required for full synchronization.
In addition, in Figure 7b, it is observed that as k increases, the dynamics of the system
become more ordered and smaller gel is needed to achieve zero synchronization error.
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Figure 7. The 2D synchronization error of two 3D-MCMs in the (a) gel–gch plane when
k = 0.145, and (b) gel–k plane when gch = 0.00012. The other system parameters are
set, as mentioned in Table 3, with initial conditions (x1(0), y1(0), φ1(0)) = (1.0, 0.8, 0.2) and
(x2(0), y2(0), φ2(0)) = (0.5, 0.2, 0.3).
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Figure 8 shows four time series of two MCMs with different coupling strengths. In
Figure 8a, the chemical coupling is absent, but complete synchronization has occurred;
however, in Figure 8b, when the electrical coupling is absent, synchrony in neurons does
not occur; one neuron oscillates chaotically, and the other is placed in the quiescent state. In
addition, two different patterns of asynchronous oscillation are illustrated in Figure 8c,d.
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Figure 8. x, y, and φ variables of the network in the time domain for different chem-
ical and electrical couplings when parameters are set, as mentioned in Table 3, with
(x1(0), y1(0), φ1(0)) = (1.0, 0.8, 0.2) and (x2(0), y2(0), φ2(0)) = (0.5, 0.2, 0.3) as initial con-
ditions. (a) gch = 0.0 and gel = 0.07; (b) gch = 0.0002 and gel = 0.0; (c) gch = 0.0002 and
gel = 0.025; and (d) gch = 0.0005 and gel = 0.02. In the absence of gch, synchronization can be
seen; while in the absence of gel , no synchronization occurs.

The network basin of attraction is also plotted for coupled 3D-MCMs. Figure 9 shows
the oscillators’ dynamics with initial conditions (x1(0), 0.8 , 0.2) and (x2(0), 0.2 , 0.3). The
initial conditions in the purple region are x1(0) and x2(0), which leads the networks to
oscillate chaotically but not necessarily synchronously. The ones in the blue region lead to
the quiescent state. The system parameters are set as mentioned in Table 3.
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4. Discussion and Conclusions

The Chialvo neuron map model under electromagnetic fluctuation was studied, as
described in this paper. A hyperbolic tangent version of the memristor was added to the
activation variable of the 2D Chialvo map, and its dynamics were analyzed. The fixed point
of the memristive Chialvo was calculated, and its stability was demonstrated. Moreover,
the effects of model parameters were examined, revealing that the magnetic strength
can mainly cause the model to bifurcate. Also, the occurrence of chaotic behavior by
adjusting parameters was evident through plotting the bifurcation diagram and calculating
Lyapunov exponents. Additionally, the memristive model’s time series and phase space
were plotted to demonstrate the periodic and chaotic patterns of the neuron. Based on the
initial condition, the system has coexisting attractors (bursting or quiescent mode). The
synchronizability of the memristive Chialvo model was also examined by coupling two
identical neurons with electrochemical synapses. The computation of synchronization error
showed that in the absence of electrical coupling, complete synchronization cannot arise;
however, the electrical coupling can individually synchronize the two coupled neurons
without chemical coupling. In the end, the effect of different coupling strengths on the
neurons’ dynamics was illustrated in the time domain.
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