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Abstract: Accurate video launching and propagation is significant for promotion and distribution of
videos. In this paper, we propose a novel video propagation strategy that fuses user interests and
social influences based on the assistance of key nodes in social networks (VPII). VPII constructs an
estimation model for video distribution capacities in the process of video propagation by investigating
interest preference and influence of social users: (1) An estimation method of user preferences for
video content is designed by integrating a comparative analysis between current popular videos and
historical popular videos. (2) An estimation method to determine the distribution capacities of videos
is designed according to scale and importance of neighbor nodes covered. VPII further designs a
multi-round video propagation strategy with the assistance of the selected key nodes, which enables
these nodes to implement accurate video launching by estimating weighted levels based on available
bandwidth and node degree centrality. The video propagation can effectively promote the scale and
speed of video sharing and efficiently utilize network resources. Simulations-based testing shows
how VPII outperforms other state-of-the-art solutions in terms of startup delay, caching hit ratio,
caching cost and higher control overhead.

Keywords: video propagation; user interests; social influences; key nodes

1. Introduction

The fast development of communication and network technologies provides ubiq-
uitous access and sharing of services and resources on the Internet [1–3]. Video services,
such as video-on-demand and live video, are very important applications and consume
more than three-quarters of network traffic [4–7]. Although a large amount of valuable
videos is generated and launched, they are not well-known on the Internet due to limited
propagation and hypodynamic sharing. Video propagation on the Internet mainly relies
on the scale of video demand and supply and accessibility to propagation channels [8–10].
Social networks provide an efficient channel to construct links between users and videos:
video users not only use social links with each other to distribute information and videos,
but also depend on their social influence to motivate other users to accept the pushed
videos. Because social networks have characteristics of high clustering and small world, the
short social distance between users in terms of the six degrees of separation stimulates fast
video dissemination. Figure 1 shows social-based video sharing via a cascade spread mode
used to express the nodes with different social influence levels. Mobile nodes use social
links to push video to their social neighbors and supply video data for their social neighbors
who want to fetch videos. However, the large-scale video sharing in social-based video
propagation also consumes a large amount of network resources and causes unbalanced
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supply and demand [11–16], which limits scale and time of video propagation. Efficient
video propagation needs to be based on controllable video launching, considering dynamic
sharing conditions, such as available bandwidth and variational demand.

Being aware of user preferences and interests is very important for controllable video
launching. User preferences concerning video content determine demand and determine
what video genres are requested [17]. Strong correlation with user interests determines
successful acceptance of video data [18], while weak correlation means that the videos will
be unsuccessfully distributed. The social-influence-based communication between users
can enhance interest level and extend interest range. Recently, numerous researchers have
focused on social-based video propagation [19]. Video propagation that fuses interests
and influences is an effective method of implementation with accurate launching and
extensive propagation. For instance, a framework that can accurately identify and estimate
the propagation process and influence of popular videos has been proposed in [20]. A
video propagation method in a cloud content delivery network, which relies on the social-
community-based strategies of video replication and request dispatching to obtain low
monetary cost and low service latency was proposed in [21]. However, existing propaga-
tion methods do not consider user interests and social influences in the process of video
dissemination; therefore, it is difficult to achieve accurately positioned video launches with
low message overhead and low startup delay.

In this paper, we propose a novel video propagation strategy fusing user interests and
social influences based on leveraging key nodes in social networks (VPII).VPII estimates
key levels of nodes from the aspects of both interests and influence and uses selected key
nodes in batches to push videos and supply video data for other request nodes, which
effectively promotes scale and efficiency of video propagation through economic utilization
of network resources. This approach ensures quality of experience (QoE) of users and
quality of service (QoS) of video propagation. Simulation results show how VPII achieves
much better performance results in comparison with other state-of-the-art solutions. The
main contribution of our work is described as follows.

(1) VPII constructs an estimation model of key nodes by investigating interest prefer-
ences and social influence. VPII estimates the probabilities that nodes will fetch a specific
video by considering current popular videos and historically popular videos and calculates
social influence subjected by nodes from their social neighbors for requesting or accepting
videos. VPII also estimates video circulation capacities of nodes according to the number
and social importance levels of neighbor nodes covered (“infected”) by nodes.

(2) VPII further investigates the two weight factors: available bandwidth and node
degree centrality to calculate the weighted key levels of nodes. VPII designs a multi-
round video propagation strategy that uses selected nodes to implement accurate video
launches in terms of dynamic video supply and demand at every propagation round,
effectively reaching market equilibrium of video resources and providing cost-efficient use
of bandwidth and storage resources of networks.

The rest of the paper is organized as follows. Section 2 describes the related work of
video propagation. Section 3 presents measurement of key levels of nodes and a video
propagation algorithm based on key nodes in VPII detailed design. Section 4 evaluates
the performance of video propagation of VPII through a comparative simulation. Finally,
Section 5 includes our conclusions.
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Figure 1. Social-based video sharing in wireless mobile networks.

2. Related Work

Some researchers focus on information propagation. For instance, a propagation model
based on social sensor networks was proposed, which uses scenarios of social relationship
types and restriction of negative influence to minimize propagation cost [22]. A nonlinear
dynamic method of information diffusion for public emergencies based on the propagation
dynamics was proposed, which constructs an information propagation model in terms of
information communication characteristics of public emergencies and designs a dynamic
diffusion network [23]. A bandwidth-intensive social content propagation method was
proposed, which designs a mobility-aware content replication strategy for edge-network re-
gions and a replication scheduling algorithm using historical, local and partial information
to achieve efficient D2D propagation [24]. Traverso et al. proposed an information propaga-
tion strategy by investigating timing regularities and time differences of users, fusing social
relationships and geographic location [25]. A socially aware scheduling algorithm was
designed, which achieves a trade-off between cost and benefits under bandwidth budget
constraints. An information diffusion of topic propagation in social media was proposed
in order to accurately predict specific states of users with real-time variation of resources
observed by users [26]. The dynamic process of information diffusion among users was
denoted as an interconnected network which is addressed by the super-Laplacian matrix.
An update model of auxiliary and external input was constructed as a multidimensional
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Brownian process, which shows the variations of user states in intrinsic interactions and
external inputs. A Kalman predictor problem of user state prediction was formulated and
was addressed by the a priori knowledge of the user state, which further promotes accuracy
of prediction results of the user state. The above methods of information propagation
employ the static user–passive mechanisms, which with difficulty can be adapted to video
services with an active and passive mode of users.

The convergence of social networks and video services facilitate the range and scale
of video data propagation from video sources to social users. Some researchers focus on
social video sharing methods to address the challenges of social video sharing caused by
boundless coverage and increased video content [27]. Wang et al. designed a mechanism
for socially aware video delivery according to the revealed characteristics of social video
propagation. Roy et al. discussed distribution of video traffic for mobile network operators
and proposed a receiver-oriented location-aware scheduling scheme of video traffic in
cellular networks [28]. Roy et al. proposed a social-stream-aware estimation method for
sudden popularity bursts in online videos based on transfer learning [29]. A transfer
learning algorithm which learns topics from social streams was designed by modelling the
social prominence of videos, which promotes accuracy of predicted video spread trends.
Wang et al. proposed a live video push strategy by adjusting traffic load between edge
servers to promote propagation efficiency and range of live video data [30]. Each edge
server cluster is related to multiple user groups, and the bandwidth resources of edge
server clusters are stably allocated for corresponding user groups in terms of the relation
between them, which enables the load of edge servers to be evenly kept. A proactive
propagation algorithm of live video data replication was designed, which implements
reliable data caching of live videos in the edge servers to ensure delivery quality of live
video data. Niu et al. constructed a multi-source-driven asynchronous diffusion model
for video sharing in social networks [31]. The latency that a social user activates with
a single video source is estimated in terms of the latency of information propagation
along social links, which follows the exponential mixture model. The influence-based
propagation process of videos is described, which shows the exponentially decreasing
user activation probability related to the increasing time. The activation probabilities of
all users are determined by neighbors of their active neighbors. Sang et al. proposed a
context-dependent propagation method of videos in heterogeneous information networks
in order to address the problem of accurate video distribution in a complex information
context [32]. The videos consist of the multimodal content features and global dependency
structure in heterogeneous information networks. By investigation and propagation for
global context cues of videos, the videos can be accurately recommended according to
identification results of the learned embedding based on video context. However, the above
methods do not synthetically employ user interests and social influence to promote scale
and efficiency of video propagation with accurate launches.

Some researchers also focus on social video propagation with the assistance of key
nodes in social networks. Cai et al. proposed a cloud gaming system with cooperative
video sharing, which enables the group-based players to decode the corresponding videos
with the assistance of each other via multiple network interfaces after the cloud servers
encode and transmit multiple video streams [33]. Jiao et al. proposed a cluster-based
video distribution method with the help of the selected relay nodes in clusters [34]. The
nodes are grouped into multiple clusters, and the cluster head nodes of each cluster are
selected as relay nodes according to multiple factors such as social influence. A video
distribution method was designed, which achieves the mobility-aware cooperative video
sharing based on collaboration between edge nodes. Hu et al. constructed a model of an
indirect reciprocity game for the interaction between users. By using the Markov decision
process, the users can make distributed decisions to maximize cooperation levels [35].
Shiroma et al. proposed a cooperative cache method by constructing a relationship between
users and videos [36]. The users can decisde to cache content according to the match of
their group ID and content group ID, which reduces the load of the base station by the
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distributed content caching. The extensive video caching and usage of D2D technology
accelerate cooperative fetching of videos. Wu et al. proposed a D2D-based cooperative
sharing method of videos by cooperative video caching and sharing [37]. By investigation
of generality for historical watched records, sharing willingness, location distribution
and QoE requirements of users, the appropriate video providers are allocated for video
requesters according to the user generality of watched records, sharing willingness, location
distribution and QoE requirements. However, the above methods also do not synthetically
estimate propagation capacities of selected key nodes according to user interests and social
influence, so that accurate video launching is effectively implemented.

Moreover, some researchers also focus on evaluation metrics of video quality and
the video delivery based on deep learning. Tian et al. proposed a quality evaluation
framework based on motion activity information where definition and smoothness of
videos are measurement metrics of video quality [38]. Eswara et al. proposed a QoE
evaluation framework which includes a learning-based playback model and an exponential
rebuffering model where objective evaluation of popular video quality assessment and
subjective evaluation of continuous time QoE are selected as the evaluation metrics [39].
Feng et al. analyzed the influence of the network packet on the video transmission quality,
such as packet loss and jitter, and constructed a BP neural network evaluation model
using video bit rate as a parameter [40]. Yao et al. proposed a bitrate-based no-reference
(NR) VQA metric combining the visual perception of video contents [41]. The parameters,
including bitrate, texture complexity and local contrast of image, temporal information
of video and visual perception features, are selected as the evaluation metrics in a video
quality assessment model.

Hu et al. proposed a centralized deep reinforcement learning association method
based on a rainbow agent with a convolutional neural network (CNN) to generate deci-
sions from observation [42]. The designed multi-agent deep DRL algorithm is used for
resource scheduling and association of sub-problems using the networked-distributed
partially observable Markov decision process (ND-POMDP). Tang et al. proposed a novel
two-level decision framework with consideration of either a short-term multi-user QoE max-
imization or a long-term single-user point-to-point QoE maximization, which includes an
optimization-based beamforming scheme and a deep reinforcement learning (DRL)-based
rate adaptation scheme [43]. Choi et al. proposed an Internet-of-Vehicles network where
the video streaming service is based on distributed caching that employs D2D links [44].
By maximizing the average video quality based on the constraints of playback delays and
a data rate guaranteed for cellular vehicles, the video delivery decisions can be jointly
optimized. The deep reinforcement learning without the knowledge of global channel state
information is used to solve the problem of the stochastic shortest path problem. Kwon et al.
proposed a deep deterministic policy using gradient-based power control of an mmWave
base station (mBS) and proactive cache allocation toward mBSs in distributed mmWave
Internet-of-Vehicles (IoV) networks [45]. Shi et al. proposed a cooperative-learning-based
scheme for the smart Edge servers with caching and prefetching to improve the QoE of
adaptive video streaming [46]. The edge servers store the most beneficial content, which
reduces redundant video transmissions and network transmission delay using prefetched
content. A novel QoE-oriented deep neural network model was designed and used to
formulate the most advantageous decisions of caching and prefetching.

3. VPII Detailed Design
3.1. VPII Architecture

Figure 2 illustrates the design of VPII architecture which includes the two components
measurement of key levels of nodesand video propagation strategy. The social networks
use social channels between users to distribute videos, which effectively promote scale and
speed of video sharing. The key nodes, which have a strong desire of video fetching, great
social influence and enough upload bandwidth in social networks, can speed up the video
spread process and greatly increase the scale of video copies.
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Figure 2. Relationship between components and elements of VPII.

(1) Measurement of key levels of nodes: The potential key nodes should have a strong
desire for video fetching with high interest levels for the propagated videos, which ensure
the potential key nodes are willing to store video copies and spread videos via “pull” and
“push” ways. By calculation of similarities between currently popular videos and historical
watched videos, the content-based interest levels of users can be estimated. By measuring
social influence levels incurred by social neighbors of users for desire levels of video
fetching, the social-based influence levels of users can be estimated. The interest estimation
fusing video content and social influence can ensure highly accurate probabilities of video
fetching. On the other hand, by investigating scale levels and social importance of neighbor
nodes infected by the potential key nodes, the spread capacities of potential key nodes in
the future can be accurately estimated. The nodes which have a strong desire for video
fetching and great social influence should be selected as the key nodes.

(2) Video propagation strategy: The social networks make use of “pull” and “push” ways
to spread videos. The selected key nodes use their social influence to push videos with
high successful probabilities and supply their upload bandwidth to meet the demand of
active requests. In order to control spread, the batch-wise activation of key nodes are
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implemented in terms of available bandwidth and key levels of key nodes, so that the key
nodes that have extensive social connections, strong social influence and enough upload
bandwidth should be preferentially covered (activated). The video cascade propagation
from key nodes to their neighbor nodes uses the high propagation success rate to balance
the supply and demand of upload bandwidth at the initial propagation of videos and
ensure the data delivery performance with low wait delay and low packet loss rate.

3.2. Measurement of Key Level

A social network can be defined as G = (V, E) where V is the set of nodes G; E is
the set of edges between nodes in G. G is a logical network where the construction of
edges relies on results of real communications between nodes. G has the huge scale of
nodes, but the distance between nodes in G is not far in terms of six degrees of separation
based on the small world of social networks [47]. In other words, the small world of social
networks can effectively support fast speed, high success ratio and a large scale of video
propagation. Propagation of a video can seemingly have extensive coverage in G with
the help of short social distance between nodes. However, a small number of videos has
relatively extensive popularity in networks. Obviously, the social distance is not a decisive
factor for the popularity of video propagation. Social networks have the characteristics
of small world; some nodes have abundant social links and strong social influence and
undertake the link tasks of social relationship. These nodes which use social links and
influence to promote propagation of resources are considered the key nodes. Specifically,
the key nodes use social links to supply video data for other nodes or push video data to
their neighbor nodes and further rely on the social influence to enable the neighbor nodes
to accept the pushed video data. If the key nodes are selected before propagation of videos,
the video systems use the key nodes to promote the propagation scale of videos.

We assume that the visibility of video information for each node is one at the initial
moment of video propagation; in other words, all nodes in G can obtain video information
by message broadcasting of the video source nodes. “Pull” and “push” are the two ways of
video propagation. When a node ni wants to obtain video resources, ni sends the request
message to a or multiple nodes (“pull”) or waits for the pushed video data from other
nodes (“push”). If ni has obtained video data and successfully supplies or pushes video
data for many nodes, ni can be considered as the key nodes. The coverage levels of ni
for propagation of vj and the interest-related probability that ni obtained data of video
vj are the important factors for estimation of key levels of ni. Let PSij be the interest-
related probability that ni obtained data of video vj. The value of PSij is calculated by the
probability PAij that ni accepts vj and the influence factor PIij that ni is influenced by the
number of ni’s one-hop neighbor nodes which fetch data from vj. PAij can be defined as:

PAij = α× Sje + (1− α)ILe (1)

The videos are classified as different categories in terms of theme and content of
videos, such as comedy and science fiction. Most users have similar interest distributions:
intense interest for a few video categories and bland for numerous video categories. The
stronger the interest of users is, the higher the probability that the users accept videos is.
For instance, a user has high interest for the basketball game. The basketball game of the
NBA is accepted regardless of the Lakers or the Warriors. Let VC = (ca, cb, . . . , cn) be a set
of video categories where each video has a unique category; |ce| is the number of items in
ce, vj ∈ ce; scj is the similarity value of content between vj and vc. The information (e.g.,
title, introduction, directors, actors, etc.) of vj and vc is constructed as the two vectors,
respectively; The included angle cosine of two vectors can be used as the value of scj.

Sje ∈ [0, 1] is the average value of content-based similarity values between vj and all
items in ce and is considered as the predicted probability; Sje can be defined as:
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Sje =

|ce |
∑

c=1
scj

k|ce|
(2)

where k is a positive integer and is the number of videos which belong to ce and are
propagated at the same period time; k 6= 1 denotes that multiple videos which belong to the
same video category and contemporaneously are propagated in networks; k = 1 denotes
that a unique video which belongs to ce is propagated in networks. When the videos of
multiple categories are propagated in networks, there is a game among different video
categories. The videos rely on the adaptation level between the belonged categories and
the interest preference of users to be accepted by users. When the multiple videos which
belong to the same category are propagated in networks, there is also a game between
them. In fact, 1

k can be considered as a game factor, which means that the users accept the
videos with the same category using the same probability.

ILe ∈ [0, 1] denotes the important level of a video category ce relative to other cat-
egories and is also considered as the probability that ni accepts videos in ce; ILe can be
defined as:

ILe =
fe

|VC|
∑

c=1
fc

(3)

where fe is the number of items in ce, vj ∈ ce which is accepted by ni; |VC| returns the

number of all video categories.
|VC|
∑

c=1
fc is the total number of all videos in all video categories

which is accepted by ni; α ∈ [0, 1] is a regulatory factor; α ∈ (0.5, 1] means that the
probability that ni accepts vj is suited to the content-based correlation levels between vj and
items in ce; α ∈ [0, 0.5) means that the probability that ni accepts vj is suited to the historical
behaviors of video playback of ni. α ∈ [0, 0.5) means that there is a balance content-based
correlation levels and historical behaviors.

In social networks, if the two nodes build a direct communication relationship and
the message interaction between them does not depend on forwarding of other nodes,
they have one-hop neighbor relationship, and the social distance between them in social
network is one. Let NSi be the set of one-hop neighbor nodes of ni in G. The two nodes ni
and nk in G directly implement communication (e.g., “pull” and “push” of video data), so
the edge between them is built, and they have the neighbor relationship in G. The social
relationship level between ni and nk is closer than the nodes which do not have the edge
with them; ni uses the edges to interact with the neighbor nodes, so that there are different
levels of social relationship between ni and the neighbor nodes. If ni and neighbor nodes in
NSi have high-frequency video sharing behaviors of interaction, they have a close social
relationship. For instance, if ni and a neighbor node nk in NSi always meet the request of
video data with each other, there is a close social relationship between ni and nk. If ni and
nk always accept the pushed video data with each other, ni and nk also have a close social
relationship. Further, the behaviors of fetching videos of ni’s neighbor nodes generate
different influence for ni in terms of the close levels of social relationship. When ni has data
of vj and obtains the information that the close neighbor nodes accept vj, the probability
that ni makes the same decision (acceptance or rejection of vj) with the close neighbor
nodes may be high. On the other hand, the influence of nodes which have a low-coupling
social relationship for ni is low. Therefore, PIij can be defined as:

PIij = β

|SNFj |
∑

c=1
wc

n
∑

c=1
wc

+ (1− β)
I fe

fe
(4)
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SNFj ∈ NSi is a set of ni’s neighbor nodes which accept vj; |SNFj| returns the number
of nodes in SNFj; I fe, I fe ∈ [0, fe] is the number of videos which is accepted by ni in terms

of the influence of neighbor nodes. I fe
fe
∈ [0, 1] is the historical ratio of influence-based

video fetching of ni and also is considered as the experiential probability of fetching vj of
ni. β ∈ [0, 1] is also a regulatory factor like α. w is the weight of edge between ni and a

neighbor node in NSi;
m
∑

c=1
wc is the cumulative sum of edge weight between ni and nodes

in NSi which accept vj;
n
∑

c=1
wc is the total sum of edge weight between ni, and all nodes in

NSi. wij of ni and ni’s one-hop neighbor node nk can be defined as:

wik =
f I
ik

n
∑

c=1
f I
ic

×
f S
ik

n
∑

c=1
f S
ic

(5)

where f I
ik is the interaction frequency between ni and nk;

n
∑

c=1
f I
ic is the total frequency of

interaction between ni and all nodes in NSi; f S
ik is the successful number of interaction

between ni and nk;
n
∑

c=1
f S
ic is the total successful number of interaction between ni and all

nodes in NSi.
f I
ik

n
∑

c=1
f I
ic

is the interaction level of nk relative to ni among all nodes in NSi;
f S
ik

n
∑

c=1
f S
ic

is the propagation level of video data of nk relative to all nodes in NSi. The investigation of
interaction and propagation levels for the nodes in NSi is the two important factors of edge
weight w; interaction and propagation have the close relation: (1) The interaction between
nodes is the precondition of propagation. (2) The propagation reflects the effectiveness of
interaction between nodes. The high-frequency interaction can promote the probability of
successful propagation; the high probability of successful propagation further enhances
the driving force of interaction. The larger the value of w is, the higher the probability of

successful video propagation is.

|SNFj |
∑

c=1
wc

n
∑

c=1
wc

is a time-related statistical value, which is different

from I fe
fe

. For instance, t0 and ta are the starting and statistical time, respectively. The value

of

|SNFj(ta−t0)|
∑

c=1
wc

n
∑

c=1
wc

is calculated according to the number of SNFj(ta − t0) during the period

time from t0 to ta. Therefore, the value of PSij is related with time and relies on the value of
PIij during the time period. According to the Equations (1) and (2), PSij can be defined as:

PSij = γPAij + (1− γ)PIij (6)

where γ ∈ [0, 1] is also a regulatory factor like α. On the other hand, the value of RCij
dynamically changes according to the increase in the number of nodes which are covered
by ni. The nodes make use of the edges to implement “pull” and “push” of data for vj
propagation in social networks. In the process of “pull”, nk wants to obtain data of vj and
sends to the request message to neighbor nodes. If a neighbor node ni has data of vj, ni
delivers data of vj to nk and achieves covering nk. If the neighbor nodes do not have data
of vj, they forwards the request messages to their neighbor nodes. The request messages
are forwarded along the edges and are responded to by the nodes carrying data of vj. In
the process of “push”, nk accepts push of vj data of a neighbor node ni, which denotes that
nk is covered by ni via “push”. If ni enables most of the nodes in G to be covered via “pull”
and “push”, ni plays an important role for the video propagation and can be considered
as the key node. If ni enables a large number of neighbor nodes to be covered during a
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period of time, ni can be considered as the candidate key node. Because the key nodes are
selected before the starting time of the propagation period of vj, the number of neighbor
nodes covered by ni during the propagation period should be a predicted value. In other
words, the prediction of coverage levels of nodes in G is an estimation for the selection of
key nodes before propagation of vj.

In the case where nk is a neighbor node of ni and the value of PAkj of nk can be
calculated by the similarity between vj and the accepted videos in ve according to the
historical playback records of nk, which is the content-based probability of nk fetching vj,

PBj
ki is the probability that nk is covered by ni for propagation of vj via “pull” and “push”

between nk and ni. Here, “pull” means that ni responds to the request for vj’s data of nk,

and “push” means that nk receives vj’s data pushed by ni. PBj
ki is the predicted value in

terms of the statistical information that nk is covered by ni and is defined as:

PBj
ki =

FSe
ki

FPe
ki

(7)

where FSki ∈ [0, FPki] is the number that nk is successfully covered by ni for all videos in
ce, vj ∈ ce, and FPki is the number of “pull” from nk to ni and “push” from ni to nk for all
videos in ce. Not all interactions of “pull” and “push” between nk and ni are successfully
implemented. For instance, when ni receives a request message for video data from nk
and does not store the requested video resource, ni does not supply video data for nk and
only forwards the request message to other neighbor nodes. When nk receives a pushed
message of video data from ni and is uninterested in the pushed video, nk rejects the pushed
video. Therefore, the probability PCj

ki that nk is covered by nj for propagation of vj can be
defined as:

PCj
ki = PAkj × PBj

ki. (8)

If a threshold value TPj is used to estimate whether nk is covered by ni for propagation

of vj, PCj
ki ∈ [TPj, 1] denotes that nk is interested in vj and nk is covered by ni via “pull”

or “push”. PCj
ki ∈ [0, TPj) denotes that ni is not covered by ni via “pull” or “push” ni’s

neighbor nodes which may be covered by ni for propagation of vj form a set NNSij by
comparison between TPj and PCj. The nodes in NNSi are the predicted results. The
propagation process of vj can be divided into multiple period time rounds. The time length
of each propagation round can be defined as playback time Lj of vj. NNSijx is the set of
nodes which is covered by ni at xth round of vj, and NNSijx returns the number of nodes in
NNSij at xth round of vj. The value of RCijx at xth round of vj can be calculated according
to the following equation.

RCijx =

|NNSijx−NNSijx∩CSijx |
∑

c=1
wc

|V−CSjx |
∑

c=1
wc

(9)

where |NNSijx| returns the number of nodes in NNSijx; CSijx is the set of nodes which
have stored data of vj in NSi; NNSijx ∩ CSijx returns the intersection set of NNSijx, and
CSijx; NNSijx − NNSijx ∩ CSijx is the difference set between the predicted set NNSijx and
the set of nodes which have been covered in NNSijx. CSjx is the set of nodes which have
been covered in G, and V − CSjx denotes the set of nodes which have not been covered in
G; RCijx is a ratio of the cumulative sum of weight values of predicted nodes covered by ni
relative to the set of nodes which have not been covered in G. Because RCijx is a predicted
result, the value of RCijx can be calculated before the starting time of the xth propagation
round. RCijx can be calculated according to the predicted coverage levels of neighbor nodes
of ni at the xth propagation round. However, the difference between the predicted and real
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results of RCijx can be used to optimize the estimation of coverage levels of other nodes
at the x + 1th propagation round, which brings the negative influence for the selection
accuracy of key selection at the next propagation round. RCijx can be re-defined as:

RCijx = δij

|NNSijx−NNSijx∩CSijx |
∑

c=1
λx−1

c wc

|V−CSjx |
∑

c=1
λx−1

c wc

(10)

where λx−1
c is an influence factor which is used to regulate the weight values of nodes

which are not covered; λx−1
c = f p

c
|NSc | increases linearly with the increase in the number

x of the propagation round; f p
c is the frequency that nc receives the push of vj data from

nc’s neighbor nodes (we assume that nc’s neighbor nodes push data of vj only once); |NSc|
returns the number of nc’s neighbor nodes and f p

c ∈ |NSc|. For instance, a node nk is
the one-hop neighbor node of multiple nodes in G. If nk is not covered by nk’s neighbor
nodes in G after x propagation round of vj and receives many push requests for vj data,
the probability that nk is covered by nk’s neighbor nodes via “pull” or “push” may increase
at the next propagation round of vj in terms of the linear threshold theory. Moreover, δij is
also a prior factor: entropy between predicted and real results of covered neighbor nodes
of ni for historical propagation of videos. For instance, before propagation of vj, ni is the
key node of multiple videos; ni enables ni’s neighbor nodes to store the propagated videos
according to the predicted neighbor nodes with high coverage probability. Let FSNia be
the set of nodes which belong to the predicted set NNSia and are not covered by ni in the
process of propagation of va. Let FWNia be the set of nodes which do not belong to the
predicted set NNSia and are covered by ni in the process of propagation of va. The value of
δia can be defined as:

δia = 1− |FFNia|+ |FWNia|
|NSi|

(11)

where |FFNia| and |FWNia| return the number of nodes in FFNia and FWNia, respectively,
and FFNia+FWNia

NSi
denotes the ratio between the number of covered items in all neighbor

nodes and number of all neighbor nodes. Further, the value of δij can be defined as:

δij =

|vsi |
∑

c=1
δic

|vsi|
(12)

where |vsi| returns the number of videos in a video set vsi, ni becomes the key nodes in the
propagation process of videos in vsi, and δij is the mean value of the coverage success rate
of ni for the propagation of videos in vsi. PAij is the probability that ni accepts vj and can
be calculated in real time according to the historical playback records of ni. Because the
number of videos watched by ni increases stably, the value of PAij is also stable during the
propagation process of vj. The value of PIij can also be calculated in real time or period
time by the current ratio of the number between neighbor nodes which have played vj and
all neighbor nodes and historical influence-based playback records. PIijx can be calculated
according to the current coverage levels of neighbor nodes of ni at the x− 1th propagation
round. Therefore, when vj starts to be propagated in G, the value of PSij can be calculated
and be periodically updated according to the variation of values of PAij and PIij during
the period time of the propagation round. According to values of PSij and RCij, the key
levels of ni for propagation of video vj at the xth round can be defined as:

PKijx = PSijx × RCijx. (13)
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At the initial propagation round, PIijx = 0, but the values of PAij ∈ [0, 1] and RCijx ∈
[0, 1] may be not equal to 0, so the value of PKijx can be calculated or updated before the
starting time of each propagation round of vj.

3.3. Video Propagation Based on Key Nodes

The video propagation in social networks shows a cascade process, so scale and
capacity of key nodes determine scale and efficiency of video propagation. Except for
the key nodes, video propagation is implemented according to the supply of video data
for request nodes. They also use their social influence to achieve successful push of vj
data with high probability. However, all key nodes are not activated at once due to
the limited upload bandwidth of source nodes carrying video data. The key nodes are
wholesale activated according to the priority based on key levels. The key nodes make use
of extensive social connections and strong social influence to promote the coverage range of
video propagation so that they should be preferentially covered. However, the promotion
of range and efficiency of video coverage also causes a fast increase in the demand for
network bandwidth required by video delivery. If the key nodes have enough bandwidth
and numerous neighbor nodes, they can successfully handle the converged request of
video data. The successful delivery of video data not only increases the coverage range of
video propagation, but also the new covered nodes become the new suppliers of upload
bandwidth. The video cascade propagation from key nodes to their neighbor nodes uses
the high propagation success rate to balance supply and demand of upload bandwidth at
the initial propagation of videos and ensure the data delivery performance with low wait
delay and low packet loss rate. On the other hand, if the key nodes do not have adequate
upload bandwidth to respond to the video data request of nodes, the number of video
copies is not quickly increased, and the startup delay of request nodes is lengthened; If
the key nodes have low node degree centrality, the limited channels of video propagation
restrict the scale of video copies and do not utilize upload bandwidth resources of key
nodes. Therefore, the available bandwidth and node degree centrality should be considered
in the process of selection of key nodes except for interest preference PS and coverage
capacities RC of key nodes.

When multiple videos propagate in G, the nodes in G may be selected as the key nodes
of multiple videos. The bandwidth resources of key nodes compete for the propagation of
multiple videos. The bandwidth resources of key nodes should be dynamically allocated
in terms of predicted popularity levels of videos. For instance, the videos that are in the
primary stage of propagation need more upload bandwidth resources than those in the
end stage of propagation; The videos that have a large number of potential covered nodes
also need more upload bandwidth resources than those with a small number of potential
covered nodes. The allocated upload bandwidth of key nodes ni at the xth round of vj
propagation can be defined as:

Bijx = Bi
|NNSijx|

k
∑

c=1
|NNSicx|

(14)

where Bi is the available bandwidth of ni; k is the number of propagated videos at xth
round, |NNSijx| returns the number of in NNSijx at xth round, |NNSic| is the number of
ni’s neighbor nodes which may be covered by ni for propagation of vc at xth round, and
|NNSijx |

k
∑

c=1
|NNSicx |

∈ [0, 1] is the allocated ratio of upload bandwidth of ni for propagation of vj

at the xth round. The larger the values of PK of nodes are, the stronger the key levels
(propagation capacities) of nodes will be. Because the key level values of nodes are in
the range [−1, 1], the nodes with the values of key levels in [−1, 0] are considered as the
nodes which do not have the propagation capacities. For instance, before the starting time
of the xth propagation round of vj, the key levels of all nodes for propagation of vj are
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estimated and form a set KSjx = (PKajx, PKbjx, . . . , PKnjx). All nodes are also considered
as candidate key nodes and form a set KNSjx. The nodes that have stored data of vj form a
set SNSjx. The following steps show the process of propagation of vj based on the selection
of key nodes at the xth round and is described in Algorithm 1 “Propagation of vj based on
key nodes”:

(1) CKSjx ∈ KSjx and the items in CKSjx are greater than 0. The nodes corresponding
to the items in CKSjx form a candidate set CKNSjx of key nodes at the xth propagation
round of vj. Upload bandwidth and node degree centrality should be considered the weight
values of key levels and be added into the estimation of key levels of nodes before the
selection of key nodes. The available upload bandwidth determines the number of nodes
that accept services of video data delivery of ni. The more sufficient the available upload
bandwidth of ni is, the stronger the capacity of propagation of ni will be. The capacity of
propagation of ni based on the available upload bandwidth at the xth round for vj can be
defined as:

VSCijx =
SNijx

SNmax
jx − SNmin

jx
(15)

where SNijx is the number of request nodes which are served by ni via data delivery of vj
and is defined as:

SNijx =
Bijx × (1− plri)

Bvj

(16)

where plri is the average packet loss rate of ni in the process of data delivery of all videos,
and Bvj is the transmission rate of data required by playback of vj. The values of SN
of all candidate key nodes are calculated and form a set SNjx; SNmax

jx and SNmin
jx are the

maximum and minimum values in SNjx, respectively; VSCijx ∈ [0, 1]. The node degree
centrality of ni can be defined as:

C(ni) =
|NSi|
|V| − 1

(17)

where |NSi| returns the number of neighbor nodes of ni,
|NSi |
|V|−1 is the normalization value

of node degree centrality of ni, which reduces the negative influence caused by variation of
number of nodes in G, and C(ni) ∈ (0, 1]. The weighted key levels of nodes in CKNSjx can
be calculated according to the following equation.

PKw
ijx = PKijx ×VSCijx × C(ni) (18)

The values of PKw
jx of nodes in CKNSjx are in the range [0, 1]. The items in CKNSjx

are descendingly sorted in terms of the weighted key levels.
(2) Distribution and scale of data requests in G are different during the different

propagation rounds of vj. Variation of distribution and scale of data requests result in a
change in the balance between supply and demand of upload bandwidth. If the scale of
requests is far larger than the current supply capacities of upload bandwidth in G, the
more key nodes should be selected to meet the demand of blowout upload bandwidth. If
the scale of requests is less than the current supply capacities of upload bandwidth in G,
the selection of key nodes should be suspended in order to save the resources of upload
bandwidth in networks. Therefore, the demand value of upload bandwidth should be
predicted before the selection of key nodes. The predicted demand value Bd

jx of upload
bandwidth at the xth round of vj propagation can be defined as:

Bd
jx = Bvj × λjx × Tj (19)

where λjx is the predicted number of increased covered nodes every unit time at the xth
round, which includes two types of node fetching data of vj via active request and push
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acceptance; Tj is the length of playback time of vj and is also the time length of the xth
round; λjx × Tj is the number of covered nodes at the xth round; Bvj × λjx × Tj is the
predicted value of upload bandwidth at the xth round of vj propagation. The value of λjx
is calculated according to the grey forecasting model (GFM). The time length of the xth
round is equally divided into multiple time slots Lx = (ls1, ls2, . . . , lsn). The value of λjxa

at each time slot lsa can be defined as λjxa =
Njxa
La

, where Njax is the number of covered
nodes during lsa and La is the time length of lsa. The covering rate of nodes corresponding
to each time slot can be calculated and form a time-ordered sequence set λjx1, λjx2, . . . , λjxn
where ∑n

c=1 λjxc = λjx. The covering rate of nodes corresponding to each time slot at the
(x + 1)th round can be calculated according to the GFM, and the value of λj(x+1) can be
obtained according to the cumulative sum of the predicted covering rate of nodes at the
(x + 1)th round. The covering rate of nodes at the initial round cannot be obtained, so
the mean value of the real covering rate of all videos in ce, vj ∈ ce at the initial round can
be considered as the predicted value of λj1 of vj at the initial round. When a neighbor
node of ni is the member in NNS of ni and is covered at the (x − 1)th round, it should
be removed from NNS of ni at the xth round. Let Bu

jx be the cumulative sum of available

upload bandwidth in SNSjx at the xth round. If Bd
jx − Bu

jx > 0, the scarce supply of upload
bandwidth requires that the key nodes be selected, preferentially covered and step (3)
implemented. If Bd

jx − Bu
jx ≤ 0, the redundant supply of upload bandwidth means that

there is no need to add new key nodes and implement step (5).

(3) k jx ∈ [
Bd

jx

BCKNSjx
, |CKNSjx|] is a number of the selected key nodes at the xth round

of propagation of vj; |CKNSjx| returns the number of items in CKNSjx and is the upper

bound of k jx;
Bd

jx

BCKNSjx
is the lower bound of k jx where BCKNSjx is the means value of upload

bandwidth of nodes in CKNSjx. If ∑
kjx
c=1 Bc > Bd

jx, the k jx nodes in CKNSj are selected

as the key nodes and are preferentially covered. If ∑
kjx
c=1 Bc < Bd

jx where k jx = |CKNSjx|,
all nodes in CKNSjx are selected as the key nodes. The period time length of the current

round is defined as ∑
kjx
c=1 Bc

Bd
jx
× Tj, which means that propagation of vj should enter a new

round in order to select new key nodes after the available upload bandwidth of all nodes in
CKNSjx is consumed. The decrease in period time of the propagation round promotes the
real-time levels of updating supply and demand of upload bandwidth, which speeds up the
iteration of the propagation round and relieves the supply shortage of upload bandwidth
by increasing the new key nodes.

(4) The k jx key nodes are selected from CKNSjx. They immediately fetch data from vj
by sending request messages and accepting the push of vj data. The nodes in NNS of key
nodes have a high probability of fetching data of vj, so the key nodes should preferentially
push data of vj to nodes in their NNS in terms of the descending values of PCj. Moreover,
the key nodes also need to handle the request messages of vj data from their nodes. For
instance, when a neighbor node nk of ni uses the edges with social neighbor nodes to send
a request message for vj data, ni responds and delivers data from vj to nk. Moreover, when
the neighbor node nk of ni receives a request from a neighbor node of nk and nk does not
deliver data of vj for the request nodes, nk also forwards the request message to ni, and ni
directly returns the response message to the request nodes.

(5) When the current round finishes, the values of parameters in all equations are
updated according to the distribution of vj copies in G. The covered nodes at the xth round
are also removed from KNSjx. All nodes in G remove the nodes which have been covered
from their NNS. After the values of PK of nodes in KNSjx are re-estimated, the nodes
in KNSjx with PK > 0 are added into CKNSj(x+1). If CKNSj(x+1) is the empty set, the
propagation process of vj based on the selection of key nodes returns step (6); Otherwise,
the process returns step (1).
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(6) The process of key nodes for propagation of vj is ended.

Algorithm 1 Propagation of vj based key nodes

1: x is round number of propagation of vj;

2: Lx is length of xth round;

3: KNSjx and CKNSjx are constructed;

4: calculates PKw
jx of nodes in CKNSjx;

5: while |CKNSjx| = 0

6: Bu
jx = 0

7: for (h = 0; h < |SNSjx|; h++)

8: Bu
jx = SNSjx[h].Bhjx + Bu

jx;

9: end for

10: calculates value of λjx;

11: calculates value of Bd
jx;

12: if Bd
jx − Bu

jx > 0

13: TBu
jx = 0 and k jx = 0;

14: for (h = 0; h < |CKNSjx|; h ++)

15: if TBu
jx < Bd

jx

16: TBu
jx = CKNSjx[h].Bhjx + TBu

jx;

17: CKNSjx[h] is selected as key node;

18: k jx ++;

19: else break;

20: end if

21: end for

22: Lx =
∑

kjx
c=1 Bc

Bd
jx
× Tj;

23: tsx is starting time of xth round;

24: tcx is current time;

25: while tcx − tsx ≥ Lx

26: key nodes implement push and supply data request;

27: end while

28: end if

29: removes new covered nodes from KNSjx;

30: recalculates value of PK in KNSjx;

31: reconstructs CKNSjx;

32: recalculates PKw
jx of nodes in CKNSjx;

33: x ++;

34: end while

4. Experiments and Results
4.1. Testing Topology and Scenarios

We compare the performance of the proposed VPII solution with that of the two
state-of-the-art solutions: OCP [48] and SECS [49] which are deployed in a mobile network
environment by using the Network Simulator 3 (NS-3). The simulation area is set as a
square scenario with 3000 × 3000 m2. There are 500 mobile nodes which maintain random
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movement behaviors during 500 s simulation time. Before the beginning of the simulation,
the mobile nodes have the initial position coordinates. They are allocated a constant velocity
and target position and move with the allocated velocity along the path consisting of initial
and target position coordinates. When the mobile nodes arrive at the appointed target
position coordinates, they immediately are allocated the new target position coordinates
and the new movement speed and move to the new target position coordinates with the
new movement speed, which means that the stay time of mobile nodes is set to 0 s. The
speed range of mobile nodes is set to [1, 30] m/s. The number of videos that are requested
by the mobile nodes is 40, and the popularity of all videos follows the Zipf distribution [50].
The initial probabilities that the mobile nodes request videos during the whole simulation
time is calculated according to the following equation [51]:

P(n) =

M
∑

i=1
iρi

rρn
n

(20)

where r is the popularity ranking, rn is the popularity ranking of the n-th video,
ρ ∈ (0, 1) denotes the Zipf exponent that describes the skewness for the video request
behaviors of users. The larger the value of ρ is, the more concentrated the video requests
will be. ρn is the Zipf exponent of the n-th video; i is the popularity ranking of videos;
M is the total number of videos, and M = 40 according to the settings of the simulation.
When the mobile nodes request a video, the playback times are randomly allocated for
the request nodes. After the mobile nodes finish the playback according to the allocated
playback time, they continue to request a new video with the request probabilities. The
length and size of every video are set to 100 s and 25 MB, respectively. The playback bitrate
of all videos is 2000 kbps. The number of videos cached in the local buffer of mobile nodes
is in the range [5, 20] and is allocated for every mobile node. The propagated videos rely
on the source nodes which store initial video data to distribute videos. The number of
videos cached by all source nodes is set to 20, and every video has 10 source nodes, which
means that 20 source nodes provide initial video data. Initially, the mobile nodes request
videos follows the Poisson distribution. Every node has a historical trace of video sharing
with other nodes to support estimation of interest preference and measurement of social
influence and relationship. If the time span T from the time that the mobile nodes send the
request messages to the potential video supply nodes to the time that the supply nodes
return the first video data is larger than the threshold value RTO, the request nodes re-send
the new request messages. The value of RTO is defined as:

RTO(ti) = θ × RTO(ti−1) + (1− θ)× RTO(ti−1), θ ∈ (0, 1] (21)

where θ = 0.6; ti is the time span used to collect the values of T of request nodes, and
ti = 100 s. The simulation scenarios have 36 base stations which are uniformly distributed
and are used as the access points (APs) to transmit and forward video data. The 5G
industrial standardization is used to reset the physical and MAC layer and modulation
schemes of network units. The MAC protocol uses the 802.11p, and the upper bound of data
rate is set to 27 Mbps. The maximum communication range is 250 m, and the MAC channel
delay is 250 ms. The propagation loss model employs the Friis propagation loss model
(FPLM) in NS3 [52], which is designed for an unstructured clear path between receivers
and transmitters to eliminate the performance degraded by random shadowing effects. The
FPLM effectively erases the random effects caused by shadowing for the simulation results.
The D2D settings of the 5G network follows the settings in the popular studies [53].

4.2. Performance Evaluation

We compare the performance of VPII with SECS and OCP in terms of the startup delay
(SD), caching hit ratio, caching cost and control overhead, respectively.
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Startup delay (SD): The difference value between the time that a request node ni
receives the first video data sent by a video supplier nj and the time that ni sends the video
request message to nj is considered as the startup delay. The average SD values of the
solutions VPII, SECS and OCP every 5 s with the increasing simulation time are shown
in Figure 3. The average SD values of the solutions VPII, SECS and OCP with different
number ranges of video caching are shown in Figure 4.

As Figure 3 shows, the three curves corresponding to VPII, SECS and OCP have a fall
trend after a fast rise with continuous fluctuation during the whole simulation time. The
blue curve of VPII experiences a fast rise from t = 0 s to t = 180 s and keeps a stable trend
from t = 190 s to t = 260 s. The SD values of VPII also have a rise after a fall from t = 270 s
to t = 310 s and maintain a fast fall from t = 320 s to t = 500 s. The red curve of SECS has
an fast increase process from t = 0 s to t = 150 s, keeps a slight decrease from t = 160 s to
t = 260 s and experiences a fast fall after a slight rise from 270 s to 500 s. The orange curve
of OCP has an evident rise from t = 0 s to t = 190 s and keeps a slight fall trend with a
fluctuation from t = 200 s to t = 500 s. Although the SD values of VPII is larger than those
of SECS and OCP during the initial simulation time, the blue curve of VPII has lower SD
levels than those of curves of SECS and OCP during most of the simulation time. The peak
value of the blue curve of VPII is less than those of curves of SECS and OCP.
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Figure 3. Startup delay against simulation time.
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Figure 4. Startup delay against number of cached videos.

As Figure 4 shows, the three bars corresponding to the solutions of VPII, SECS and
OCP have the same fall processes with different ranges of numbers of video caching. The
blue bars of VPII keep a fast fall from caching number 5 to 15 and has a slight reduction
from caching number 15 to 20. The bars of SECS and OCP also have the same variation
trend as VPII, namely a fast fall from caching number 5 to 15 and a slight reduction from
caching number 15 to 20. The bars of VPII are lower than those of SECS and OCP with
various numbers of video caching.

The SD values depend on the transmission delay of request messages, first video
data and delay of request handling. The intensive request for popular videos brings a
large amount of demand for upload bandwidth, which lengthens the delay of request
handling and bandwidth allocation of supply nodes and leads to network congestion. The
congestion results in long delay of transmission of request messages and first video data.
VPII calculates the probability of users fetching videos to estimate interest levels of users
and calculates the scale of spreading videos of users to estimate social influence levels of
users. The high probabilities of fetching videos from candidate key nodes are preconditions
of video propagation based on the assistance of key nodes. Estimation of social influence
levels of candidate key nodes is the prediction of the possible scale of video propagation in
the future. VPII uses interest levels and social influence levels to measure video propagation
capacities of social users. In order to accurately estimate scale of video propagation, VPII
estimates capacities for spreading videos according to scale and the importance of neighbor
nodes covered by users. VPII designs a video propagation strategy with the assistance of
key nodes and uses the selected key nodes in batches to push videos and provide video
data for other request nodes in terms of the weighted key level based on investigation of
available bandwidth and node degree centrality of key nodes. Because the key nodes can
effectively push videos, the delay of video lookup and request handling can be reduced,
which reduces the startup delay of request nodes. In order to control the propagation
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process, VPII predicts the demand scale of upload bandwidth before the selection of key
nodes, which effectively ensures balance between supply and demand. Therefore, VPII can
effectively relieve contradiction between demand and supply so that VPII has lower SD
levels than SECS and OCP. On the other hand, because the periodic selection of key nodes
of VPII does not adapt to the fast increase of request nodes during the initial simulation
time, the SD values of VPII are larger than those of SECS and OCP. SECS builds groups
consisting of users with common and similar interests and requires the intragroup nodes
share videos with each other, which promotes success probabilities of video lookup based
on the common interest of intragroup nodes. SECS designs a video caching management
based on sharing performance awareness to implement caching and replacement of videos,
which can implement real-time regulation of videos cached in local buffer to meet the
dynamic demand of users. The performance-aware caching strategy can effectively address
the variation of video demand, which promotes lookup success probabilities of videos and
reduces delay of video lookup. However, while the performance-aware caching strategy
focuses on addressing the problem of demand range of videos, the scale of video demand
is overlooked. Further, SECS does not predict demand scale of users, so the fast arrival of
intensive requests results in an overflow of handling capacities of supply nodes, which
increases delay of request handling and bandwidth allocation. Moreover, intensive requests
also bring a large amount of demand for upload bandwidth, so the congestion also leads to
a further increase of delay of request messages and first video data. Therefore, the SD values
of SECS are larger than those of VPII. OCP can predict the demand variation of the whole
system by exchange of state between nodes. OCP requires the nodes cache and replace
local videos in terms of the same caching time via message broadcasting. However, OCP
does not consider social influence between users for the intention of fetching videos from
users, which cannot ensure prediction accuracy of demand. The low prediction accuracy
results in large difference levels between the predicted demand and the real demand, so
the imbalance between supply and demand leads to scarce supply of upload bandwidth,
which results in the long delay of request handling and bandwidth allocation. Moreover,
the uniform caching time according to the caching decision also leads to the slow response
for the dynamic demand, so the transmission delay of request messages and first video
data and the delay of request handling increase. Therefore, the SD values of OCP are higher
than those of VPII and SECS.

Caching hit ratio (CHR): When a node ni has stored a video vj in local buffer, ni
receiving and dealing with a request message of vj from another node nk and transmitting
data from vj to nk can be a cache hit. The ratio between the number of successful cache hits
and the total number of all video requests is defined as the caching hit ratio. In order to
clearly show the CHR simulation results, the average values of CHR during a time span of
every 5 s are shown in Figure 5. The average CHR values of the solutions of VPII , SECS
and OCP with different number ranges of video caching are shown in Figure 6.

As Figure 5 shows, the three curves corresponding to VPII, SECS and OCP have a rise
trend with continuous fluctuation during the whole simulation time. The blue curve of
VPII experiences a relatively fast rise from t = 0 s to t = 280 s, keeps a stable trend from
t = 290 s to t = 390 s and experiences a fast fall after a fast rise from t = 400 s to t = 500 s.
The red curve of SECS has a fast increase process from t = 0 s to t = 200 s, keeps a stable
state from t = 210 s to t = 270 s and experiences a slow rise from t = 280 s to t = 500 s. The
orange curve of OCP also has a fast rise from t = 0 s to t = 200 s, experiences a slight fall
from t = 210 s to t = 230 s and keeps a slow rise trend with a fluctuation from t = 240 s to
t = 500 s. The CHR values of VPII are slightly less than those of SECS and OCP from t = 0 s
to t = 150 s, but the blue curve of VPII is higher than those of the curves of SECS and OCP
from t = 160 s to t = 500 s. The CHR peak value of VPII is less than those of curves of SECS
and OCP.
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As Figure 6 shows, the three bars corresponding to the solutions of VPII, SECS and
OCP have the same rise processes with the different ranges of numbers of video caching.
The blue bars of VPII rise quickly from caching number 5 to 10 and have a stable increase
from caching numbers 10 to 20. The bars of SECS and OCP also have the same variation
trend as those of VPII. The CHR values of three solutions are close to the same levels at
caching number five. However, the increment of CHR values for VPII is higher than that of
SECS and OCP from caching number 10 to 20. The bars of VPII are higher than those of
SECS and OCP with various ranges of number sof video caching.

VPII estimates video propagation capacities according to probabilities of video fetching
and social influence levels of candidate key nodes. VPII further uses scale and importance
of covered neighbor nodes to estimate capacities for spreading videos bt candidate key
nodes, which accurately estimates the scale of video propagation. VPII predicts the demand
scale for upload bandwidth before selecting key nodes and designs a video propagation
strategy with assistance of key nodes and uses the selected key nodes in batches to push
videos and provide video data for other request nodes to achieve a balance between supply
and demand. The key nodes can effectively push videos, which increases the number
of successful cache hits and reduces the number of active requests. Moreover, VPII uses
the key nodes to spread videos, which promote scale and range of category diversity and
bandwidth scale of video supply, effectively reducing delay in video lookup and request
handling. Therefore, the CHR values of VPII are larger than those of SECS and OCP. SECS
requires that intragroup nodes share videos with each other based on the built groups
consisting of users with common and similar interests, which achieves a high success ratio
of video lookup and reduces delay in video lookup. SECS employs a performance-aware
video caching management to dynamically cache and regulate video copies in a local buffer,
which can economically meet the demand for videos, promote lookup success probabilities
and reduce delay of video lookup. However, SECS does not predict the demand scale of
users, so the overflow of handling capacities of the supply nodes caused by the fast arrival
of intensive requests increases the delay of request handling and bandwidth allocation.
The retransmission of request messages caused by lookup failure and response overtime
reduce the CHR values of SECS. Therefore, the CHR values of SECS are less than those of
VPII. OCP uses exchange of state between nodes to predict the demand variation of the
whole system in order to implement accurate caching to meet demand. However, OCP
employs the same caching time to spread caching decisions by message broadcasting, so
OCP does not regulate scale of video copies in terms of variation of video demand in
real time, thereby increasing the probabilities of imbalance between supply and demand.
Moreover, OCP overlooks the social influence between users in fetching videos for users,
which results in low prediction accuracy of demand. The imbalance between supply and
demand of scale and range results in the long delay of request handling and bandwidth
allocation. Therefore, the SD values of OCP are higher than those of VPII and SECS.

Caching Cost (CC): The mobile nodes act as the carriers of video copies, so the increase
of video copies can provide upload bandwidth and effectively support scalability of video
systems. The more the number of mobile nodes which take part in storing video copies is,
the higher the cost of video sharing will be. Therefore, the ratio between the number of
nodes which take part in storing video copies and the total number of nodes is defined as
the caching cost. In order to clearly show the CC simulation results, the average value of
CC every 10 s is shown in Figure 7. The average CC values of VPII, SECS and OCP with
different number ranges of video caching are shown in Figure 8.
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As Figure 7 shows, the three curves corresponding to VPII, SECS and OCP maintain
an increase process with continuous fluctuation during the whole simulation time. The
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blue curve of VPII has a fast increase from t = 0 s to t = 240 s and keeps a stable rise from
t = 250 s to t = 500 s. The red curve of SECS keeps an fast increase from t = 0 s to t = 300 s,
experiences a stable rise from t = 310 s to t = 270 s and experiences a slow rise from 280 s to
500 s. The orange curve of OCP also has a fast rise from t = 0 s to t = 250 s and experiences
a slight increase from t = 260 s to t = 500 s. The CC values of VPII are slightly larger than
those of SECS and OCP from t = 0 s to t = 150 s, but the blue curve of VPII is lower than
those of SECS and OCP from t = 160 s to t = 500 s.

As Figure 8 shows, the three bars corresponding to the solutions of VPII, SECS and
OCP maintain a significant decline trend with different ranges of number of video caching.
The blue bars of VPII maintain a fast fall from caching number 5 to 20. The CC values of
VPII have a decrease from caching number 5 to 20. The red bars of SECS also has a fast
fall with the increasing number range of video caching. The CC values of SECS decrease
from caching number 5 to 15 and have a slight decrease from caching number 15 to 20. The
orange bars of OCP have major decrease from caching number 5 to 10 and keep decreasing
more slowly from caching number 10 to 20. The CC values of VPII are less than those of
SECS and OCP with various ranges of number of video caching.

VPII relies on the key nodes to implement video push and provide and allocate
available video resources for the request nodes. VPII predicts scale of video demand in the
future to regulate number of key nodes. Because VPII estimates the social influence and
spread capacities of key nodes, VPII can accurately estimate video demand scale in terms
of the spread capacities of key nodes and potential video requests. VPII can moderately
control process and scale of video spread and ease the contradiction between supply and
demand by the selection of key nodes. Initially, VPII selects more key nodes to promote
scale of video copies and ensure scale and diversity of supplied video copies. VPII keeps
the appropriate number of key nodes to balance supply and demand by increasing the
scale of nodes that have stored one or multiple videos in a local buffer. Therefore, the
caching cost of VPII is lower than that of SECS and OCP from t = 160 s to t = 500 s. SECS
clusters the mobile nodes with common interests into the same group and requires the
intragroup nodes share videos with each other via “pull” and “push” ways. The spread
rate of videos determines the number of nodes which have stored videos in a local buffer,
so the CC values of VPII keep low levels during the initial stage. SECS has a performance-
aware caching management in terms of spread and demand scale, but SECS does not
allocate video caching for the intragroup. The CC values of SECS maintain a slow rise
with increasing request nodes. OCP can predict the demand scale of videos for the whole
system by exchanging node state and implementing video caching with a uniform time.
The number of nodes that have stored videos relies on the demand scale in OCP. Because
OCP employs the queuing model to replace local videos at the same time, the timeliness
of caching replacement of OCP is lower than those of VPII and SECS. Therefore, the CC
values of OCP are larger than those of VPII and SECS.

Control Overhead (CO): Control messages are used to allocate and regulate video
cache copies and collect and interact in mobile node state. The bandwidth consumption
caused by control messages can be defined as the control overhead. In order to clearly show
the CO simulation results, the average value of CO every 10 s is shown in the Figure 9. The
average CO values of VPII, SECS and OCP with different number ranges of video caching
are shown in Figure 10.

As Figure 9 shows, the three curves corresponding to VPII, SECS and OCP have
severe fluctuation during the whole simulation time. The blue curve of VPII has a severe
fluctuation from t = 0 s to t = 330 s, keeps a relatively stable trend from t = 340 s to t = 420 s
and also has severe jitter from t = 430 s to t = 500 s. The red curve of SECS keeps severe
jitter from t = 0 s to t = 390 s and experiences a relatively stable trend with fortuitous jitter
from t = 390 s to t = 500 s. The orange curve of OCP has srelatively low levels of severe
jitter from t = 0 s to t = 500 s. The CO values of VPII are slightly larger than those of SECS
and OCP during the whole simulation time and have the larger peak value than those of
SECS and OCP.
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As Figure 10 shows, the three bars corresponding to the solutions of VPII, SECS and
OCP maintain a slow fall with the different ranges of number of video caching. The blue
bars of VPII fall quickly from caching number 5 to 10 and have a slight decrease from
caching number 10 to 20. The red bars of SECS also fall quickly from caching number 5
to 10 and decrease slightly from caching number 10 to 20. The orange bars of OCP have a
small decrease from caching number 5 to 15 and decrease more from caching number 15 to
20. The CO values of VPII are larger than those of SECS and OCP with various ranges of
number of video caching.

VPII continuously collects information, including interests and social influence of
mobile nodes to estimate spread capacities of candidate key nodes. Moreover, VPII also
collects information of request scale in networks to predict demand scale. Therefore, the
CO values of VPII are larger than those of SECS and OCP. SECS needs to collect information
of interest and sociability of nodes to construct node groups and maintain the structure
of node groups by collecting node states. Moreover, SECS also collects information of
sharing capacities of nodes to estimate sharing performance and manage local video copies
of nodes. However, the frequency and range of information collection of SECS are less
than those of VPII. Therefore, the CO values of SECS are less than those of VPII. OCP
periodically exchanges state list among users in order to predict the demand variation.
OCP controls video caching and replacement of nodes by message broadcasting. Therefore,
the range of message exchange of OCP is larger than SECS. However, OCP can regulate
period time of caching and replacement of videos by predicting video demand, which
reduces control overhead. OCP has lower CO than VPII and has higher CO than SECS.
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5. Conclusions

In this paper, we propose a novel video propagation strategy fusing user interests
and social influences based on the assistance of key nodes in social networks (VPII). VPII
estimates key levels of nodes for video propagation capacities in terms of interest-based
probability that nodes fetch videos and scale of nodes spreading videos. VPII designs a
multi-round video propagation strategy: the weight of key levels of nodes is estimated
according to available bandwidth and node degree centrality, and the selected key nodes
implement accurate launching and distribution of videos according to a dynamic variation
of the relationship between supply and demand of videos. Simulation results show that
VPII obtains lower startup delay, higher caching hit ratio, lower caching cost and higher
control overhead than SECS and OCP. However, there are some limitations for our work
(e.g., integration, effectiveness and consistency of evaluation metrics of key levels and
high control overhead for estimation and regulation of key nodes). Future works will
focus on multiple ways and methods of promoting video propagation and optimization of
evaluation metrics of propagation models using machine learning based on real data of
video sharing.
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