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Abstract: This paper proposes a Dynamic Multi-Attention Dehazing Network (DMADN) for single
image dehazing. The proposed network consists of two key components, the Dynamic Feature
Attention (DFA) module, and the Adaptive Feature Fusion (AFF) module. The DFA module provides
pixel-wise weights and channel-wise weights for input features, considering that the haze distribution
is always uneven in a degenerated image and the value in each channel is different. We propose an
AFF module based on the adaptive mixup operation to restore the missing spatial information from
high-resolution layers. Most previous works have concentrated on increasing the scale of the model
to improve dehazing performance, which makes it difficult to apply in edge devices. We introduce
contrastive learning in our training processing, which leverages both positive and negative samples
to optimize our network. The contrastive learning strategy could effectively improve the quality of
output while not increasing the model’s complexity and inference time in the testing phase. Extensive
experimental results on the synthetic and real-world hazy images demonstrate that DMADN achieves
state-of-the-art dehazing performance with a competitive number of parameters.

Keywords: dehazing; CNN; feature attention; feature fusion; contrastive learning

1. Introduction

Haze is a common atmospheric phenomenon caused by floating particles in the
air. Due to the turbid medium, light propagation is hindered, and images taken in the
haze are often subject to some degree of degradation. Input images captured in the hazy
environment will affect the performance of dependable high-level computer vision systems
(such as object detection [1,2] and scene understanding [3,4]). However, a dependable
high-level computer vision system must work well with various kinds of interference [5,6].
It is a significant step for developing dehazing techniques to improve the robustness of
high-level computer vision systems.

Previous works [7,8] has proposed the atmosphere scattering model to explain the
process of hazy image generation. Specifically, it assumes that:

I(x) = J(x)t(x) + A(1− t(x)) (1)

where I(x) and J(x) are the degenerated hazy and clear images, A is the atmosphere light
intensity, and t(x) is the medium transmission map. We also have t(x) = e−βd(x), where β
and d(x) are the atmosphere scattering parameter and the scene depth, respectively.

Early dehazing methods [9–19] are based on priors in nature scenes; He et al. [12]
proposed the dark channel prior (DCP) which is the masterpiece of the prior-based
method. However, prior-based dehazing methods are not efficient in specific scenar-
ios. In recent years, the Convolutional Neural Network (CNN) has been proven effective in
dehazing [20–27]. DehazeNet [21] first reconstructs the haze-free image by estimating A

Electronics 2023, 12, 529. https://doi.org/10.3390/electronics12030529 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12030529
https://doi.org/10.3390/electronics12030529
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9709-8571
https://doi.org/10.3390/electronics12030529
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12030529?type=check_update&version=2


Electronics 2023, 12, 529 2 of 19

and t(x) in the atmosphere scattering model. Because of the airlight albedo ambiguity [28],
it is not easy to estimate the atmosphere light intensity and the medium transmission map.
Moreover, it may generate artifacts in the images due to the cumulative error between the
estimated and actual parameters, and it is also an expensive task to obtain the ground-truth
medium transmission map and atmosphere light intensity. Unlike DehazeNet, some recent
networks [25–27,29] try to directly find the mapping without resorting to the physical model
and have achieved good performance. Nevertheless, most end-to-end methods ignore that
haze is unevenly distributed in a degenerated image and treat pixel-wise features equally.
In addition, the work [12] finds that for a hazy image I(x), there is always a very low value
in one channel. If we treat pixel-wise and channel-wise features equally, the information
cannot be extracted efficiently. Considering the above problem, we propose the Dynamic
Feature Attention (DFA) module, which includes a Channel Attention (CA) mechanism and
a Pixel Attention (PA) mechanism. In this way, we can pay more attention to the important
regions, which is helpful in expanding the representational ability of the network. Most of
the latest works [24–27,29,30] only adopt convolutional layers with fixed kernels to build
networks and it may generate over-smoothing artifacts and corrupted image textures in the
dehazed image. To extract the input image’s structural information better, we introduce
deformable convolution [31] in our dehazing network. The experiment results have proven
that the above measures significantly improve the dehazing performance.

The essence of the dehazing method is the image restoration task; we notice that most
recent end-to-end dehazing networks are typically designed under an encoder–decoder
framework [25,26,29,31–34]. Due to the downsampling operations, the spatial informa-
tion from the high-resolution layer degenerates. To deal with this problem, previous
works [31,35] first resize the non-adjacent features to the same dimension and fuse them
via the bottleneck layer. However, they ignore that the density of information from shallow
and in-depth features is different. Previous works [36,37] concatenate features from non-
adjacent layers by using the strided convolutional layer. Although this method can fuse
features with different scales, the scheme is ineffective for extracting information from input
images. Recent works [32,38,39] proposed grid architectures to fuse features of adjacent
layers, but this scheme cannot connect non-adjacent layers and cannot easily be applied
to other networks. To remedy the missing spatial information, we propose an Adaptive
Feature Fusion (AFF) module to exploit non-adjacent features based on the adaptive mixup
operation [40].

Different from object detection CNNs, dehazing networks are notoriously compu-
tationally intensive. Most previous works concentrate on increasing the model scale to
improve performance, making applying dehazing methods in edge devices challenging.
For example, MSBDN [29] has 31 million parameters, and TDN [41] has 46.18 million
parameters. On the other hand, most previous works only use clear images to optimize
performance but ignore the negative samples. Recently, additional information from neg-
ative samples has been adopted in the training processing of some high-level computer
vision [42–44]. It differs from only using reconstruction loss to approximate the ground-
truth; they are two forces in contrastive learning. One force pulls the output close to the
original haze-free images; the other pushes the result away from the degenerated images.
This way, the contrastive learning strategy could improve output quality while adding no
additional complexity and inference time in the testing phase.

The contributions of this paper are summarized as follows:
We propose a Dynamic Multi-Attention Dehazing Network for single image dehazing

with competitive model complexity. Experiments have shown that our DMADN achieves
state-of-the-art performance in terms of vision and can improve the robustness of high-level
computer vision tasks.

We demonstrate that the extra pixel-wise and channel-wise weights provided by the
Dynamic Feature Attention module are helpful for extracting features. Moreover, the
Adaptive Feature Fusion module can effectively restore missing spatial information and
help improve the performance of dehazing networks.
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We adopt contrast learning in the training processing of DMADN, which leverages
both the information from positive and negative samples. Experiments demonstrate that
the contrast learning mechanism can significantly improve the dehazing performance
without increasing the inference time.

2. Related Work

The imaging dehazing method is designed to resume the degraded images affected by
haze, and it contains two categories: prior-based methods and learning-based methods.

Prior-based Methods. The handcraft prior-based dehazing methods [9–19] usually
first estimate the t(x) and A in Equation (1) by leveraging the statistical characteristic of
natural scenes. Tan [9] proposed an adaptive contrast dehazing algorithm by enhancing
the local contrast of degraded images through the Markov Random Field. This method
can remove most haze, but there are still some haloes and oversaturated areas in the
results. Fattal [10] proposed an atmosphere light intensity estimation method that can
restore sharpness and contrast. The work [11] estimates that the medium transmission
map depends on the color-line prior in the regularity of the natural image. He et al. [12]
find that there is always one channel with a low value in hazy natural scenes, termed dark
channel prior (DCP). In this way, a relatively accurate medium transmission map can be
found. Zhu et al. [13] proposed a dehazing method by estimating the scene depth through
a color attenuation prior. Berman et al. [14] proposed a single dehazing method based
on the non-local prior, and they approximate the original colors of a clear image through
a few hundred distinct colors. One study [18] proposed an adaptive bi-channel priors
method for image dehazing, which can rectify the incorrect estimations on atmosphere
light intensity and the medium transmission map. To obtain more natural images, [19]
proposed a kind of modified atmospheric scattering model. Although previous works
have achieved promising results, prior-based methods have limitations in some particular
environments (for example, DCP cannot handle the white region well). Furthermore, the
assumptions of these priors are only satisfied in some scenes.

Learning-based Methods. With the powerful ability of CNN, most recent dehazing
methods are based on “date drive”. The learning-based dehazing method contains two
categories: the methods based on transmission map estimation and end-to-end meth-
ods. The former first learns a non-linear mapping between the degenerated scene and its
corresponding medium transmission map and then obtains the haze-free image via the
physical model. Ren et al. [20] proposed a multi-scale dehazing network to estimate t(x) in
a coarse-to-fine manner. DehazeNet [21] reconstructed the clear image by estimating the
atmosphere light intensity and the medium transmission map. Li et al. [22] proposed a
residual-based network to predict the key parameters of the physical model. DCPDN [23]
integrated the atmospheric scattering model with the CNN to jointly remove the haze.
Another work [45] estimated the transmission map of the atmospheric scattering model
by training an adversarial network model. However, the above dehazing methods may
generate artifacts in the images due to the cumulative error between the estimated and
60ror, recent works [24–27,29,30,46–50] have tried to find the mapping between the input
image and the ground-truth forthrightly. AOD-Net [24] developed a lightweight end-to-
end convolutional neural network to remove haze. It has been applied to video dehazing
and object detection tasks. In [25], a dehazing network was proposed using conditional
generative adversarial learning. To improve the realism, it also employs the L1 regularized
gradient prior. In [26], a multi-scale feature fusion-based end-to-end dehazing network
called GFN was proposed. To utilize more information, GFN processes the hazy image with
some image enhancement filters before feeding it into the network. To obtain more natural
results, [27] introduced the Perceptual Index (PI) as a metric to evaluate the dehazing
quality from the perceptual perspective. It also designed an enhanced pix2pix network and
approached the dehazing process as an image translation task. To improve the dehazing
performance, [30] introduced multi-scale patches in the dehazing process. In [41], the Detail
Refinement sub-Net frequency was proposed, which is helpful to refine the high frequency
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details in the dehazing process. Although previous end-to-end dehazing networks achieve
good results in dehazing, they did not take advantage of the characteristic of haziness in
their designing of networks. They also ignore the complexity of the models, which limits
their practical application. Unlike these methods, we design a novel dehazing network that
achieves a balance between weight and performance.

3. Materials and Methods
3.1. Dynamic Multi-Attention Dehazing Network

As shown in Figure 1, our DMADN includes three components, encoder module GE,
feature restoration module GR, and decoder module GD.
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In DMADN, we first use two convolutional layers with strides 1 to extract the informa-
tion of the hazy image I ∈ R3×H×W and expand the channel to F0 ∈ R64×H×W . To achieve
a balance between performance and parameters of the network, we reduce the number of
convolutional layers in encoder and decoder modules. In the encoder module, we only
stack two convolutional layers with kernels 3× 3 and strides 2 as downsampling layers to
expand the channel capacity of F0. In order to remedy the missing spatial information, we



Electronics 2023, 12, 529 5 of 19

place one AFF module after each downsampling layer. To achieve a balance between the
number of parameters and the network’s performance, we did not simply adopt multiple
independent CNN models. Following works [29,51], we define only one DFA module
with individual learnable parameters in the feature restoration module. To better extract
information pertaining to semantic features, we let the input features pass through this
defined DFA module several times. Through this strategy, the depth of the network can be
increased without increasing the number of parameters, and the network’s transformation
capability is enhanced. To obtain the balance between inference time and performance,
after experimental testing, we set the times value to 6. This approach of using shared
parameters in the network slightly decreases performance compared to using separate
parameter modules. However, its semantic extraction power is significantly enhanced
compared to using the corresponding convolutional layer only once. As with the encoder
module, in the decoder, we use two transposed convolutional layers with kernels 3× 3 and
strides 2 to restore spatial resolution and employ a convolutional layer with kernel 7× 7
and stride 1 to obtain a haze-free image.

Inspired by [40], we designed a kind of adaptive mixup skip connection with learnable
parameters to deal with the problem that information from the low-level is gradually
degrading. Through this adaptive mixup skip connection, we can fuse the features from
the encoder and decoder. The adaptive skip connection can be formulated as

F̃n = σ(∂n) ∗ Fn
e + (1− σ(∂n)) ∗ Fn

d (2)

where Fn
e , Fn

d are features from the nth downsampling layer, F̃n is the boosted feature, and ∂n

is the balancing parameter. Differently from [40], we set the ∂n to be a learnable parameter,
which can be optimized in the training process, and we use the Sigmoid function σ to
constrain the weight. As shown in Figure 1, we adopt the two above adaptive mixup skip
connections, which have the learnable balancing parameter in our DMADN. Compared
with simple addition or concatenation, our adaptive mixup skip connection supplies
additional flexibility on fusing while adding ignorable parameters.

3.2. Dynamic Feature Attention Module

Most previous CNN-based dehazing methods ignore that haze is unevenly distributed
on a degenerated image and treat pixel-wise features equally. In addition, [12] finds that
for a hazy image, it is usually one channel that has a very low value. Inspired by [47,51],
we propose the Dynamic Feature Attention (DFA) module. The DFA module provides
pixel-wise weights, and channel-wise weights for input features simultaneously, which can
allow the network to pay more attention to the regions with more important information.

As shown in Figure 2, the proposed DFA module includes three components: a
Feature Extraction (FE) module, a Dynamic Feature Enhancement (DFE) module, and
a Feature Attention Mechanism (FAM) module. The DFA module is based on residual
block structure, which can help DMADN to ignore less important features and improve
training stabilization.

Our FAM model consists of two parts: the Channel Attention (CA) mechanism, which
provides channel-wise weights, and the Pixel Attention (PA) mechanism, which provides
pixel-wise weights. The implementation of the Channel Attention mechanism is motivated
by [51]. We use an average pooling operation on the input feature Fin ∈ RC×H′×W ′ to obtain
the enriched feature F̃in ∈ RC×1×1; the default setting is C = 256. Considering the memory
storage, we use 2× convolutional layers instead of fully connected layers in [51] to obtain
the channel-wise weight CA ∈ RC×1×1. The operation can be expressed as

CA = σ(Convc2δ((Convc1(F̃in)))) (3)

where Convc1 and Convc2 are the convolution layers with the numbers of kernels C/8 and
C, δ is the ReLU function and σ is the Sigmoid function.



Electronics 2023, 12, 529 6 of 19

Electronics 2023, 12, x FOR PEER REVIEW 6 of 20 
 

 

CA

PA

FAM

wF

Average 
Pooling

Relu

Sigmod

Conv 1×1

Conv 1×1 Relu

Sigmod

Conv 1×1

Conv 1×1

DFE

Conv 3×3

Relu

FE

Fin

 
Figure 2. The proposed Dynamic Feature Attention module. 

Our FAM model consists of two parts: the Channel Attention (CA) mechanism, 
which provides channel-wise weights, and the Pixel Attention (PA) mechanism, which 
provides pixel-wise weights. The implementation of the Channel Attention mechanism is 
motivated by [51]. We use an average pooling operation on the input feature 

   C H W
inF R  to obtain the enriched feature 1 1  C

inF R ; the default setting is 256C . 
Considering the memory storage, we use 2  convolutional layers instead of fully con-
nected layers in [51] to obtain the channel-wise weight 1 1  CCA R . The operation can be 
expressed as 

2 1( (( ( ))))c c inCA Conv Conv F     (3)

where 1cConv  and 2cConv  are the convolution layers with the numbers of kernels C/8 
and C,   is the ReLU function and   is the Sigmoid function. 

Then, we multiply channel-wise the input feature inF  and the weights of channel CA . 

c inF CA F    (4)

Since the global atmosphere light intensity and medium transmission map are differ-
ent in each pixel, the distribution of haze is also uneven in the real-world scene. We pro-
pose a Pixel Attention mechanism to induce our network to pay more attention to the 
regions where the haze is thick. Similar to the channel-wise weight, the calculation of 
pixel-wise weight 1 H WPA R     can be formulated as 

2 1( (( ( ))))p p cPA Conv Conv F     (5)

where 1pConv  and 2pConv  are the convolution layers with the numbers of kernels C/8 
and 1. 

The final step is multiplying cF  and PA . 

w cF F PA     (6)

Benefitting from the two additional weights provided by FAM, our dehazing net-
work can pay more attention to the important regions. 

Most of the latest works [24–27,29,30,47–50], only adopt convolutional layers with 
fixed kernels to build a network. One work [52] found that convolution layers with spa-
tially invariant kernels could generate over-smoothing artifacts and corrupted image 

Figure 2. The proposed Dynamic Feature Attention module.

Then, we multiply channel-wise the input feature Fin and the weights of channel CA.

F̃c = CA⊗ Fin (4)

Since the global atmosphere light intensity and medium transmission map are different
in each pixel, the distribution of haze is also uneven in the real-world scene. We propose
a Pixel Attention mechanism to induce our network to pay more attention to the regions
where the haze is thick. Similar to the channel-wise weight, the calculation of pixel-wise
weight PA ∈ R1×H′×W ′ can be formulated as

PA = σ(Convp2δ((Convp1(F̃c)))) (5)

where Convp1 and Convp2 are the convolution layers with the numbers of kernels C/8 and 1.
The final step is multiplying F̃c and PA.

F̃w = F̃c ⊗ PA (6)

Benefitting from the two additional weights provided by FAM, our dehazing network
can pay more attention to the important regions.

Most of the latest works [24–27,29,30,47–50], only adopt convolutional layers with
fixed kernels to build a network. One work [52] found that convolution layers with spatially
invariant kernels could generate over-smoothing artifacts and corrupted image textures,
although the dilated convolution can extend the range of the receptive field. It may bring
the gridding artifacts in the recovered results. In the dehazing task, the shape of the
convolution kernel is also important for feature extraction. Deformable convolution and
the shape of the receptive field can be changed by adding an offset parameter to each pixel
of the convolution kernel. It has been adopted in some high-level computer vision tasks.
As shown in Figure 2, we introduce deformable convolution [31] as the dynamic feature
enhancement (DFE) module to expand the receptive field with dynamic kernels and focus
the FAM module more on the important regions. In this paper, we use one deformable
convolutional layer with kernels 3× 3 and strides 1 as the dynamic feature enhancement
module to provide more flexibility for feature extraction. The shape of the features flowing
through the DFE module will not change. We place the DFE module before our FAM model.
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The experimental results in ablation studies have shown that compared to conventional
convolutional layers with spatially invariant kernels, the deformable convolutional layer
can significantly improve the performance of the network.

3.3. Adaptive Feature Fusion Module

In the encoder–decoder-based network, spatial information from shallow layers will
be lost as the layer becomes deeper. Previous works first resample the non-adjacent features
to the same shape and fuse them by addition or concatenation. However, the density of
information from shallow features and in-depth features is different. Inspired by [29], we
designed an Adaptive Feature Fusion (AFF) module based on the adaptive mixup opera-
tion [40] to restore the spatial information and fuse the features from non-adjacent levels.

As shown in Figure 3, we describe how to generate the boosted feature from the nth
AFF in the encoder, and the operation in the decoder can be derived accordingly. The
process can be formulated as follows:

F̃n = E(Fn,
{

F̃e
n−1, . . . , F̃e

1
}
) (7)

where F̃n is the boosted feature from the nth AFF module, Fn is the feature from the
nth downsampling layer of the encoder, and

{
F̃e

n−1, . . . , F̃e
1
}

are the enhanced features

generated by fusing
{

F̃n−1, . . . , F̃1
}

and Fn. For example, the process of obtaining F̃e
1 can

be formulated as
F̃e

1 = p1
e (mix(q1

e (Fn), F̃n−1)) + Fn (8)

where q1
e and p1

e are the upsampling operations and the downsampling operations; we stack
transposed convolutional/convolutional layers with strides of 2 to implement the upsam-
pling/downsampling operations. The mix is the mixup operation similar to Equation (2),
which has a learnable balancing parameter. As we have proven that our adaptive mixup
connection can improve the dehazing performance with adding ignorable parameters, we
also introduce the adaptive mixup connection in the AFF model, which provides additional
flexibility in the feature fusion processing without increasing the complexity of the network.
By introducing the AFF module, DMADN can leverage all the preceding high-level features
to output better results.
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3.4. Loss Function

End-to-end dehazing networks often use L1/L2-based loss function to reconstruct the
haze-free image. However, only using L1/L2 loss to approximate the visual performance is
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less effective, and the texture details may be lost. We introduce the contrastive learning
loss item in training to obtain more natural haze-free results.

Contrastive learning comes from Metric Learning [53]. It aims to build a discriminative
representation space to move the output results close to the positive samples while far
away from the negative samples. In [54], it was shown that contrastive learning is effective
for image translation tasks. Unlike traditional reconstruct loss, contrastive learning could
compare the internal consistency of different samples in the representation space. Differ-
ently from perceptual learning [55], contrast learning leverages the knowledge from both
positive and negative samples. The whole loss function can be formulated as

min‖J − ρ(I)‖+ β · C(I′, I, J) (9)

where the first term min‖J − ρ(I)‖ is reconstruction loss; we employ L1 loss since it achieves
better performance than L2 loss. C(G(I′), (G(I), G(J)) is the contrastive learning regular-
ization item, and β is a parameter for balancing the reconstruction loss and contrastive
learning item. There are two critical points in the construction of the contrastive learning
item: the first is to construct the internal feature space, and the other is to select the suitable
pair of positive and negative samples. We introduce pre-trained VGG19 [56] to build the
representation space. The contrastive learning item can be formulated as

C(I′, I, J) =
n

∑
i=1

ωi
M(G(J)i, G(I′)i)

M(G(I)i, G(I′)i)
(10)

where I′, I, J are the restored image, hazy input image and ground-truth; we select them
as the anchor, positive sample and negative sample, and ωi is the weight coefficient. It
has been proven in [57] that selecting the knowledge from intermediate features is more
efficient in the knowledge distillation task. As shown in Figure 4, we extract the features
G(I′), G(I) and G(J) from hidden layers of the VGG19 model. We use the Mean Absolute
Error function M(x, y) to measure the distance between pairs of samples.
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4. Results

In this section, we evaluate DMADN on both dehazing performance and high-level
computer vision task results. Our DMADN is trained using Adam optimizer with β1 = 0.9
and β2 = 0.999 respectively. Because the contrastive learning loss function is challenging
to converge, we set the balancing parameter to a low value of 0.1. We also set the initial
learning rate to 0.0002, and cosine annealing is used in training. The entire training process
contains 200 epochs with a batch size of 12. All experiments are implemented on a PC with
one NVIDIA GeForce RTX 3090.

4.1. Performance Evaluation

We compare the dehazing performance on both synthetic and real-world datasets.
Following previous works, we trained our method on the Indoor Training Set (ITS) and
test on the Synthetic Objective Testing Set (SOTS) indoors, which included RESIDE [5].
To verify the dehazing performance of DMADN in the real-world sense, we also adopt
O-HAZE [58] and NH-HAZE [59] which are real-world haze datasets. Because dehazing
networks are notoriously computationally intensive, it is not sensible to input images with
larger resolution in training. On the other hand, the original size of the above datasets is not
friendly to the training of dehazing networks. Most recent works [29,46–48] have cropped
the training image to square patches. Following [29], we randomly crop 256× 256 patches
from training datasets. We also randomly flip the patches horizontally or vertically to
augment the training datasets. To compare fairly, we also make the quantitative compar-
isons on the cropped datasets [29,46–48]. Furthermore, we used SSIM and PSNR for the
quantitative assessment.

We evaluate the proposed DMADN against both hand-crafted prior-based methods
(DCP [12], NLD [14]) and CNN models (AODNet [24], GridDehazeNet [48], FFA-Net [47],
MSBDN [29], AECR-Net [46]). Previous CNN-based dehazing methods only report quanti-
tative assessments of real-world hazy images. To compare fairly, we retrain these meth-
ods [24,47,48], using their provided codes on the same datasets as DMADN.

Table 1 summarizes the quantitative assessment of both SOTS, O-HAZE, and NH-
HAZE. As we can see, prior-based methods [12,14] do not achieve satisfying performance
in quantitative comparisons. The method AOD-Net is less effective because of the overly
simple network structure. The previous end-to-end CNN dehazing methods and DMADN
obtained better results than others. It can be noticed that DMADN achieves the best
performances on both synthetic and real-world datasets. On the STOS dataset, DMADN
achieves 37.28 dB PSNR, which gains the second top performance, 0.22 dB PSNR of AECR-
Net. On real-world datasets, DMADN gains in the range of 0.31~9.63 dB PSNR and
0.14~6.26 dB PSNR, respectively.

Table 1. Quantitative comparisons on both synthetic and real-world datasets.

Method
SOTS O-HAZE NH-HAZE

PSNR SSIM PSNR SSIM PSNR SSIM

DCP 20.76 0.8494 17.29 0.5710 14.04 0.5003
NLD 17.27 0.7501 15.03 0.5390 13.64 0.5551

AOD-Net 20.23 0.8161 18.85 0.5962 15.31 0.5796
GridDehazeNet 32.46 0.9794 22.94 0.6970 17.80 0.5995

FFA-Net 35.74 0.9846 24.20 0.7340 19.45 0.6913
MSBDN 33.79 0.9840 24.35 0.7485 19.23 0.7056

AECR-Net 37.06 0.9898 24.24 0.7480 19.76 0.7172
Ours 37.28 0.9913 24.66 0.7502 19.90 0.7175

We also show the qualitative comparison of both synthetic and real-world hazy images.
Figure 5 shows that the restored images of DCP and NLD have a color distortion problem,
and AOD-Net cannot remove all haze in synthetic images. The recent CNN-based dehazing
methods and DMADN can all effectively remove haze and preserve textures well.
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We present the visual quality on O-HAZE and NH-HAZE in Figures 6 and 7. Com-
pared to synthetic images, real-world hazy images are more difficult to recover, since the
natural haze may lead to severe degradation of information. As we can see, the images
generated by DCP and NLD suffer from severe color distortion. The images restored by
AOD-Net and GridDehazeNet still have visible haze. The restored haze-free images by
DMADN are sharper and brighter.

To demonstrate the applicability of our DMADN, we further evaluate our method
on a natural hazy image. Figure 8 shows a natural hazy image and the recovered results
from state-of-the-art dehazing methods [12,24,29,48]. As we mentioned, the dehazed image
generated by DCP suffers from significant artifacts in the white areas, and AOD-Net
generates the results with significant color distortions. The restored result by our DMADN
is brighter and clearer.

4.2. Perceptual Quality Comparsion for High-Level Computer Vision Task

It has been noticed that the results of high-level computer vision tasks (such as object
detection and tracking) may be poor when the input images are degraded. Furthermore,
the dehazing methods could be used as a pre-processing module to improve the robust-
ness of high-level computer systems. Such a “task-driven” evaluation can be used as an
indirect indicator of dehazing performance. In this paper, we conduct an object detection
performance study to indirectly evaluate the dehazing performance.
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Though it is meaningful to study the application of the objection detection task in
hazy conditions, it has not attracted enough attention. There are also few publicly available
datasets for object detection in haze conditions. Although RTTS provides a hazy dataset
with labeling, it lacks corresponding clear images for training. As shown in Figure 9, we
built upon the VOC dataset [60] with a VOC_hazy_test dataset according to [5] to conduct
fair evaluation. Following RTTS, we selected five classes of objects (person, car, bicycle,
motorcycle, bus) to build our VOC_haze_test. In the perceptual quality evaluation, we
first trained a YOLOv5s model on clear VOC2007 and VOC2012 datasets, then we used the
trained model to evaluate the recovered haze-free images. In the “task-driven” evaluation,
we compare the proposed DMADN with DCP [12], PFF-Net [47] and MSBDN [29].

The mAP results are demonstrated in Table 2, and our DMADN obtains the best
performance. An example of qualitative performance is shown in Figure 10. Benefitting
from DMADN, the lost objects have been recovered. It means that our DMADN can not
only recover images with the best structural similarity, but also is helpful in improving the
robustness of the detection algorithm.

Table 2. Detection results on recovered images.

Person Car Bus Bicycle Motorbike All

Hazy 81.7 86.8 79.4 82.0 73.0 80.6
DCP 84.5 86.0 84.6 85.5 82.4 84.6

PFF-Net 79.5 85.6 80.9 80.9 77.9 81.0
MSBDN 85.6 89.9 85.5 87.8 84.5 86.7

Ours 87.4 91.0 87.3 89.0 86.6 88.4
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4.3. Ablation Studies

To demonstrate the effect of different models in DMADN, we conduct ablation experi-
ments in this part.

We first built a base subnet as the baseline, consisting of only downsampling layers,
6× FE modules, and upsampling layers. Then, we added different components into the
basic network: (1) base + mix: We added the learnable adaptive mixup skip connection
into the base subnet. (2) base + mix + FAM: Adaptive mixup skip connection and Feature
Attention Mechanism were added into the base subnet. A conventional convolutional layer
replaces the DFE module. (3) base + mix + DFA: The network includes adaptive mixup
skip connections and a complete DFA module. (4) DMADN.

In the ablation studies, we use ITS for training and SOTS indoor for testing; a com-
parison of the above subnets is shown in Table 3. Compared with the baseline, base + mix
achieves 0.88 dB PSNR gains at adding ignorable parameters.

Table 3. Ablation study on DMADN.

Subnet PSNR SSIM Param

base 28.92 0.9494 1.34M
base + mix 29.80 0.9562 1.34M

base + mix + FAM 33.49 0.9797 1.96M
base + mix + DFA 35.62 0.9854 2.00M

DMADN 37.28 0.9913 5.34M

The results in Table 3 can demonstrate the importance of the FAM module. We have
proven that the introduced DFE module dramatically enhances the dehazing performance
by improving 2.13 dB PSNR from base + mix + FAM to base + mix + DFA. Moreover,
compared to base + mix + DFA, our DMADN achieves performance gains of 1.66 dB PSNR,
demonstrating that the AFF module can restore the missing spatial information efficiently.

To demonstrate the effect of the contrastive learning mechanism, we also trained the
DMADN on ITS by only employing the L1 loss. As presented in Table 4, the contrastive
learning mechanism improves the performance gains of 1.88 dB PSNR without increasing
inference time in the testing phase.

Table 4. Ablation study on contrastive learning.

Model Contrastive Learning PSNR SSIM

DMADN
√

37.28 0.9913
DMADN × 35.40 0.9831

5. Discussion and Conclusions

This paper proposes a novel single-image dehazing network named DMADN. Ex-
tensive experiments have demonstrated that DMADN achieves state-of-the-art dehazing
performance with competitive complexity. The perceptual quality evaluation for object
detection has proven the application value of our method.

Our DMADN is designed under the encoder–decoder framework; it consists of two
key components, the Dynamic Feature Attention (DFA) module, and the Adaptive Feature
Fusion (AFF) module. We took advantage of the characteristic of haziness in designing
networks. Considering that the distribution of haze is always uneven in a degenerated
image and the value in each channel is different [12], we designed the Dynamic Feature
Attention module, which provides pixel-wise weights and channel-wise weights for input
features. Benefiting from the DFA, our dehazing network can focus on the more important
regions in the feature maps. In the ablation studies, we demonstrated that DFA can
effectively improve the dehazing performance. We believe that this strategy of adding extra
weight to features could be extended for future research on dehazing networks. We notice
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that previous dehazing methods only adopted convolutional layers with fixed kernels to
build networks, which cannot extract spatial structure information in the input images.
One work [52] found that convolution layers with spatially invariant kernels could generate
over-smoothing artifacts and corrupted image textures. To extract the information more
efficiently, we introduce deformable convolution [31] as the dynamic feature enhancement
(DFE) in our DFA module. Our design idea is that by using the deformable kernel of
deformable convolutional, we can move the receptive field to the more important parts
(such as an edge part of an object). The ablation study results show that compared with the
conventional convolutional layer, the deformable convolution achieves 2.13 dB PSNR on
SOTS. Due to the significant improvement over the deformable convolution, it is reasonable
to assume that it could also be applied in future research on image restoration. It is an
easy problem to achieve balance between the number of parameters and the network’s
performance. Unfortunately, in order to obtain a natural result, it is important to increase
the depth of the network to better extract the information of semantic features. To deal
with this problem, we did not simply adopt multiple independent CNN models. Following
works [29,51], we define only one DFA module in the feature restoration module, and we
let the input features pass through this defined DFA module several times. This approach
of using shared parameters in the network slightly decreases performance compared to
using separate parameter modules. However, its semantic extraction power is significantly
enhanced compared to using the corresponding convolutional layer only once. We believe
this is an effective parameter-saving approach applicable to other works.

Most end-to-end dehazing networks are typically designed under an encoder–decoder
framework. Moreover, the spatial information from the higher layers is degenerating
as the convolutional layers are stacked. To resume the missing information, previous
works first resize the non-adjacent features to the same dimension and fuse them via skip
connection. However, simply using skip connection or conventional convolutional layers
to accomplish feature fusion is inefficient since the density of information from shallow
and in-depth features is different. In this paper, we design a non-adjacent feature fusion
module named Adaptive Feature Fusion (AFF) to remedy the missing spatial information.
In addition, we have proven that the adaptive mixup operation can improve the dehazing
performance by adding ignorable parameters, and introduced the adaptive mixup operation
in our AFF module. Our AFF model has a high degree of versatility and can be easily
applied to other dehazing networks with similar structures. The experimental results in
ablation studies have proven that our proposed AFF module is practical for improving the
dehazing performance.

Different from object detection CNNs, dehazing networks are notoriously computa-
tionally intensive. Most previous works concentrated on increasing the scale of the model
to improve the dehazing performance, making it challenging to apply dehazing methods
in edge devices. In this paper, we introduce contrastive learning to leverage the knowledge
from both positive and negative samples. Furthermore, we have proven that the contrastive
learning strategy could effectively improve the quality of output while adding no addi-
tional complexity and inference time in the testing phase. This scheme of improving the
performance without increasing the network’s complexity is friendly for the application of
edge devices.

Compared to conventional convolution, the deformable convolution has an additional
offset parameter at each pixel of the kernels. This characteristic of the deformable convolu-
tion may create a confusion about whether, in the testing phase, the sizes of input images
have an impact on the dehazing performance. In general, the end-to-end dehazing network
built with only conventional convolutional layer usually achieves the best performance
on the testing image with the same size as training dataset. To verify this view, we use the
trained subnet in the Section 4.3 to evaluate on cropped testing datasets with different sizes.
In the experiment we find that the subnet base + mix + FAM achieves the best performance
on the testing dataset with the size 256× 256. Compared to the results on images with
size 256× 256, the results on the hazy image with smaller or larger size are decreasing.
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This result can prove the above point. However, the result of subnet base + mix + DFA is
different from the base + mix + FAM. As the size of the input image increases, the result of
the quantitative comparison will become higher. Moreover, the decline on smaller size is
lesser than base + mix + FAM. The only difference between above two subnets is that the
deformable convolutional layer in base + mix + DFA has been replaced by a conventional
convolutional layer in the base + mix + FAM. So, we can theorize that the deformable
convolution causes the condition. We interpret the above experimental results as the reason
that the deformable convolution introduces additional parameters; its performance on
larger-size images may be better than its application on lesser-size images. Furthermore,
these additional parameters may give it some robustness to input size variations. This
characteristic of deformable convolution brings two advantages to our dehazing network.
One of them is that we can directly input large images into the trained model without
worrying about significant performance degradation. On the other hand, it suppresses the
deterioration of the model’s dehazing performance on small-sized input images.

To make our dehazing network more suitable for practical applications, we have
added a compatible function for the different sizes of input images. Since there are two
models (adaptive mixup operation and Adaptive Feature Fusion Module) used to fuse
the non-adjacent features in our network, when the input image size is not 2n, it may
produce an error in the forward process of the network. To deal with this problem, we add
interpolation operations in DMADN. Unlike the interpolated operation, which directly uses
the input images, the effect of the interpolation operation in the network can be ignored. In
fact, due to deconvolution and skip operation, most recent end-to-end dehazing networks
have the problem of not being compatible with the image with the size is not 2n. Through
the compatible function, anyone who wants to use our trained model can input the images
directly into our model without cropping.

It has been noticed that the results of high-level computer vision tasks may deteriorate
the haze. Dehazing methods could be used as the pre-processing for high-level computer
systems. Although the “task-driven” evaluation has tremendous implications for practical
applications, it has received little attention. To illustrate the superiority of our model, we
not only evaluate DMADN against state-of-the-art dehazing performance and result of the
object detection task. There is a lack of detection datasets containing both clear and hazy
images. To evaluate the perceptual quality, we used [5] to build the VOC_haze_test. We
evaluate the object detection performance of our DMADN and other dehazing methods.
Our models achieved the highest scores in all object detection experiments, meaning that
the DMADN has a high application value. We believe that this reference-free evaluation
approach could not just be adopted in terms of dehazing, but also could be used in the
evaluation of other image recovery tasks (such as denoising and deblurring). On the
other hand, we hope that the studies for high-level computer vision tasks in degraded
environments can receive more attention.
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