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Abstract: A compact analytical model of current transfer was developed to estimate the characteristics
of heterostructured devices. The absence of empirical correction factors and the explicit accounting
of the interelectronic interaction differentiates it from previous similar models. The model obtains
an estimates of the electron density in the quantum well of the heterostructural channel and applies
a self-consistent correction for resonance levels. It also provides accuracy in the positive differential
resistance region of the I–V characteristics in the AlGaAs structures, with an average relative error
not exceeding 2%. The time complexity of the calculations of the I–V characteristics using this model
is several orders of magnitude less than that of calculations using ab initio models. Its high accuracy
and low temporal complexity of calculations of I–V characteristics allow this model to be integrated in
systems for the design and calculation of reliability indicators for devices, including terahertz devices.

Keywords: mathematical modeling; resonant-tunneling structures; self-consistent potential; electron
concentration; resonant levels; semiconductor epitaxial layers; radio frequency converting devices

1. Introduction

Radio waves in the terahertz (THz) range lack ionizing effects, can penetrate optically
opaque objects, are capable of forming a narrow radio beam and have a high information
capacity. For these reasons, they are able to operate in a complex electromagnetic environment
and are widely used for the creation of high-speed radio communication lines, high-precision
radars, high-resolution imaging devices and remote chemical identification devices for security
systems. Terahertz waves are widely used in astrophysical research to study background
cosmic radiation and the radiation specters of stars, galaxies and other cosmic objects.

Terahertz radiation is relatively safe for humans. It is increasingly used in tomography
and other medical research, in particular as an effective complement to X-ray diagnosis of
living tissue pathologies. Methods of treatment and surgical intervention using terahertz
radio waves are also notably found in oxidation therapy, aerotherapy, inhalation therapy
and in oncology treatment for the thermal destruction of tissues.

In addition, a transition to the THz range can significantly reduce equipment size
and resolve the electromagnetic compatibility problems of radio systems located in close
proximity to each other, their noise immunity and the stealth of information transfer, as
well as reduce power consumption through the use of antennae with a narrow radiation
pattern and a high amplification factor.

Key elements of receiving and transmitting devices in such systems are devices that
perform frequency conversions of radio signals (mixers, multipliers, etc.), which are built, as
a rule, on GaAs Schottky barrier diodes (SBD) as nonlinear elements (NE). The characteristics
of nonlinear conversions (level of useful signal, conversion loss, levels of parasitic harmonics
and intermodulation frequencies, dynamic range of processed signals, etc.) that determine
the quality of a system performance, depend on the shape of the NE current–voltage
characteristics (or I–V curve). For Schottky barrier diodes, this is exponential and cannot
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be changed, which limits the acceptable solutions in the design and manufacture of such
devices. To eliminate parasitic harmonics and undesirable intermodulation frequencies from
the output signal spectrum, filtering is used, which leads to more complex design, reduced
reliability and increased mass–size characteristics.

These drawbacks can be overcome by using RTDs based on multilayer nanoheterostruc-
tures as NE devices for the frequency conversion of radio signals. The use of RTDs for such
devices has the following advantages:

• In the design of the RTD, the shape of the I–V curve can be varied by selecting the
parameters of the resonant-tunneling heterostructure (RTHS), which, in turn, opens
up the possibility of purposeful change in the electrical characteristics of converters
that are based on it [1–8].

• The range of possible frequency conversions using RTD is wide: generations of radio
signals on the falling segment of the I–V curve, mixing, frequency multiplication of
radio signals, amplitude detection and rectification on the rising segment of the I–V
curve [9–14].

• The maximum operating frequency of the RTD extends up to units of THz, which
makes RTD a promising element of radiophotonic and optoelectronic devices [15–17].

• Specific symmetry with respect to the origin I–V curve waveform (anti-symmetric)
allows the circuitry realization of some types of frequency converters to be simplified. In
particular, in the construction of THz range frequency mixers, a scheme with subharmonic
pumping is used, which enables the frequency of the heterodyne to be reduced and
the design and technological implementation of the heterodyne circuit to be simplified.
To suppress the odd harmonics of the heterodyne, the NE I–V curve must be anti-
symmetrical, for which two counter-connected SBDs are used. When using RTDs as the
NE in such circuits, one diode is sufficient. This increases the reliability of the converter
and avoids the requirement to select two SBDs with identical parameters.

• An RTD functioning in the typical range of external influences for technical applications
and its production can be achieved using proven technologies in semiconductor electronics.

To design a converter based on RTD with the required parameters, it is necessary to
carefully select the optimal I–V curve and corresponding diode design. The I–V curve
calculation method should, on the one hand, provide a good qualitative and quantitative
agreement of experimental calculations, and on the other hand, have low requirements for
computing resources for multiple I–V curve calculations in an acceptable time.

From this point of view, the prediction of I–V characteristics is currently an unsolved
problem. Existing models [18–20] do not enable the I–V curvature to be predicted as well
as the peak current and voltage. In addition, there is a problem with the computational
efficiency of current-transfer models in RTDs: calculation of even one I–V characteristic
with satisfactory accuracy has an unacceptably high algorithmic complexity for solving
inverse problems (e.g., self-consistent multivalley I–V curve calculation using model [20]
requires about 2 h of CPU time on an Intel Core i5 processor).

To understand the sources of these problems, let us consider the modeling methods
for electronic devices, which can be divided into two groups: empirical, i.e., using the de-
pendencies obtained from the experiment, and theoretical, the calculation of characteristics
from first principles [19].

Semiempirical models, in which experimental data are used to simplify the equations
of theoretical models, are a borderline variant [21,22]. The development of models using
experimental data usually implies the application of regression analysis methods, including
the use of artificial neural networks [23,24]. This presents a problem in relation to staging and
conducting the experiment, too many data are required (which in most cases is simply not
available at the design stage of the RTD-based devices) because of the need to establish the
dependencies of a large number of operating parameters on an equally large number of factors.

Thus, the use of a theoretical approach is believed to be more promising. Obviously,
when designing, the most effective approaches should be built on the minimum number
of “correction” (and in fact, fitting) empirical coefficients (ideally with none) and have
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both qualitative and quantitative validity. If these conditions can be met, validation of the
current-transfer model using experimental data can be carried out with high confidence
levels and small error values.

However, this presents a further problem: to calculate the RTD characteristics with sat-
isfactory accuracy, a numerical solution for the system of differential and integral equations
of the current-transfer model is required, which implies the use of significant computing
resources. This makes it difficult to use ab initio models in applications that require multiple
calculations of RTD characteristics, e.g., in the design of integrated circuits or in predicting
their reliability indicators [25–27].

The solution is to use "compact" models, which have obvious advantages in terms of
the time complexity of algorithms and physical "transparency" (the possibility of analysis
and physical interpretation of model parameters obtained at each stage of the calculation of
the I–V curve, in particular, the concentration of charge carriers). However, it is important
to avoid an unacceptable decrease in accuracy for engineering calculations in the area of
positive differential conductivity.

To date, there are a number of compact models of current transfer in heterostructured
devices [28–35], which do not have the drawbacks of ab initio models. In broad terms,
these models include the processes of elastic and inelastic dissipation. However, in these
models, the accounting of the interelectronic interaction, which has a significant influence
on current-transfer processes, is carried out in a rather crude way.

In theoretical models of current transfer, the interelectronic interaction is taken into
account using the self-consistent field method, which introduces a correction to the total
energy of the electrons, whereas, in compact models, a correction to the resonant energy
levels is introduced to take account of the interelectronic interaction.

At present, there are no strict methods for calculating the correction to the resonance
levels. It is usually assumed to be equal to some constant value (not depending on the
voltage) and is considered as a model parameter to be selected during the validation of the
calculation results. Consequently, this approach makes it impossible to solve the inverse
design problem. Thus, the aim of our work was to build an effective (“easy” in computa-
tional complexity and physically interpretable) model of current transfer in resonant-tunnel
structures with an adequate “a priori” estimation of the position of resonant levels.

2. Modeling Methodology
2.1. Initial Model

In order to verify the developed compact model, it is appropriate to use one of
the existing and well-developed current-transfer models based on integral-differential
equations with a high validation level, e.g., the combined model [20]. This model is based
on the formalism of envelope wave functions, which are the Schrödinger equation solutions
for an open system, and the account of the spatial charge distribution in heterostructures
is performed using the self-consistent field method by entering the averaged electron
interaction potential and the self-consistent potential into the Hamiltonian [36–40].

The basic idea behind the development of a compact model is that a system of integral
and differential equations of the verification basis can be transformed into algebraic and
transcendental equations via linearization and decomposition.

These methods are based on splitting systems of coupled equations into several simpler
independent equations. Decomposition greatly simplifies the qualitative investigation and
interpretation of important physical properties described by coupled equations, allowing
their waves and dissipative properties to be studied effectively.

In addition, in some cases decomposition makes it possible to obtain exact analytical
solutions to the corresponding boundary and initial boundary value problems, and greatly
simplifies the application of numerical methods. These advantages support the goal of
developing a compact model of current transfer in resonant-tunneling structures (RTS),
taking into account the interelectronic interaction.

The construction of an effective model was based on three assumptions:
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1. The current density and concentration of electrons in the quantum well is caused by
energy-charged electrons in the vicinity of the lowest resonance level, formed in the
conduction zone of the RTS quantum well.

2. The width of the resonant levels is negligibly small compared with thermal energy.
3. The tunnel transparency coefficient and local density of states as a function of energy

in the vicinity of resonant levels can be approximated by a function proportional to
the Lorentz distribution function.

2.2. Current Density and Resonant Levels

Figure 1 shows the I–V curve of the resonant-tunneling structures (RTS) and the tunnel
transparency coefficient.
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Figure 1. (a) Potential profile (solid lines), resonant levels (dashed lines) and bottom of conductivity
zone at the source (dots); (b) I–V curve of the RTS; (c) tunnel transparency coefficient at zero, peak
and valley voltages (dashed lines are bottom of conductivity zone at the source); the first (lowest)
resonance level ε, second resonance level and bottom of conductivity zone at the source are shown;
(d) tunnel transparency coefficient as a function of voltage.
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It can be seen from the graphs that the current density drop coincides with the jumping
of the lowest resonant level into the forbidden band. It is therefore worth considering the
dependence of current density on the position of the lowest resonant level. According
to the Tsu–Esaki formula, the current through the RTD active region is described by the
following formula [32,36]:

J(V) = J0

∫ ∞

Ec
T(E, V)D(E, V)dE, (1)

where J0 = 2 2m∗qekБT
(2π)2 h̄3 is a ratio factor, E is a transverse component of the total electron

energy, V is an external voltage, Ec is the position of the bottom of the conduction zone at the
source, T(E, V) is the tunnel transparency coefficient and D(E, V) is the supply function.

The supply function is defined as:

D(E, V) =


ln

1 + e
EF−E

kT

1 + e
EF−qeV−E

kT

E ≥ Ec

0 E < Ec

, (2)

where EF is Fermi level, qe is the elementary charge, kT is thermal energy (Boltzmann
constant multiplied by absolute temperature) and m∗ is the effective mass of electrons
in reservoirs.

In the Tsu–Esaki formula, the integration is performed along the energy spectrum,
starting from the bottom of the conduction zone. According to the first assumption, current
through the channel is caused by electrons at the lower resonant level (Figure 1); thus, the
integration should be performed only in the vicinity of the lower resonant level, that is in
Formula (1), integration limits are changing:

J(V) = J0

∫ ε+Γ

ε−Γ
T(E, V)D(E, V)dE, (3)

where ε = ε(V) is the energy of the lowest resonance level in the permitted band and Γ is
the half-width of that level.

According to the second assumption, the width of the resonant levels is sufficiently
small. Therefore, the supply function can be considered constant in the integration section.
This allows us to take it beyond the integral sign:

J(V) = J0D(E, V)
∫ ε+Γ

ε−Γ
T(E, V)dE. (4)

According to the third assumption, in the vicinity of the lowest resonance level, the
tunnel transparency coefficient is approximated by the Lorentz curve.

T(E, V) =
Γ2

(E− ε)2 + Γ2
, (5)

Substituting this approximation into the Tsu–Esaki Formula (1), we obtain:

J(V) =
π

2
J0ΓD(ε, V). (6)

Thus, in order to calculate the current density as a function of voltage, it is necessary
to know the voltage dependence of the resonant level position ε(V), which can be written
in the form:

ε(V) = ε0 + φ(V), (7)
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where ε0 is the position of the resonant level at zero voltage without taking into account
self-consistency, and φ(V) is the correction to the resonance levels because of external
voltage and interelectronic interactions.

The position of the resonance level ε0 and its half-width Γ are calculated based on the
barrier thickness and pit width [36]. Without taking into account the Coulomb interaction
of electrons, the correction φ(V) in the center of a symmetric RTS equals qeV/2. If self-
consistency is taken into account, the correction to the resonant levels can be calculated
from the Poisson equation:

d
dz

σ(z)
d
dz

ϕ(z, V) = qe(n(z, V)− ND(z)), (8)

where σ(z) is the permittivity, ND(z) is the concentration of donor impurities, z is the
coordinate and n(z, V) is the concentration of electrons.

The solution to Equation (8) is the following function:

ϕ(z, V) = qe

∫ z

0

1
σ(z′)

(∫ z′

0
(n(z′′ , V)− ND(z′′ ))dz′′ + C1

)
dz′ + C2, (9)

where the constants C1 and C2 are obtained from the boundary conditions.
Boundary conditions for Equation (8) are the equality of the potentials to zeroat the

source and applied voltage at the drain. The correction to the resonant levels equals
φ(V) = −qe ϕ(zc, V), where zc is the center of the quantum well. Thus, to calculate the
self-consistent correction, it is necessary to determine the concentration of electrons.

2.3. Electron Concentration

Figure 2 shows the electron concentration and self-consistent potential calculated
using the original model. It can be seen that the departure of the lowest resonance level
leads to a drop in the concentration and self-consistent potential. It also shows that the
concentration of electrons in the barriers can be neglected. Next, it is necessary to consider
the concentration of electrons in the quantum well, spacers and reservoirs.
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The concentration of electrons in the channel is the sum of the concentrations of
electrons entering the channel from the source and the drain:

n(z, V) = ns + nd, (10)

where ns is the concentration of the source electrons and nd is the concentration of the
drain electrons.

The concentration of source electrons in the channel is described by the following
Formula [36]:

ns =
∫ ∞

Es
|ψ(z, E)|2gs(E)dE, (11)

where ψ(E, z) is the wave function z and gs(E) is the energy distribution function of the
source electrons at point z.

Function gs(E) is defined as:

gs(E) = Cn

ln
(

1 + e
−E+EF+UL(R)

kT

)
√

E−Ul(r)

, Cn =

√
2m∗

3
2 kT

(2π)2h̄3 . (12)
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where UL(R) is the potential energy of an electron on the left (right) boundary of the simu-
lated area, Ul(r) is the potential energy of an electron at the channel-source (drain) boundary.

To determine the concentration of source electrons in the quantum well, transforma-
tions similar to those applied to the Tsu–Esaki Formula (1) are applied to Equation (11), in
order to obtain the formula for the current density (6). According to the first assumption,
we replace the integration limits in Formula (11):

ns(z) ≈
∫ ε+Γ

ε−Γ
|ψ(z, E)|2gs(E)dE. (13)

Applying the second assumption, the function gs(E) can be considered constant within
the integration, which allows us to take it beyond the integral sign:

ns(z) ≈ gs(E)
∫ ε+Γ

ε−Γ
|ψ(z, E)|2dE. (14)

Thus, to obtain an analytical expression for the concentration of electrons in the
quantum well, it is necessary to introduce an approximation of the wave function ψ(z, E) in
the well. In this region, electron waves repeatedly reflect from barriers and form a standing
wave, which is described by the following formula:

ψ(z, E) = A(E) cos(kw(z− zc)). (15)

The parameters kw and zc determine the positions of concentration maxima and
minima. Ignoring the displacement of the concentration maximum due to the applied
electric field, we can approximately assume that zc is the coordinate of the center of the
quantum well. The parameter kw can be estimated from the approximation that, at the
depth of the barriers, the concentration of electrons tunneling out of the well is zero:

kw = π/(a + b), (16)

where a is the quantum well thickness and b is the barrier thickness.
What remains unknown is the amplitude A(E), which can be estimated using the

transfer matrices method, by relating it to the amplitude of the passed wave. According
to the third assumption, the square of the amplitude of the passed wave in the resonance
level region is approximated by the following formula:

|t|2 = |ψ(L, E)|2 =
Γ2

(E− ε)2 + Γ
. (17)

In order to connect the amplitude of the passed wave to the amplitude of the wave
function in the quantum well, it is necessary to determine the type of wave function in
the drain barrier. For simplicity, the origin of coordinates is taken to be at the right-hand
barrier boundary of the well. Then, ignoring the intra-barrier reflection, the wave function
in the barrier has the form:

ψb = Ade−Kd(z,E), (18)

where Kd(z, E) =
∫ z

0 kd(x, E)dx = 1
h̄

∫ z
0

√
2m∗d(Ud(x)− E)dx, Ud(z) is the potential electron en-

ergy in the drain barrier, m∗d is the effective mass in the stock barrier and Ad = teKd(b,E) sec(kwzc).
Thus, if the square of the modulus of the electron wave function in the quantum well

in the vicinity of the resonance level is:

|ψ(z, E)|2 =
cos2(kw(z− zc))

cos2(kwzc)

Γ2e2Kd(b,E)

(E− ε)2 + Γ2
, (19)
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then the concentration of electrons equals:

ns(z) = gs(ε)
cos2(kw(z− zc))

cos2(kwzc)

∫ ε+Γ

ε−Γ

Γ2e2Kd(b,E)

(E− ε)2 + Γ2
dE. (20)

The value e2Kd(b,E) can be assumed constant within the limits of integration and
therefore, can be carried beyond the integral sign. Next, the concentration of source
electrons in the quantum well is approximated by the following formula:

ns(z) =
π

2
Γe2Kd(b,E)gs(ε)

cos2(kw(z− zc))

cos2(kwzc)
. (21)

The formula for the concentration of electrons from the drain can be obtained in
a similar way. Note that the position and width of the resonant level remain the same, the
Fermi level decreases by qeV and the potential energy of the electron at the source-channel
interface Es changes to the potential energy of the electron at the drain-channel interface
Ed, and Es < Ed:

nd(z) =
π

2
Γe2Ks(b,E)gd(ε)

cos2(kw(z− zc))

cos2(kwzc)
, (22)

where Ks(b, E) is defined for the source barrier in the same way as the function Kd(b, E) is
defined for the drain barrier.

2.4. Self-Consistent Potential

Thus, the formula for the concentration of electrons in the quantum well is obtained.
Taking into account that the concentration of donor impurities in the barriers and the well
is zero and that in the spacers and reservoirs the charges of electrons and donor impurities
compensate each other, i.e., that the condition of electrical neutrality is satisfied in these
regions, then, using Formula (9), one can obtain an expression for the self-consistent poten-
tial and the self-consistent correction to the resonance levels φ(V). Omitting cumbersome
algebraic transformations, we obtain:

φ(V) ≈ qe
V
2
− qe

na(zc)

8

(
aL
ε
−
(

a2 − 1
σ2

)
1

2σ1

)
, (23)

where ε = L
(

L−2b
σ1

+ b
σ2

)−1
is the average permittivity of the structure, L is the length of

the structure (including source and drain regions), σ1 is the dielectric permittivity in the
quantum well and σ2 is the dielectric permittivity in the barrier.

The first term in Formula (23) is a correction to the resonant levels due to the external
voltage, and the second term is a correction to the resonant levels due to the interelectronic
interaction. This takes into account that the interelectronic interaction requires the intro-
duction of an additional summand in the correction to the resonant levels, similar to the
way in which the self-consistent potential is introduced into the Hamiltonian in the original
model. It should also be noted that the self-consistent correction is directly proportional to
the concentration of electrons in the quantum well.

The self-consistent potential in the original model is found using an iterative self-
consistent procedure, in each iteration of which the electron concentration is calculated, then
the Poisson equation is solved, from which the next approximation of the self-consistent
potential is found. A similar procedure is then carried out with the obtained approximation
of concentration and self-consistent correction (23). The relationship for the self-consistent
correction as a function of concentration and for the concentration as a function of the
self-consistent potential can be combined into a single equation replacing the self-consistent
procedure. Because of the small size of the quantum region in comparison with the
reservoirs, the spatial changes of the self-consistent potential in the quantum well can be
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ignored, and taking into account the interelectron interaction, it can be considered that
Es = qeφ(V), Ed = qeφ(V)− qeV. The result is:

n(zc) =
π

2
CnΓ

cos2(kwzc)

(
ln
(

1 + e
EF−ε0−qeφ(V)

kT

)
e2Kd(ε.b)√
ε− qeφ(V)

+ ln
(

1 + e
EF−qeV−ε0−qeφ(V)

kT

)
e2Ks(ε.b)√

ε−qeφ(V)−qeV

) (24)

Substituting this expression into Formula (23), we obtain a transcendental equation
with respect to φ(V), from which we obtain the self-consistent correction:

φ(V)− qeV
2

= φ0

(
ln
(

1 + e
EF−ε0−qeφ(V)

kT

)
e2Kd(ε.b)√

ε− qeφ(V),

+ ln
(

1 + e
EF−qeV−ε0−qeφ(V)

kT

)
e2Ks(ε.b)√

ε− qeφ(V),−qeV

) (25)

2.5. Multi-Level Model

The first assumption of the compact model states that the current density through the
RTD is due to electrons with an energy equal to the energy of the lowest resonant level.
However, in practice, this assumption is too imprecise and needs to be specified. The multi-
level model considers current not only through the lowest resonant level, but also at higher
levels in the quantum well. In this case, the expression for the current density looks like:

J(V) =
π

2
J0 ∑N

i=1 ΓiD(εi, V), (26)

where εi and Γi are the energy and width of i resonant level, respectively.
Similar to the single-level model, in the multi-level model the energy of the resonance

level is represented as follows:

εi(V) = ε0i + φ(V). (27)

The self-consistent correction φ(V) is the same for all resonant levels, since it depends
on the concentration of electrons in the well, which is the sum of the concentrations of
electrons at the individual resonant levels:

ns(d) = ∑N
i=1 ns(d)i, (28)

where ns(d)i is the concentration of electrons at i resonant level.
The self-consistent correction in the multi-level model is related to the electron concen-

tration in the same way as in the single-level model (Equation (23)).

3. Materials and Methods

The experimental samples were RTDs of two types:

• RTD No.1: AlAs with barrier thicknesses of 2.9 nm; GaAs with a well thickness of
4.9 nm; spacer thickness of 6.3 nm, transition layers 50 to 1500 nm thick with gradient
doping from 7·× 1016 cm−3 with a mesa area of 900 µm2.

• RTD No.2: AlAs with barrier thickness of 2.26 nm; GaAs with a well thickness of
10.17 nm; spacer thickness of 2.26 nm transition layers 30 to 1500 nm thick with
gradient doping from 7·× 1016 cm−3 with a mesa diameter of 10 µm.

Measurements of diode current–voltage characteristics were performed using a hardware-
software measuring station consisting of a Signatone S-1160 Probe Station, Agilent 3640A
DC Power Supply, Agilent 34401A multimeter and a personal computer. The bench allowed
the measurement of the static current–voltage characteristics of RTDs in the voltage range
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±3 V with an error of 0.05% + 0.05 mV and in the current range ±0.5 A with an error of
0.2% + 0.15 µA.

4. Results and Discussion

Using the compact model, the current–voltage characteristics of the test RTDs were
calculated. A comparison of the results of modeling and experimental measurements is
presented in Figures 3 and 4, and Table 1. As can be seen from the graphs and the table,
for all test RTDs, it was possible not only to ensure agreement on the peak point of the I–V
curve, but also to obtain good agreement (the average relative error does not exceed 1.6%)
on the curvature of the initial section of the RTD current–voltage characteristics.
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Table 1. Experimental and simulated RTD parameters.

Parameters RTD №1 RTD №2

Experimentally measured peak current value, mA 29.45 1.38
Theoretically measured peak current value, mA 30.10 1.38

Accuracy of peak current calculation, % 2.20 0.00
Measured peak position, V 1.18 1.38

Theoretically calculated peak position, V 1.22 1.38
Accuracy of peak position calculation, % 3.41 0.00

Average absolute error in the calculation of the initial section of the current–voltage characteristics, mA 0.22 0.01
Maximum absolute error in the calculation of the initial section of the current–voltage characteristics, mA 0.47 0.02

Average relative error in the calculation of the initial section of the current–voltage characteristics, % 0.75 0.75
Maximum relative error in the calculation of the initial section of the current–voltage characteristics, mA 1.58 1.80

The transition to the compact model from the ab initio self-consistent field model also
allowed us to reduce the computational time complexity. Thus, the calculation time for
one test VAR using the compact model on an AMD Ryzen 7 2700X Eight-Core Processor
with 3.90 GHz, 16.0 GB RAM, x64 bit was 2–5 s, whereas the calculation time using the
first-principle model (within one-valley approximation) was about 15 min (detailed Profiler
MATLAB data are shown in Tables 2 and 3).

Table 2. Time taken for the calculation of current–voltage characteristics using the ab initio model.

Function Name Calls Total Time (s) Self-Time(s)

owns_sc_nonscatt>sl3 3,590,806 550.232 550.232
owns_sc_nonscatt>Jv/nz/fNz 3,505,123 681.743 139.713

funfun\private\IntegralCalc>IterateScalarValued 925,944 88.501 50.547
funfun\private\IntegralCalc>IterateArrayValued 1286 747.195 38.555

funfun\private\IntegralCalc 927,230 891.587 34.594
Funfun\private\IntegralParseArgs 927,230 40.665 28.830

Owns_sc_nonscatt>@(E)fNz(E) 3,505,123 700.773 19.030
funfun\private\IntegralCalc>AtoBlnvTransform 1,162,134 18.622 18.622

funfun\private\IntegralCalc>vadapt 927,230 856.993 11.549

Table 3. Time taken for the calculation of current–voltage characteristics using the compact model.

Function Name Calls Total Time (s) Self-Time(s)

rtd_model_s0>jf/nv 98,000 1.687 0.952
rtd_model_s0>@(e)ma*kR/2/pi/hpˆ2*log(1+exp((ef-f)/kT)) 588,000 0.560 0.560

rtd_model_s0>@(e)1./(1+exp(-e)) 196,000 0.175 0.172
rtd_model_s0>jf/jv 1 1.809 0.122

rtd_model_s0 1 2.375 0.064

Table 2 presents data from the Profiler MATLAB script that implements the ab initio
current-transfer model. This shows the functions for which the total execution time for all
calls exceeded 10 s. The functions listed in Table 2 perform the following roles:

1. owns_sc_nonscatt>sl3: solution of a system of linear algebraic equations by the
chasing method.

2. owns_sc_nonscatt>Jv/nz/fNz: calculation of a local density of states, i.e., an integrand
function in Formula (11).

3. funfun\private\IntegralCalc>IterateScalarValued: calculating integrals from scalar
functions.

4. funfun\private\IntegralCalc>IterateArrayValued: calculating integrals from vector
functions.

5. funfun\private\IntegralCalc: calculating any integrals.
6. funfun\private\IntegralParseArgs: parsing arguments of integrable functions.
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7. owns_sc_nonscatt>@(E)fNz(E): anonymous function that calculates the local density
of states (required to calculate the concentration of electrons).

8. funfun\private\IntegralCalc>AtoBlnvTransform: auxiliary function for solving integrals.
9. funfun\private\IntegralCalc>vadapt: auxiliary function for solving integrals.

As can be seen, a major part of the execution time is taken up by three functions:
sl3, fNz and the calculation of integrals using the function integral. A single call of these
functions does not take much time. However, to calculate one current–voltage characteristic,
these functions need to be executed millions of times (the number of function calls is
indicated in the calls column), because they need to be performed for each voltage, each
iteration of the self-consistency procedure and each energy value. This explains the length
of time required for the calculation.

However, it takes less time to calculate current–voltage characteristics using the
compact model, as can be seen in Table 3, which presents the MATLAB Profile data for the
script that implements the compact model. Similar to Table 2, it shows the functions that
take the longest to execute. The functions required to output the results of the calculation
are not included. It can be seen that the three most frequently called functions, nv, and the
two anonymous functions responsible for calculating the self-consistent correction, took
the longest to execute. The functions listed in Table 3 perform the following roles:

1. rtd_model_s0>jf/nv: calculating the concentration of electrons in the quantum well
of the RTS.

2. rtd_model_s0>@(e)ma*kR/2/pi/hpˆ2*log(1+exp((ef-f)/kT)): electron distribution
in reservoirs.

3. rtd_model_s0>@(e)1./(1+exp(-e)): auxiliary function (sigmoid).
4. rtd_model_s0>jf/jv: current density calculation.
5. rtd_model_s0: script name.

The compact model does not require the repeated calculation of integrals and solution
systems for linear algebraic equations, and only performs anonymous functions during the
iteration procedure to solve Equation (25). This is because, firstly, solving Equation (25)
requires fewer iterations than calling the functions of integration and solving systems for
the linear algebraic equations in the ab initio model, and secondly, calculating anonymous
functions is faster than executing the running and integration algorithms in the ab initio
model. As a result, the compact model is hundreds of times more time-efficient than the ab
initio model, as can be seen from Tables 2 and 3. This calculation time advantage makes it
possible to solve I–V curve synthesis and optimization problems when it is necessary to
calculate hundreds of RTD design variants.

5. Conclusions

This paper presents a compact analytical model of current transfer with a self-consistent
field in heterostructured devices for nanoelectronics in the THz range. The analysis of
current-transfer processes in resonant-tunneling structures with regard to interelectronic
interaction resulted in estimates of the electron concentration in the quantum well of the
heterostructural channel and the self-consistent correction for resonant levels, which en-
abled problems traditionally encountered in validating the current–voltage characteristics
of RTS to be solved. Unlike other models of this class, the developed model takes explicit
account of interelectronic interaction by introducing a self-consistent nonlinear correction
to the resonance levels. Because of its compactness, which significantly reduces the time
complexity of the algorithm and preserves the accuracy of distributed models based on
integral–differential equations of current transfer (relative error not exceeding 3%), the
developed model can be integrated into systems for designing and calculating the reli-
ability parameters of microwave devices. Within the TCAD-system, it allows not only
the solution of analysis tasks but also the synthesis of the required type of I–V curves
associated with optimization of resonant-tunneling structures in order to ensure specified
performance indicators.
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