# Dual-Channel Secure Communication Based on Wideband Optical Chaos in Semiconductor Lasers Subject to Intensity Modulation Optical Injection

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Principles and Theoretical Model

## 3. Numerical Results and Discussion

#### 3.1. Synchronization Characteristics of Wideband Chaos Signals

#### 3.2. Performance of Secure Communication

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Van Wiggeren, G.D.; Roy, R. Communication with chaotic lasers. Science
**1998**, 279, 1198–1200. [Google Scholar] [CrossRef] [PubMed][Green Version] - Argyris, A.; Syvridis, D.; Larger, L.; Annovazzi-Lodi, V.; Colet, P.; Fischer, I.; Garcia-Ojalvo, J.; Mirasso, C.R.; Pesquera, L.; Shore, K.A. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature
**2005**, 438, 343–346. [Google Scholar] [CrossRef] - Lavrov, R.; Jacquot, M.; Larger, L. Nonlocal Nonlinear Electro-Optic Phase Dynamics Demonstrating 10 Gb/s Chaos Communications. IEEE J. Quantum Electron.
**2010**, 46, 1430–1435. [Google Scholar] [CrossRef] - Li, N.; Pan, W.; Yan, L.; Luo, B.; Xu, M.; Tang, Y.; Jiang, N.; Xiang, S.; Zhang, Q. Chaotic optical cryptographic communication using a three-semiconductor-laser scheme. J. Opt. Soc. Am. B Opt. Phys.
**2012**, 29, 101–108. [Google Scholar] [CrossRef] - Sciamanna, M.; Shore, K.A. Physics and applications of laser diode chaos. Nat. Photonics
**2015**, 9, 151–162. [Google Scholar] [CrossRef][Green Version] - Jiang, N.; Zhao, A.; Xue, C.; Tang, J.; Qiu, K. Physical secure optical communication based on private chaotic spectral phase encryption/decryption. Opt. Lett.
**2019**, 44, 1536–1539. [Google Scholar] [CrossRef] - Spitz, O.; Herdt, A.; Wu, J.G.; Maisons, G.; Carras, M.; Wong, C.W.; Elsasser, W.; Grillot, F. Private communication with quantum cascade laser photonic chaos. Nat. Commun.
**2021**, 12, 1–8. [Google Scholar] [CrossRef] - Wang, A.; Wang, Y.; He, H. Enhancing the Bandwidth of the Optical Chaotic Signal Generated by a Semiconductor Laser With Optical Feedback. IEEE Photonics Technol. Lett.
**2008**, 20, 1633–1635. [Google Scholar] [CrossRef] - Li, M.; Hong, Y.; Wang, S.; Song, Y.; Sun, X. Radiation-induced mismatch effect on performances of space chaos laser communication systems. Opt. Lett.
**2018**, 43, 5134–5137. [Google Scholar] [CrossRef] - Li, N.; Susanto, H.; Cemlyn, B.; Henning, I.D.; Adams, M.J. Secure communication systems based on chaos in optically pumped spin-VCSELs. Opt. Lett.
**2017**, 42, 3494–3497. [Google Scholar] [CrossRef] - Wang, D.; Wang, L.; Li, P.; Zhao, T.; Jia, Z.; Gao, Z.; Guo, Y.; Wang, Y.; Wang, A. Bias Current of Semiconductor Laser: An Unsafe Key for Secure Chaos Communication. Photonics
**2019**, 6, 59. [Google Scholar] [CrossRef][Green Version] - Zhao, Q.; Wang, Y.; Wang, A. Eavesdropping in chaotic optical communication using the feedback length of an external-cavity laser as a key. Appl. Opt.
**2009**, 48, 3515–3520. [Google Scholar] [CrossRef] [PubMed] - Li, N.; Pan, W.; Yan, L.; Luo, B.; Xu, M.; Jiang, N.; Tang, Y. On joint identification of the feedback parameters for hyperchaotic systems: An optimization-based approach. Chaos Solitons Fractals
**2011**, 44, 198–207. [Google Scholar] [CrossRef] - Kurdoglyan, M.S.; Kim, C.M.; Kim, G.U. Effects of nonlinear self-phase modulation of the transmitted signal on synchronization behavior of chaotic semiconductor lasers. J. Opt. Soc. Am. B Opt. Phys.
**2004**, 21, 2107–2111. [Google Scholar] [CrossRef] - Rontani, D.; Locquet, A.; Sciamanna, M.; Citrin, D.S. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. Opt. Lett.
**2007**, 32, 2960–2962. [Google Scholar] [CrossRef] [PubMed][Green Version] - Wang, L.; Wu, Z.-M.; Wu, J.-G.; Xia, G.-Q. Long-haul dual-channel bidirectional chaos communication based on polarization-resolved chaos synchronization between twin 1550 nM VCSELs subject to variable-polarization optical injection. Opt. Commun.
**2015**, 334, 214–221. [Google Scholar] [CrossRef] - Wu, J.-G.; Xia, G.-Q.; Wu, Z.-M. Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback. Optics Express
**2009**, 17, 20124–20133. [Google Scholar] [CrossRef] [PubMed] - Li, S.-S.; Liu, Q.; Chan, S.-C. Distributed Feedbacks for Time-Delay Signature Suppression of Chaos Generated From a Semiconductor Laser. IEEE Photonics J.
**2012**, 4, 1930–1935. [Google Scholar] [CrossRef] - Wang, L.; Mao, X.; Wang, A.; Wang, Y.; Gao, Z.; Li, S.; Yan, L. Scheme of coherent optical chaos communication. Opt. Lett.
**2020**, 45, 4762–4765. [Google Scholar] [CrossRef] [PubMed] - Cheng, C.-H.; Chen, Y.-C.; Lin, F.-Y. Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning. Opt. Express
**2015**, 23, 2308–2319. [Google Scholar] [CrossRef] - Wang, A.; Wang, L.; Li, P.; Wang, Y. Minimal-post-processing 320-Gbps true random bit generation using physical white chaos. Opt. Express
**2017**, 25, 3153–3164. [Google Scholar] [CrossRef][Green Version] - Kovanis, V.; Gavrielides, A.; Simpson, T.B.; Liu, J.M. Instabilities and chaos in optically injected semiconductor-lasers. Appl. Phys. Lett.
**1995**, 67, 2780–2782. [Google Scholar] [CrossRef] - Wang, A.-B.; Wang, Y.-C.; Wang, J.-F. Route to broadband chaos in a chaotic laser diode subject to optical injection. Opt. Lett.
**2009**, 34, 1144–1146. [Google Scholar] [CrossRef][Green Version] - Li, X.-Z.; Zhuang, J.-P.; Li, S.-S.; Gao, J.-B.; Chan, S.-C. Randomness evaluation for an optically injected chaotic semiconductor laser by attractor reconstruction. Phys. Rev. E
**2016**, 94, 042214. [Google Scholar] [CrossRef][Green Version] - Lin, F.Y.; Liu, J.M. Chaotic lidar. IEEE J. Sel. Top. Quantum Electron.
**2004**, 10, 991–997. [Google Scholar] [CrossRef] - Hwang, S.K.; Liu, J.M. Dynamical characteristics of an optically injected semiconductor laser. Opt. Commun.
**2000**, 183, 195–205. [Google Scholar] [CrossRef] - Chan, S.-C.; Tang, W.K.S. Chaotic dynamics of laser diodes with strongly modulated optical injection. Int. J. Bifurc. Chaos
**2009**, 19, 3417–3424. [Google Scholar] [CrossRef] - Tseng, C.-H.; Hwang, S.-K. Broadband chaotic microwave generation through destabilization of period-one nonlinear dynamics in semiconductor lasers for radar applications. Opt. Lett.
**2020**, 45, 3777–3780. [Google Scholar] [CrossRef] - Zeng, Y.; Zhou, P.; Huang, Y.; Li, N. Optical chaos generated in semiconductor lasers with intensity-modulated optical injection: A numerical study. Appl. Opt.
**2021**, 60, 7963–7972. [Google Scholar] [CrossRef] - Tseng, C.-H.; Funabashi, R.; Kanno, K.; Uchida, A.; Wei, C.-C.; Hwang, S.-K. High-entropy chaos generation using semiconductor lasers subject to intensity-modulated optical injection for certified physical random number generation. Opt. Lett.
**2021**, 46, 3384–3387. [Google Scholar] [CrossRef] [PubMed] - Li, N.; Pan, W.; Luo, B.; Yan, L.; Zou, X.; Jiang, N.; Xiang, S. High Bit Rate Fiber-Optic Transmission Using a Four-Chaotic-Semiconductor-Laser Scheme. IEEE Photonics Technol. Lett.
**2012**, 24, 1072–1074. [Google Scholar] [CrossRef] - Mirasso, C.R.; Colet, P.; GarciaFernandez, P. Synchronization of chaotic semiconductor lasers: Application to encoded communications. IEEE Photonics Technol. Lett.
**1996**, 8, 299–301. [Google Scholar] [CrossRef] - Lin, F.Y.; Liu, J.M. Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback. Opt. Commun.
**2003**, 221, 173–180. [Google Scholar] [CrossRef] - Amiri, I.S.; Ali, J. Femtosecond Optical Quantum Memory Generation Using Optical Bright Soliton. J. Comput. Theor. Nanosci.
**2014**, 11, 1480–1485. [Google Scholar] [CrossRef] - Wang, A.; Yang, Y.; Wang, B.; Zhang, B.; Li, L.; Wang, Y. Generation of wideband chaos with suppressed time-delay signature by delayed self-interference. Opt. Express
**2013**, 21, 8701–8710. [Google Scholar] [CrossRef] [PubMed] - Li, N.; Pan, W.; Locquet, A.; Citrin, D.S. Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection. Opt. Lett.
**2015**, 40, 4416–4419. [Google Scholar] [CrossRef] [PubMed] - Jiang, N.; Zhao, A.; Liu, S.; Xue, C.; Qiu, K. Chaos synchronization and communication in closed-loop semiconductor lasers subject to common chaotic phase-modulated feedback. Opt. Express
**2018**, 26, 32404–32416. [Google Scholar] [CrossRef] - Bogris, A.; Rizomiliotis, P.; Chlouverakis, K.E.; Argyris, A.; Syvridis, D. Feedback phase in optically generated chaos: A secret key for cryptographic applications. IEEE J. Quantum Electron.
**2008**, 44, 119–124. [Google Scholar] [CrossRef]

**Figure 1.**Schematic of dual-channel chaotic communication system subject to IM optical injection. ML, master laser; TL, transmitter lasers; RL, receiver lasers; MZM, Mach–Zehnder modulators; OC, optical coupler; VOA, variable optical attenuators; EDFA, erbium doped fiber amplifier; PD, photodetector.

**Figure 2.**Time series of (

**a**,

**e**) the first channel and (

**b**,

**f**) the second channel of TLs and RLs. (

**c**,

**g**) Power spectra of TLs. (

**d**,

**h**) Phase portraits of TLs.

**Figure 4.**(

**a**,

**c**) Message 1 and (

**b**,

**d**) Message 2 of the original, decrypted (

**a**,

**b**) Q (t) signals and the original, decrypted (

**c**,

**d**) I (t) signals.

**Figure 5.**Constellations of the original, decrypted (

**a**–

**c**) Message 1 and (

**d**–

**f**) Message 2 transmission in (

**a**,

**d**) 10 km (first column), (

**b**,

**e**) 20 km (second column) optical fiber and (

**c**,

**f**) attack (third column).

**Figure 8.**Parameter mismatch investigation for (

**a**) Message 1 after 120 km transmission and (

**b**) Message 2 after 20 km transmission.

Symbol | Parameter | Value |
---|---|---|

$\mathrm{\Gamma}$ | linewidth enhancement factor | 4.5 |

${G}_{n}$ | gain coefficient | 10^{−12} m^{3}/s |

${N}_{0}$ | carrier density at transparency | 10^{24} m^{−3} |

${\tau}_{p}$ | photon lifetime | 2 ps |

${\tau}_{n}$ | carrier lifetime | 2 ns |

${I}_{th}$ | threshold current | 18 mA |

$q$ | electronic charge | 1.602 × 10^{−19} C |

$V$ | volume of the active region | 1.5 × 10^{−16} m^{3} |

${\xi}_{i}$ | injection ratio | 40 ns^{−1} |

${f}_{i}$ | frequency detuning | −30 GHz |

${\tau}_{in}$ | round-trip time | 9 ps |

${r}_{0}$ | amplitude reflectivity of the laser facet | 0.3 |

${r}_{inj}$ | amplitude reflectivity of external mirror | 0.1 |

${k}_{MZM}$ | message modulation depth | 0.08 |

$\phi $ | the normalized bias | 0.785 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, Y.; Huang, Y.; Zhou, P.; Li, N.
Dual-Channel Secure Communication Based on Wideband Optical Chaos in Semiconductor Lasers Subject to Intensity Modulation Optical Injection. *Electronics* **2023**, *12*, 509.
https://doi.org/10.3390/electronics12030509

**AMA Style**

Wang Y, Huang Y, Zhou P, Li N.
Dual-Channel Secure Communication Based on Wideband Optical Chaos in Semiconductor Lasers Subject to Intensity Modulation Optical Injection. *Electronics*. 2023; 12(3):509.
https://doi.org/10.3390/electronics12030509

**Chicago/Turabian Style**

Wang, Youming, Yu Huang, Pei Zhou, and Nianqiang Li.
2023. "Dual-Channel Secure Communication Based on Wideband Optical Chaos in Semiconductor Lasers Subject to Intensity Modulation Optical Injection" *Electronics* 12, no. 3: 509.
https://doi.org/10.3390/electronics12030509