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Abstract: This work represents a new attempt to use drone aerial photography to detect illegal
cultivation of opium poppy. The key of this task is the precise segmentation of the poppy plant
from the captured image. To achieve segmentation mask close to real data, it is necessary to extract
target areas according to different morphological characteristics of poppy plant and reduce complex
environmental interference. Based on RGB images, poppy plants, weeds, and background regions
are separated individually. Firstly, the pixel features of poppy plant are enhanced using a hybrid
strategy approach to augment the too-small samples. Secondly, the U-Shape network incorporating
the self-attention mechanism is improved to segment the enhanced dataset. In this process, the
multi-head self-attention module is enhanced by using relative position encoding to deal with the
special morphological characteristics between poppy stem and fruit. The results indicated that the
proposed method can segmented out the poppy plant precisely.

Keywords: semantic segmentation; U-Shape network; multi-head self-attention

1. Introduction

Image semantic segmentation is an important direction in the field of machine vision
and is a fundamental task for labeling and classifying each pixel. Segmentation of an image
is the process of dividing the image into several regions with different characteristics based
on the similarity, processing the image from the pixel level.

The recognition and segmentation of green crops is one of the significant studies in
agricultural machinery vision systems [1], where the target regions are extracted according
to different morphological features of crops, which are widely used in scenarios such as
yield estimation [2], precision agriculture [3], and variety monitoring [4]. Meanwhile,
advances in the technology of electronic and avionics systems for UAVs mainly include
cost reduction and miniaturization of equipment, bringing efficiency gains for green crop
segmentation [5–7].

Poppy is an annual herbaceous plant. The stem is 30–80 cm tall and the flower buds
are ovoid, long-stalked and pendulous when not in bloom. The juice extracted from the
capsule is processed into opium, morphine, and heroin. As a result, the opium poppy has
become an important source of drugs in the world. The cultivation of opium poppy should
be strictly regulated.

In agricultural production, traditional methods of yield estimation of plants often
utilize manual methods that are severely labor intensive. Unlike common crops, opium
poppies are often grown on a small scale and require more precise segmentation. The
main identifying features of poppy are the plant morphology and the characteristics of the
stamens and fruits. Poppies have large leaves with irregularly wavy edges, and the base
of the leaf encloses the stem in a clasping pattern. However, the petal color of the poppy
varies from pink to red due to the variety, so the flower color is not a good feature. By now,
there is no existing method for segmentation of poppy images.
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The main goal of our work is to perform accurate segmentation of poppy images to
distinguish poppies from other crops. In order to achieve accurate segmentation of poppy,
we need to solve the following difficulties:

• Poppy is not a common crop, which is difficult to collect and the number of samples is
small to support the training of a high- accuracy network.

• RGB images can mostly retain the morphological features of poppy and other crops,
but there will be interferences in the images. The similar tree crowns or other plant
interferences can easily lead to the problem of segmentation errors.

• The change in shooting height brings complex scale features.
• The plant morphology of opium poppy is special, and there is often a long distance

between the fruit and stem of the same poppy plant, which can lead to loss of edge
information. Due to the lack of ability of traditional methods to process the rich
semantic information of images, many works have been done on agricultural yield
estimation using deep learning techniques. As an important tool for image process-
ing, convolutional neural networks can make full use of the semantic information of
images. However, limitations still exist due to convolutional operations in modeling
long-distance relationships. Therefore, these architectures usually yield weaker perfor-
mance, especially for poppy images with large differences in structural textures, shape
features. In this regard, we use CNN as the backbone to integrate transformer technol-
ogy, which has excellent attention mechanism. The combination with CNN effectively
avoids the high computing power required for a network built by transformer only.

In this paper, the enhanced images are trained using an improved deep network model
to effectively segment poppies and other species of plants. The size of poppy cultivation
is estimated by using the segmentation results obtained from the deep network. Our key
ideas are as follows:

• We use ExG (Excess Green index), CIVE (Color Index of Vegetation Extraction) and
the combined vegetation indices COM (Combination index) to process the original
image instead of the original RGB image as the network input for the distinctive
features of poppy (leaf texture, fruit shape) [8]. This is useful for the task of semantic
segmentation of poppy with few samples and inter-class interference.

• A U-shaped network—TAU-Net is improved using Transformer for the semantic
segmentation task of poppy images captured by UAVs. The backbone network in-
corporates both CNN networks and self-attentive mechanisms. Poppy features vary
widely at different scales. Unlike the network built by the self-attentive module only
or the convolution module only, TAU-Net takes advantage of the transformer to per-
ceive the whole image instead of the original U-net which has a restricted field of
perception. The improved network improves the robustness of the network to scale
changes without imposing high computational effort.

• Poppy images collected by UAVs have high resolution and pixels with high spatial
structure. There is a remote dependency between the fruit and the rootstock of the
plant of poppy. In this paper, the number of tokens is huge when using transformer in
encoding stage. The relative position encoding method learns the relationship between
tokens to maintain more accurate position information.

2. Related Works
2.1. Plant Image Enhancement

One of the drawbacks of using supervised methods in agricultural image segmentation
tasks is the lack of sufficient labeled datasets, which often affects the training process of the
network [9]. The robustness and generality of deep learning models are influenced by the
diversity and amount of training data. For example, in the segmentation of plant pests and
diseases, cases have different onset conditions and some lesions have sparse image samples.
It is difficult to have enough data to support training in practical projects [10]. In small
sample problems, traditional methods usually perform geometric or color transformations
on existing data, however, they do not substantially increase the dataset. There are other
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ideas to solve this problem. One of the approaches is to use multiple channels of an
image [11]. Multiple channels segmented from the image (raw RGB data, vegetation
indices, HSV color channels, and Canny edge detector) are used as input data for the CNN,
which enhances the generalization of the model with limited training data.

2.2. Artificial Neural Networks for Vegetation Image Segmentation

Before the rise of neural network models, there are many traditional methods designed
for solving the problems of agricultural image classification and semantic segmentation.
Representative traditional algorithms include threshold-based methods, clustering-based
methods, wavelet transforms, support vector machine, or Hough transform. In vegetation
image segmentation [12], traditional methods follow the setting of equality between veg-
etation and other objects in one image, which are not fully effective at different stages of
plant growth. On the other hand, they have limitations due to the influence of changing
light conditions on the obtained vegetation segmentation results. There have been many
excellent methods to form segmentation of vegetation images using neural networks.

Fully convolutional network (FCN) is a pioneering work in deep learning for semantic
segmentation, establishing a framework for a generic network model for semantic segmen-
tation of images (i.e., pixel-level classification of targets) and providing key ideas for the
development of encoder-decoder networks [13]. SegNet is one of the classic models of
encoder-decoder network [14]. It follows the FCN architecture and the semantic segmenta-
tion network is obtained by VGG16 [15]. Although SegNet is fast in convergence, it does
not fully consider the pixel-to-pixel relationship. In the field of agriculture, SegNet is more
advantageous in large volume target extraction for high spatial resolution remote sensing
images. When extracting sunflower planting areas, SegNet achieved the best accuracy
of 89.8% with image fusion performed. Although SegNet is fast in convergence, it does
not fully consider the pixel-to-pixel relationship. DeepLab improves FCN by employing
atrous convolution [16]. DeepLab network is excellent at extracting more dense features.
At the same time, DeepLab largely expands the receptive field and obtains a multi-scale
global background, but is still limited by the local area. To segment the lychee trunk [17],
the Xception feature extraction model used by DeepLabV3+ was improved at different
layers [18]. The MIoU obtained by the network is 76%. DeepLabV3+ network is excellent
at extracting more dense features. At the same time, DeepLabV3+ largely expands the
receptive field and obtains a multi-scale global background, but is still limited by the local
area. Secondly, the huge number of parameters bring tremendous computational burden.

The U-Net architecture based on FCN, demonstrated excellent segmentation perfor-
mance [19]. But usually, the sizes of pixel blocks are much smaller than the whole image.
The algorithm can only extract some local feature information, which leads to the limitation
of the classification performance. In weed image segmentation [20], the simplified U-Net
obtained the IoU of 89.45% on the validation set.

2.3. Attentive Mechanisms

The essence of the attention mechanism is the specific selection of input data, which
focuses on the most critical information in a large amount of data by highlighting the key
inputs on the output and suppressing the non-important information. Self-attention is a
variation of the attention mechanism that relies less on external information and is better at
capturing the internal relevance of data or features [21].

For vision, attention mechanisms can be divided into channel attention, spatial at-
tention, temporal attention, and branching attention according to dimensions [22]. The
residual attention network [23], which consists of multiple attention modules stacked, is
able to quickly collect global information of images and combine the global information
with the original feature maps, but suffers from the high computational load. The SENet
network adaptively adjusts the feature map channel weights by establishing interdepen-
dencies between the feature map channels through compression-excitation methods [24].
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The attention mechanism is fused into the depth model used for semantic segmentation to
take advantage of it and make the network more sensitive to the focus regions.

Transformer originated in the field of natural language processing and has been a
great success in the field of vision as well [21]. ViT is an encoder-decoder network with
only attention modules stacked up, which implements image serialization by decomposing
patches [25]. On this basis, DeiT has higher efficiency [26]. It has been shown that the self-
attentive layer can achieve high precision semantic segmentation instead of convolutional
operation, but it brings a huge computational cost.

3. Methodology

Semantic segmentation of UAV images is a computationally intensive task, espe-
cially in segmenting poppy images with complex features and inter-class interferences.
Besides, the sample size of poppy dataset is small. Therefore, the U-Net network with
simple structure, small number of parameters and good performance in previous small
sample agricultural image segmentation tasks is preferred for this task. The U-Net network
has both a systolic path that captures contextual information and a symmetric extended
path that allows precise localization. These paths allow the network to propagate contex-
tual information to higher resolutions and fuse feature information at different scales in
poppy images.

However, U-Net has limitations: patch redundancy and difficulty in handling the
existence of remote dependencies between the poppy’s fruit and plant rootstocks.

Some of the poppy images are shown in Figure 1. These images have differences in
scale, angle, and light intensity.
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We improve an end-to-end neural network incorporating self-attentive mechanism
for achieving accurate segmentation. The segmentation system can be divided into two
steps: firstly, for the challenge of too small samples, we divide and rotate the poppy images,
then, calculate different vegetation indices to separate channels. The processed images
are used as additional representations to support CNN training. Secondly, we design
an encoder-decoder semantic segmentation network TAU-Net incorporating attention
mechanisms to semantically annotate the input data. The following summary provides a
detailed description of the above steps.

3.1. Input Presentation

To reduce the impact on the original image distribution, the RGB images are often
used directly as input to the neural network. The optimizer is allowed to decide how
to adjust the parameters to train the data. The limited number of samples result in this
approach being insufficient to train a segmentation network with good accuracy. To solve
this problem, we borrowed the vegetation index approach, which has an excellent track
record in agriculture, to derive additional representations from the original RGB images. In
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poppy images, the features that significantly differ between poppy plants and other plants
contain: (1) the special jagged texture features of the leaves; (2) the round texture features
and color features of the fruits. We selected four indices that are sensitive to poppy features:
ExG, CIVE, GB, COM for image enhancement.

ExG, CIVE can effectively enhance the feature differences between plants and other
categories (soil, eaves). IR, IG and IB respectively represent the normalized pixel values of
the corresponding bands.

IExG = 2 ∗ IG − IB − IR (1)

IGIVE = 0.441 ∗ IR − 0.811 ∗ IG + 0.385 ∗ IB + 18.78745 (2)

GB (Green-Blue index) serves to extract the plant texture features well and enhance
the feature differences between poppies and other plants. Meanwhile, we took advantage
of the strengths of each factor and combined them as COM to further expand the dataset.

IGB = IG − IB (3)

ICOM = IR + IB (4)

As shown in the Figure 2, the transformed image is connected to the channelized input
RGB image and the normalized input image is built. These additional representations not
only help to learn the weight parameters, leading to better generalization properties of the
network, but also obtain better performance in separating poppy vegetation.
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3.2. Network Architecture

We use the classical segmentation network U-Net as the backbone. U-Net network
consists of three components: (1) Down-sampling stage that abstracts features level by
level. (2) Up-sampling stage that reconstructs the features. (3) A final convolutional
layer to achieve classification. We propose an end-to-end network with U-Net as the
backbone: TAU-Net (Transformer Attention U-Net) network. TAU-Net takes advantage
of the transformer to sense the whole image instead of the original U-net which has a
restricted sense field. It is very suitable for poppy segmentation tasks with large feature
differences at different scales. The network model diagram is shown in Figure 3.
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Input: We use the normalized dataset after the first stage of enhancement as the
input to the TAU-Net network. For alignment, the size of the input image is adjusted
to x ∈ RH×W×C where the spatial resolution is expressed as H ×W and the number of
channels is C. The adjusted image is the input of first convolutional layer.

CNN-based encoder: We use different convolutional modules in different stages of
the encoder-decoder network. The down-sampling stage uses ResNet to encode the image
into a high-level feature representation.

Transformer-based encoder: There are various interference factors in natural envi-
ronment, such as allium fistulosum (similar fruit morphology features) and white plastic
(similar flower color features). The self-attention module can suppress irrelevant and
interfering features, effectively extract global information of feature maps in each down-
sampling stage. The first step in using the transformer as an encoder is tokenization of
the input. We reshape the input x into a flat two-dimensional sequence We reshape the
input x into a flat two-dimensional sequence

{
xi

p ∈ RP2.C
∣∣∣i = 1, . . . , N

}
. The size of the

patch is P× P, the length of the input sequence is N = HW
P2 , and the dimension of each

patch is dx = P2C. The second step is patch embedding. The patch xP is mapped to an
embedding space of dimension D in the linear projection section. The third part is the
transformer layer. Transformer layer consists of the L-layer multi-head attention module
and the multilayer perceptron. The sequence inputs are later normalized and input to the
Multi-Head Attention (MHA) module and the Multi-Layer Perceptron (MLP) module, and
the residual connections reduce information loss. The MHA module obtains a receptive
field containing the whole image by learning the relationship between each pixel. x denotes
the different embeddings of the feature map. The module has three inputs: query matrix
Q, key matrix K, and value matrix V. In this module, Q, K, V matrices have equal size
correspond to three embedding matrices WQ, WK, WV. One row of attention matrix A
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represents the correlation of a single element of Q with all elements of K and implements
attention computation in multiple headers.

In the task of semantic segmentation of poppy, the number of tokens is large. At the
same time, pixels are highly spatially structured, and the special botanical morphology of
poppy leads to a remote dependency between the fruit and the plant rootstock. Relative
position encoding (RPE) is usually computed by means of a look-up table with learnable
parameters that interact with the query and key in the self-attention module. Such a scheme
allows the module to encode the relative distance between input tokens combining relative
position encoding of different embedding features, capturing very long dependencies
between tokens. The improved encoding module is able to handle longer sequences,
maintaining the translation invariance required for semantic segmentation, and is able to
further improve the representational power capability of the model.

The core of transformer is the self-attention mechanism. Self-attention mechanism
maps a query Q and a set of key values to an equal sequence length output. The output
sequence is z = (z1, . . . , zn) where zi ∈ Rdz is represented as a linearly transformed
weighted sum of input parameters.

zi = ∑ n
j=1αij(xiWV) (5)

Each weighting coefficient αij is calculated using Softmax function.

αij =
exp(eij)

∑n
k=1 exp(eik)

(6)

In the above equation eij is calculated using scaled dot product attention:

eij =
(xiWQ)(xjWK)

T

√
dz

(7)

where the projections WQ, WK, WV ∈ Rdx×dz are parameter matrices and are unique
per layer.

Self-attention can be expressed after adding relative position encoding as:

zi = ∑n
j=1 αij(xiWV + pV

ij ) (8)

eij =
(xiWQ + pQ

ij )(xjWK + pK
ij )

T

√
dz

(9)

We use pV
ij , pQ

ij , pK
ij ∈ Rdz where dz = dx to encode the relative positions added to the

query vector Q, the key vector K and the value vector V, respectively. They are used to
represent the relative position relationship between two tokens. The representation of the
tokens position pipe is added during the computation of self-attention.

Relative position encoding of the bias mode has been added to the MHA module. The
improved MHA is shown in the Figure 4.

The output at layer l is expressed as Formulas (10) and (11).

z′` = MSA(LN(z`−1)) + z`−1 (10)

z` = MLP(LN(z′`)) + z′` (11)

Decoder: The decoder is used to decode the hidden features. The final mask is
obtained after several decoding modules. The decoding stage contains deconvolution, 3 × 3
convolution, ReLU. Meanwhile, the skip connection achieves multi-scale high-resolution
feature information from the down-sampling stage. This design improves the learning rate



Electronics 2023, 12, 487 8 of 12

while preserving the edge information and compensates for the loss of low-level details
due to transformer.
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4. Experimental Evaluation and Discussion
4.1. Experimental Conditions and Dataset

The UAV images were collected during the flowering and fruiting stages of the poppy.
These images contain 54 near-ground images with 3000 × 4000 resolution. To verify the
experimental effect, poppies were photographed from different scales. The images were
taken with different levels of shading and crop intermingling. We use labelme software
to label the images into two categories, poppy or background, and divide the training set
and test set according to the ratio of 4:1. The image preprocessing details are given in the
above section.

4.2. Evaluation Metrics

In this study, two metrics were used to compare the experimental effects of poppy
segmentation: the Dice Score, the training time per image. The dice loss comes from dice
coefficient, a metric function used to evaluate the similarity of two samples, mostly used in
semantic segmentation tasks. The formula is as follows.

dice =
2× TP

2× TP + FP + FN

4.3. Comparison Experiment

For the design of the hybrid encoder, we chose ResNet-50 as the encoder part of the
CNN in. The backbone network was pre-trained on ImageNet. Due to the Transformer
requirement, we adjusted the input resolution to 224 × 224 and reduced to full resolution
using up-sampling in the decoder.

We set the batch size to 2, 4, 8, 16 and epoch to 100, 150 respectively. Because of
the small sample size, the learning rate is set to 0.01. The weight decay to 1× 10−4. The
best seg-mentation result is obtained when the batch size is 4, epoch is 100 and learning
rate is 0.01. All experiments were performed using a single NVIDIA RTXA4000 GPU. We
conducted the main experiments on the Poppy dataset, comparing the improved TAU-Net
with the advanced segmentation networks U-Net and DeepLabV3+ on the same dataset.
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The loss function used is the loss function of Dice Loss combined with BCE. DiceBCE
Loss has the following advantages.

• When a poppy image appears the poppy sample only occupies a very small area,
this situation of extreme imbalance between the foreground and background. If a
512 × 512 image has only a 10 × 10 split sample, BCE cannot solve this extremely
uneven situation, but Dice Loss is not affected by the foreground size.

• When a poppy image includes a large poppy sample and a small poppy sample at the
same time, this situation belongs to the unbalanced content of the split. If a 512 × 512
image has a 10 × 10 and a 200 × 200 segmentation sample, Dice Loss will tend to learn
the large block and ignore the small sample, but BCE will still learn the small samples.

Combining Table 1 and Figure 5 shows that U-Net and DeepLabV3+ can all predict
the soil-poppy boundary better.

Table 1. The segmentation results of TAU-Net on the poppy dataset. The segmentation evaluation
values represent the average of 5 experiments. Besides, Table 1 also contains the results of U-Net and
DeepLabV3+ comparing experiments on the same dataset.

Module Dice Score Run Time (s)

U-Net 0.74 1.4
DeepLabV3+ 0.66 2.03

TAU-Net 0.77 1.87
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In the U-Net segmentation results, false positives are more frequent. The main prob-
lem is that small patches of weeds are incorrectly segmented as poppies, but the correct
prediction rate is higher for other plants in large scale.

The accuracy of DeepLabV3+ decomposition results was better than that of U-Net,
especially for the densely planted poppy areas with vertical shots. However, when the
shooting angle changes, the prediction accuracy of DeepLabV3+ becomes very low and the
number of parameters is large, and the training speed is slower than that of U-Net.

The TAU-Net can not only predict the boundary between soil and poppy well, but
also has fewer false positives, which indicates that TAU-Net has an advantage over other
methods in suppressing noise. Meanwhile, the introduction of Transformer did not impose
an excessive computational burden on the network.
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4.4. Ablations Study

In this paper, we conducted ablation experiments on TAU-Net to observe the effect
of different settings on the experimental results. The first experiment we conduct is to
analyze the effect of excluding the addition of the relative position encoding MHA module.
The second experiment is to observe the effect of changing the number of layers of the
transformer. The first row of each table shows the segmentation performance of each default
TAU-Net. The remaining rows of each model were trained with the same hyperparameters
and the same settings. The impact of the relative position encoding MHA module as shown
in Table 2.

Table 2. Ablation performance of the MHA module for relative position encoding.

Method Dice Score Run Time (s)

No relative position code added 0.74 1.84
Add relative position code 0.77 1.87

From the Figure 6, the improved MHA module effectively improves the fruit segmen-
tation at the edges.
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5. Conclusions

In this paper, we improve a U-shaped network TAU-Net using Transformer for the
semantic segmentation task of poppy images captured by UAV. The backbone network
incorporates both CNN networks and self-attentive mechanisms. Poppy features vary
widely at different scales. Unlike the network built by the self-attentive module only or
the convolutional module only, TAU-Net takes advantage of the transformer to remove
irrelevant or noisy regions from the features and better extracts the poppy information,
and also unlocks the limitations of the original U-Net sensory field. The improved network
improves robustness to scale changes without high computational effort. Poppy images
collect by UAV have high resolution, pixels have high spatial structure, and there is a
remote dependency between the poppy’s fruit and plant rootstock. The relative position
method learns the relationship between tokens, retains more accurate position information,
and achieves the optimization of segmentation boundary information.

However, the method proposed in this paper still has some limitations:

• There are false positives in the experimental results, which reduce the experimental accuracy.
• The proposed method is weak in handling intercropping.
• Image acquisition in natural environment is affected by lighting conditions. The

feature performance of poppies varies greatly under different light intensities, which
have a large impact on the learning ability of the network.

• The robustness of the network to changes in photo angles also needs to be enhanced.
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