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Abstract: When applying deep learning methods to detect micro defects on low-contrast LCD
surfaces, there are challenges related to imbalances in sample datasets and the complexity and
laboriousness of annotating and acquiring target image masks. In order to solve these problems, a
method based on sample and mask auto-generation for deep generative network models is proposed.
We first generate an augmented dataset of negative samples using a generative adversarial network
(GAN), and then highlight the defect regions in these samples using the training method constructed
by the GAN to automatically generate masks for the defect images. Experimental results demonstrate
the effectiveness of our proposed method, as it can simultaneously generate liquid crystal image
samples and their corresponding image masks. Through a comparative experiment on the deep
learning method Mask R-CNN, we demonstrate that the automatically obtained image masks have
high detection accuracy.

Keywords: mask R-CNN; generative adversarial network; defect detection

1. Introduction

With the widespread adoption of information technology, digital devices, such as
portable laptops, smartphones, and tablets, have experienced significant growth. Liquid
Crystal Display (LCD) monitors, known for their low power consumption and lack of
radiation pollution, have found extensive applications in these domains. However, in the
LCD industry, manual inspection is predominantly employed to comprehensively detect
defects in finished LCD products, resulting in time wastage, missed detections, and reduced
production efficiency [1,2].

This research is focused on the automatic visual inspection on low-contrast surface
micro defects of LCDs [3–5]. Figure 1 illustrates the brightness non-uniformity defects on
the low-contrast LCD surface. The left section (a1–a3) depicts the defects, while the right
section (b1–b3) shows the enhanced effects of these defects. It is evident that the surround-
ing areas of these defects possess low-contrast characteristics, making it challenging to
identify these brightness non-uniform defects.

In recent years, deep learning methods have gained prominence and have gradually
been employed for LCD defect detection [6–8]. However, the drawback of current deep
learning methods is their reliance on a significant number of positive and negative samples
for model training. Additionally, the laborious and time-consuming process of labeling
defective samples (i.e., creating masks) poses a challenge. Furthermore, the issue of
imbalanced samples in production arises, where it is challenging to gather a sufficient
quantity of defective samples. Therefore, it is crucial to research a new method based on
generative adversarial networks to solve these problems.

We propose a method to automatically generate samples and masks simultaneously
using deep generative network models. The method can accomplish the complex and
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laborious task of labeling and obtaining image masks while solving the difficult problem of
positive and negative sample imbalance.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 14 
 

 

We propose a method to automatically generate samples and masks simultaneously 

using deep generative network models. The method can accomplish the complex and la-

borious task of labeling and obtaining image masks while solving the difficult problem of 

positive and negative sample imbalance. 

 

Figure 1. Defects on the low-contrast LCD surface: (a1–a3) depicting the defects; and (b1–b3) the 

enhanced effects of these defects, the dotted line outlines the location of the defect in (b3). 

2. Related Work 

Common machine-vision-based methods for surface defect detection can be catego-

rized into the following classes [9]: statistical methods; feature-based methods; spectral-

based methods; subspace-based methods [10,11]; and the emerging deep learning-based 

methods. 

Statistical methods require the collection of a certain number of qualified samples 

and use statistical models to perform calculations to establish a fixed template of qualified 

samples. During inspection, the sample to be inspected is matched with a fixed template, 

and the differences between the sample and the template are highlighted and defined as 

defects. 

Zhong [12] analyzed a certain number of defect samples and calculated the grayscale 

threshold of the defect and background image; this threshold was used to threshold the 

subsequent detection objects to enhance the image contrast. Calculating the probability 

between the defect and the background edge pixels enables the detection of impurity de-

fects in flexible integrated circuit packaging substrates. Since the threshold value of this 

method relies on manual calculation, there is a need to repeatedly calculate the threshold 

value when facing multiple categories of inspection objects or multiple defect types. 
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2. Related Work

Common machine-vision-based methods for surface defect detection can be categorized
into the following classes [9]: statistical methods; feature-based methods; spectral-based
methods; subspace-based methods [10,11]; and the emerging deep learning-based methods.

Statistical methods require the collection of a certain number of qualified samples
and use statistical models to perform calculations to establish a fixed template of qualified
samples. During inspection, the sample to be inspected is matched with a fixed template,
and the differences between the sample and the template are highlighted and defined
as defects.

Zhong [12] analyzed a certain number of defect samples and calculated the grayscale
threshold of the defect and background image; this threshold was used to threshold the
subsequent detection objects to enhance the image contrast. Calculating the probability
between the defect and the background edge pixels enables the detection of impurity
defects in flexible integrated circuit packaging substrates. Since the threshold value of this
method relies on manual calculation, there is a need to repeatedly calculate the threshold
value when facing multiple categories of inspection objects or multiple defect types.

The feature-based method involves processing image pixels to obtain defect infor-
mation and has a certain degree of simplicity when facing detection objects with obvious
defect characteristics and high recognition. When detecting low-contrast surface defects, it
is usually impossible to calculate an effective threshold due to the high randomness of the
defect appearance and the complex background image.

Tu [13] proposed a printed circuit board inspection and sorting method. The PCB
images collected by the camera are processed in sub-pixels and then registered with the
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corresponding template based on grayscale information to detect mis-soldering and missing
soldering of surface components. The PCB samples are automatically positioned and sorted.
Since this type of method only requires qualified samples to construct a fixed template, it
solves the problems of difficulties in defect feature extraction and sample imbalances in
feature detection algorithms, and can effectively detect targets with too many defect types
and insufficient defect samples.

However, the defects encountered in LCD manufacturing exhibit localized brightness
non-uniformity and smooth brightness variations. Traditional methods are inadequate
for detecting low-contrast surface brightness non-uniform defects, as investigated in this
study. Consequently, in addition to employing approaches such as adaptive threshold-
ing [14], sophisticated machine learning algorithms [15–17], including deep convolutional
neural networks (CNN) [18,19], have been introduced. In recent years, deep learning
methods have made great advancements in classification, detection [20,21], and instance
segmentation [22,23]. Consequently, deep learning methods are increasingly used in LCD
defect detection.

Shuang Mei et al. [18] proposed a Mura defect identification method based on feature-
level fusion of unsupervised learning. This method is a defect identification method based
on joint feature representation. This method fuses hand-crafted and unsupervised learning
of features to obtain useful features. Experimental results show that this method realizes
the identification of Mura defects in thin-film-transistor LCD panels using visual inspection
equipment and has strong robustness and accuracy.

In the latest deep learning methods, Faster R-CNN [20,21] and instance segmentation
method Mask R-CNN [22], a pivotal element is the region proposal network (RPN). The
fundamental concept underlying RPN is the dense sampling of the entire input image using
a multitude of overlapping bounding boxes of various shapes and sizes. Subsequently,
the network is trained to generate multiple object proposals, also referred to as regions of
interest (RoI). This architectural choice enables RPN to effectively explore features across
diverse scales. RPN comprises a convolutional neural network that takes feature images
as input and produces output bounding boxes along with associated probabilities for
contained objects.

Ramya et al. [24] introduced the utilization of the state-of-the-art Single Shot Multi-
box Detector (SSD) network for both classifying and localizing Mura defects, achieving
simultaneous defect classification and localization. In comparison, the Mask R-CNN
method [25–27] offers higher accuracy compared to the aforementioned deep learning-
based object detection methods. Moreover, it possesses the advantage of simultaneous
classification, localization, and instance segmentation. Therefore, improving and applying
the Mask R-CNN method in the detection of micro defects in LCDs will make it possible
to identify defect categories and segment defect shapes. However, the utilization of the
aforementioned deep learning methods faces challenges in collecting a substantial number
of defect samples for training and testing, as well as in the complex and time-consuming
task of annotating defect samples with masks. To address these issues, a deep network
model capable of automatically generating samples and masks is proposed as follows.

In practical LCD manufacturing processes, a large quantity of qualified samples can be
easily obtained, while gathering a lot of defect samples within a short time is challenging.
Data augmentation techniques are used to augment the defect dataset [28,29]. This involves
synthesizing defect regions onto normal images through operations, such as rotation,
cropping, and duplication, to generate defect samples.

As an unsupervised network model, generative adversarial networks (GAN) can
adaptively generate similar samples through the input unlabeled dataset by setting the
generator and discriminator. A precisely designed GAN network can be trained with
a small number of defect samples and automatically generate a large number of similar
samples for subsequent training of the recognition network. In defect detection, the problem
of insufficient defect samples can be solved.
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Yi [30] used a variational self-generator to improve the adversarial generation net-
work, successfully expanded the MINST dataset and verified that there was no significant
difference between the generated samples and the original samples. Li [31] performed
3D modeling of the belt conveyor and then input it into the CycleGAN [32] network to
expand the fault samples. The expanded samples were used to fully train the Yolo v5 target
detection network, achieving an improvement in network detection accuracy. Liu [33] used
CycleGAN to expand the defect samples of sample LCD screens to achieve the construction
of a balanced sample dataset. Mask R-CNN, when fully trained on this dataset, achieved
an improvement in detection accuracy. These previous studies amply demonstrate the
effectiveness of utilizing deep generative networks in sample dataset expansion. However,
when the original CycleGAN network faces welding images with complex backgrounds, the
visual effects and authenticity of the samples it generates have not yet been verified. Thus,
it is proposed to employ a Cycle-Consistent Generative Adversarial Network (CycleGAN)
to address the issue of sample imbalance.

After a significant number of samples have been generated, the time-consuming and
labor-intensive process of annotating and acquiring defect image masks persists when
training the aforementioned deep learning-based surface defect detection methods such as
Mask R-CNN. Existing annotation tools like LabelMe [34] add to the complexity and effort
required for mask annotation. To overcome this challenge, a method based on generative
adversarial networks (GANs) [35–37] is proposed to automatically annotate and acquire
image masks. Specifically, the generated defect sample images and their corresponding
input defect-free images are fed into a CycleGAN model. The defect sample images serve
as the target images, while the defect-free input images are treated as the input images
during the training process. Through iterative steps, the defect information is progressively
accumulated in the defect-free input images until the generation of defect samples is
achieved. This iterative process represents the generation of sample masks.

3. Simultaneous Generation of Training Samples and Masks Based on the GAN Model

We propose a technique that leverages a generative adversarial network (GAN) to
autonomously generate defect samples. This method requires only a limited quantity of
real samples to enhance and expand the LCD sample dataset. Subsequently, the generated
dataset is employed to enhance the detection results.

After a sufficient defect sample dataset has been generated, the labeling and acquisition
of masks of defect images is time-consuming and laborious. A new method of automatically
acquiring image masks is proposed in which the generated defect sample image and the
corresponding input non-defective image are input into the new CycleGAN model and
trained as target images and input images in the training process of this model. During the
training process, the superimposed defect information is accumulated in the defect-free
input image in a step-by-step iterative manner until the defect sample is generated, and
this superposition process is the generation process of the sample mask.

3.1. CycleGAN Model

The CycleGAN model is an image style transformation technique, and the ultimate
goal of this model is to complete the image style transformation between two domains
without the one-to-one corresponding training data. Image style conversion refers to the
conversion of a picture from one style to another.

As shown in Figure 2, the CycleGAN model maps from the X domain to the Y domain
by mapping G. DY is the discriminator corresponding to the generator, which is used to
distinguish between real data and generate G(x), forming a single-generation adversarial
process. In order to avoid invalid conversion effects, the authors of the CycleGAN model
propose cyclic consistency loss. Another mapping relationship F maps from the Y domain
to the X domain, and the discriminator of the denoted generator is DX, which distinguishes
the real data and generates F(y). The CycleGAN model learns both the G mapping and
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F mapping relationships, while satisfying the cyclic consensus requirement: G(F(x)) ≈ x;
after two opposite mappings, it returns from the x domain back to the x domain.
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3.2. CycleGAN Loss Function

CycleGAN combines adversarial loss and periodic consistency loss to create an output
image, which measures adversarial loss where the generation distribution does not match
the target. The consistency loss is used to avoid contradictory pairs of mappings. It is
trained with unpaired samples and is ideal for defect detection. The process involves
two types of loss: adversarial losses and cycle consistency losses.

1. Adversarial loss

To bring the generated data distribution closer to the real data distribution:

LGAN(X → Y) = Ey∼pdata(y)[logDY] + Ex∼pdata(x)[log(1− DY)] (1)

Like GAN, G is used to achieve X→Y, and G(x) should be as close to Y as possible
during training, and the discriminator DY is used to determine the true and false of the
sample. The same formula as GAN is used:

minGmaxDYLGAN(X → Y) (2)

Similarly, Y→X is implemented for F:

minFmaxDXLGAN(Y → X) (3)

2. Cycle consistency loss

Adversarial loss only ensures that the generated sample is homogeneous with the real
sample, but it also requires a one-to-one correspondence of images in the corresponding
domain.

We want x̂≈ x, called forward cycle consistency; ŷ≈ y, called backward cycle consistency.
To ensure consistency as much as possible, set the corresponding loss as:

Lcyc(G, F) = Ex∼pdata(x)[ ‖x̂− x‖1] + Ey∼pdata(y)[ ‖ŷ− y‖1] (4)

3. Overall loss

Generator G tries to achieve the migration of X to Y, generator F tries to achieve
the migration of Y to X, and at the same time, it is hoped that the generators of the
two generators can achieve mutual inversion, that is, iterate back to themselves:

L (G, F, DX , DY) = LGAN(X → Y) + LGAN(Y → X) + λ×Lcyc(G, F) (5)
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where λ is the weight between control, resistance loss, and periodic consistency loss.
The background of the defective image generated by CycleGAN is similar to the real

image with the defect. CycleGAN can generate synthetic defective samples by simply
entering new defect-free samples.

3.3. The Proposed Automatic Sample and Mask Generation Method

The proposed method’s workflow is depicted in Figure 3, in which the input, the
defect-free LCD sample image x+, is used to generate a large number of defective LCD

sample images
∼
x
−

through CycleGAN1.
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∼
x
−

: generated
defect image).

The non-defective sample x+ and the corresponding generated defective sample
∼
x
−

are trained as the input and output of CycleGAN2, and the effect part of
=
x, the defect,

will be gradually superimposed during the training process, and when enough defect
information is superimposed, the image can be obtained by simple image processing and a
binarization operation to obtain the mask xmask of the image.

In this investigation, a learning rate of 0.0002 was utilized for CycleGAN1. This
exceptionally low value was chosen to ensure that the synthetic defects closely resemble
real defects. In CycleGAN2, CycleGAN2 takes a large λ value (e.g., 100) so that the texture
background of the defect-free input and the output are as close as possible.

In order to identify defect regions in the image mask generated by CycleGAN2, the
difference between the generated image in t iterations and the final image generated at the
last T iteration is the accumulation of intermediate iterations. namely:

∆E(x, y) =
T−1

∑
t=3

∣∣∣=xT(x, y)− =
xt(x, y)

∣∣∣ (6)

where
=
xt(x, y) is the output generated by CycleGAN2 at t epochs, for t = 3, 4, . . ., T − 1.

Since the background texture was not reconstructed very well during the first two cycles,
t = 1,2 was discarded. Empirical studies have shown that ten iterations (T = 10) are usually
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sufficient to segment the defect regions in the generated image. Pixel background areas
that share common ground produce small differences ∆E(x, y), while defective pixels make
large differences. A simple image processing operation and binary threshold processing
were applied to segment defects in a differential image ∆E(x, y).

4. Experimental Results and Analysis

The experiment aims to evaluate the performance of a GAN-based sample and mask
generation scheme by using LCD images with and without defects. First, the experiment
validates the generation of samples to augment the dataset using a CycleGAN1 model.
Then, the second experiment generates masks using the CycleGAN2 model, and finally, its
performance is evaluated using Mask R-CNN. The hardware and software configuration
for the experiment includes Nvidia RTX4000 GPU and Python 3.

4.1. Dataset Augmentation Using CycleGAN to Generate Image Samples

To address the limited number of images in the original dataset, which is insufficient
for effective training, data augmentation is necessary. Initially, common techniques such
as rotation and mirroring are applied to the original images for data augmentation, as
frequently used in deep learning. However, even with these techniques, the dataset remains
limited in size. Therefore, a GAN-based data sample augmentation method is employed.

Since the number of existing defective LCD sample images is limited, conducting
effective experiments poses a challenge. CycleGAN is utilized to expand the sample dataset
by leveraging the capabilities of generative adversarial networks (GANs). CycleGAN can
generate additional datasets based on the features extracted from a small amount of existing
data, thus compensating for the scarcity of the original dataset.

Here, λ is the weight in the loss function that controls the adversarial loss and the
consistency loss. The results shown in Figure 4 show that smaller λ is more inclined to
generate images that highlight local defects while the background is similar. An excessively
large λ value proves ineffective in generating defects, while an excessively small λ value
hinders the accurate reconstruction of background texture. To strike a balance that aligns
with practical requirements and ensures overall performance in both defect synthesis and
background preservation, this study employs λ = 45 for CycleGAN1.
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4.2. Image Masks Generating Using the CycleGAN2 Model

Through the existing defect-free image and the defect image corresponding to this
defect-free image generated from the CycleGAN1 model, these two images become the
input pair of the CycleGAN2 model, and CycleGAN2 trains each pair of images sepa-
rately. As shown in Figure 5, (a1–d1) are non-defective sample images, while a2–d2 are
corresponding defective sample images generated by CycleGAN1. The corresponding
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generated defect sample image and the defect-free image into the CycleGAN2 model were
input as the target image and input image in the training process of this model, respectively.
During the training process, the defect-free input image gradually iterates, accumulating
and superimposing defect information until the defect samples are generated, and this
superposition process is the generation process of sample masks.
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In terms of CycleGAN2’s loss function parameter selection, since the larger λ value
in CycleGAN2 pays more attention to consistency loss, it tends to preserve the global
background texture of the object surface. Figure 6 shows the comparison results of dif-
ferent λ. Our purpose is to make the input image without defects and the background
of the generated defect image as similar as possible so that CycleGAN2 needs a larger
regularization value. T is the generation period of a pair of control samples in the process
of training CycleGAN2 to generate a process graph, corresponding to the Formula (6). The
larger the value of T, the closer the comparison image in the process is to the comparison
image generated by the final call model; λ is the weight in the loss function that controls
the adversarial loss and the consistency loss. The experimental results show that a smaller
value of λ does not reconstruct the background in the early stage. Defects only appear
in the later stage. A larger value of λ has a better background reconstruction effect and
synthesizes defects in the early stage. Therefore, CycleGAN2 uses λ = 100 in this paper.

In order to highlight defective pixels in the synthetic images in CycleGAN2, we
integrated the process image and accumulated the differences in the generated images.
Since the background texture is not well reconstructed in the early stage, a floating integral
lower bound was chosen to compare the effect of different integral lower bounds on
segmenting defect regions in the synthesized image.
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4.3. Segmentation Results

Simple image processing and binarization on the superimposed process image of
defects was carried out to obtain the segmentation results. The experimental results are as
shown in Figure 7: from the segmentation image, it can be seen that the position information
of the defects is relatively obvious, which can be used to generate a mask.
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4.4. Employing the Mask RCNN Model for Recognition

The Mask R-CNN model was employed for training and testing the LCD dataset.
Initially, the dataset was prepared to include defect sample images obtained previously
and their corresponding segmented mask images. Subsequently, the Mask R-CNN model
was used for training and testing. For a single detection target, we compared the surface
area of the detected defect with an empirically determined surface area to calculate the
recognition rate for a single image. Figure 8 illustrates the test results using 30 samples,
demonstrating a varying recognition rate ranging from 0.730 to 0.999. Notably, the majority
of these recognition rates surpass 0.95. We tested the two sets of data, the pre-expansion
sample set, and the GAN method to generate samples to expand the dataset. The detailed
results are shown in Table 1.
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Table 1. Recognition rate distribution in each group of test results.

Recognition Rate <0.9 <0.95 <0.99 >0.99

Group1 1 0 2 11
Group2 11 0 11 28

As shown in Table 1, the initial Group1 experiments were performed on a set of unex-
panded defective image samples. This group of experiments was trained with 30 random
samples and tested with 14 samples. Its recognition rate mainly exceeded 0.99, albeit with
one instance falling below 0.9. The average recognition rate across all test samples was
0.988. The model demonstrated excellent performance on real samples, but the limitations
imposed by the limited sample size must be recognized.

Group2 experiments were performed on LCD samples generated by an expanded
defect image dataset. To ensure that the model was trained to the same extent, we similarly
used 30 random samples for training and then tested on 50 samples. From the experimental
results, it can be seen that most of the test results are above 0.95; however, 11 images were
less than 0.9. This was related to the increase in the number of sample sets. The average
recognition rate of all the test samples was 0.9463. Overall, the performance of the detection
results of the generated sample dataset decreased; however, it is easy to obtain a sufficient
data sample set.

In order to quantitatively evaluate the performance of our proposed unsupervised
automatic mask generation method, we compared it with a manually labeled mask gener-
ation method (LableMe). We input the masks generated by these two methods to Mask
R-CNN separately. As shown in Table 2, the final test results were used to compare the
impact of various mask generation methods on the algorithm’s recognition performance.
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Table 2. Comparison recognition accuracy and object detection outcomes across diverse mask
generation techniques (The best results are in bold).

Method mAPbbox

Mask R-CNN with LabelMe (Group 1) 99.99%
Mask R-CNN with LabelMe (Group 2) 96.8%

Mask R-CNN with Our proposed method (Group 1) 98.8%
Mask R-CNN with Our proposed method (Group 2) 94.63%

4.5. The Comparing Segmentation Results

Figure 9 illustrates the experimental results that juxtapose our proposed method
with the Gabor filter method, wavelet method, and U-Net segmentation method. The
experiments reveal that the Gabor and wavelet methods struggle to effectively segment
images of defective LCD surfaces, whereas our proposed method excels in successfully
detecting these defects. The U-Net segmentation method can successfully segment defect
areas, but the segmentation results are not very accurate. In addition, the U-Net method
only belongs to semantic segmentation and does not mark specific instance information of
pixels. Our proposed method can effectively solve this problem.
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Figure 9. (a1,b1) Visualization of the defect surface image alongside its corresponding colored gray
value display; (a2,b2) three-dimensional representation depicting the grayscale values within the
defect image (a3); detection results obtained using our proposed Mask R-CNN method (b3); detection
outcomes achieved through the Gabor method (a4); and detection results generated by the wavelet
method (b4). Detection outcomes obtained using the U-Net method.
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5. Conclusions

In the application of deep learning techniques to detect micro defects on LCD surfaces
with low contrast, the challenges of imbalanced positive and negative samples, as well as
the complex and laborious task of annotating and acquiring image masks, can be addressed
by our proposed method of simultaneously auto-generating samples and masks using
a deep generative network model. Our proposed deep generative network approach
simplifies the acquisition of samples and their masks to a great extent and is applicable to
all supervised target detection networks which require mask labeling. The experimental
findings in the detection of micro defects on low-contrast LCD surfaces substantiate the
high detection accuracy achieved with the obtained image samples and image masks,
highlighting the applicability of our proposed method to other domains requiring image
sample augmentation and annotation.

However, the method may suffer from unsatisfactory generation quality when faced
with targets with complex backgrounds for automatic generation. We will subsequently ex-
plore more powerful methods to handle the automatic generation and automatic detection
of diverse targets.
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