
Citation: Zhang, E.; Ma, W.; Zhang, J.;

Xia, X. A Service Recommendation

System Based on Dynamic User

Groups and Reinforcement Learning.

Electronics 2023, 12, 5034. https://

doi.org/10.3390/electronics12245034

Academic Editor: Yoichi Hayashi

Received: 21 October 2023

Revised: 10 December 2023

Accepted: 13 December 2023

Published: 17 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Service Recommendation System Based on Dynamic User
Groups and Reinforcement Learning
En Zhang , Wenming Ma * , Jinkai Zhang and Xuchen Xia

School of Computer and Control Engineering, Yantai University, Yantai 264005, China;
zhangen0522@s.ytu.edu.cn (E.Z.); zhangjinkai@s.ytu.edu.cn (J.Z.); 202100358072@s.ytu.edu.cn (X.X.)
* Correspondence: mwm@ytu.edu.cn

Abstract: Recently, advancements in machine-learning technology have enabled platforms such as
short video applications and e-commerce websites to accurately predict user behavior and cater to
their interests. However, the limited nature of user data may compromise the accuracy of these
recommendation systems. To address personalized recommendation challenges and adapt to changes
in user preferences, reinforcement-learning algorithms have been developed. These algorithms strike
a balance between exploring new items and exploiting existing ones, thereby enhancing recommen-
dation accuracy. Nevertheless, the cold-start problem and data sparsity continue to impede the
development of these recommendation systems. Hence, we proposed a joint-training algorithm that
combined deep reinforcement learning with dynamic user groups. The goal was to capture user pref-
erences for precise recommendations while addressing the challenges of data sparsity and cold-start.
We used embedding layers to capture representations and make decisions before the reinforcement-
learning process, executing this approach cyclically. Through this method, we dynamically obtained
more accurate user and item representations and provide precise recommendations. Additionally, to
address data sparsity, we introduced a dynamic user grouping algorithm that collectively enhanced
the recommendations using group parameters. We evaluated our model using movie-rating and
e-commerce datasets. As compared to other baseline algorithms, our algorithm not only improved
recommendation accuracy but also enhanced diversity by uncovering recommendations across
more categories.

Keywords: reinforcement learning; personalized recommendation; joint training; dynamic user
groups

1. Introduction

Traditional recommendation algorithms have provided significant benefits to web-
sites and applications that use recommendation systems. They have directly or indirectly
contributed to the success of various service recommendation systems. However, recom-
mendation systems themselves have faced several challenges that have hindered their
development, leading to instability and low recommendation satisfaction during the initial
stages of system operation. Researchers have tackled these issues using various methods.
Singh et al. proposed a model that leveraged interactions among similar users, aggregating
users’ purchase behavior as feedback to improve accuracy [1]. However, data sparsity has
often resulted in insufficient data for training, and reinforcement learning, as an algorithm
capable of obtaining feedback in real time, had frequently been applied to recommendation
systems to enhance accuracy. Zhang et al. studied a fusion model of deep learning and
reinforcement learning in order to establish a ranking framework that could effectively
address data sparsity [2]. Other studies improved recommendation performance by in-
corporating users’ expected behaviors as feedback [3]. Some researchers have effectively
used contextual features of user–object interactions to guide the selection of the next action.
Similarly, in recent years, the popular multi-armed-bandit algorithms utilized contextual

Electronics 2023, 12, 5034. https://doi.org/10.3390/electronics12245034 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12245034
https://doi.org/10.3390/electronics12245034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0002-8608-9482
https://orcid.org/0000-0002-6659-5727
https://orcid.org/0009-0006-1110-347X
https://orcid.org/0009-0007-1323-6310
https://doi.org/10.3390/electronics12245034
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12245034?type=check_update&version=1

Electronics 2023, 12, 5034 2 of 18

features as input, employing upper-confidence-interval algorithms to select the next action.
Reinforcement learning has been used to maximize interests, enabling the discovery of
the best strategy, and through experimentation, learning how to select the best arms for
maximizing benefits [4–6]. When choosing the value-determining function, each experi-
menter must make selections based on unique characteristics and data science to achieve
the highest click-through rate and utility.

However, despite the emergence of reinforcement learning allowing recommendation
systems to maintain long-term learning states, the cold-start problem has persisted across
various domains in recommendation systems, a consideration that our experiments also
considered. The utilization of shared user-group parameters proved effective in alleviating
this issue. When providing recommendations for individual users, we employed shared
user-group parameters to mitigate the problem of overly specific preferences for a single
user. To address the cold-start issues, users utilized features exhibiting similar preferences
for the next recommendation in the group. In subsequent rounds of recommendations,
this interesting point should not have to be consistently emphasized; instead, it should
gradually diminish over time and with an increasing number of recommendation rounds,
considering that user interests also evolve over time [7]. Therefore, our approach involved
modeling the changing interests of users over time and accounting for the time-varying
characteristics of user interest points.

After making recommendations, we could use these preferences to shape features
that users were likely to have, even if it was not a perfect match. This was important
because, during the early stages of user registration, predicting user needs accurately was
challenging without sufficient data. Before users signed up, following the approach of He et
al., we processed the available information [8]. We trained a neural model to help predict the
probability of each action. In future recommendations, adapting to the evolving interests of
users could be achieved through timely feedback, enabling dynamic recommendations.

When obtaining representations for users and items, some researchers has used pre-
training methods to acquire more accurate prior probabilities for items [9,10]. Pre-training
involves constructing initial features of the users and the items based on existing datasets
and utilizing these features directly in subsequent recommendations. However, as user
preferences may frequently change over time or due to other influencing factors, this
approach had often led to sub-optimal results. In such cases, pre-constructed features had
to be adjusted in some way to accommodate changes in the recommended probabilities
caused by shifts in user preferences and tastes. Additionally, focusing solely on individual
users or items could significantly increase the cost of recommendation systems, especially
when there was insufficient interaction data available. Data sparsity and cold-start issues
had hindered improvements in recommendation accuracy [4,11].

In this study, we proposed a joint-training algorithm, combining deep reinforcement
learning with dynamic user clusters. As shown in Figure 1, this solution aimed to tackle
the challenge of accurate representation and leveraged an enhanced Thompson sampling
algorithm. The system used both rating data and preference information collected from
sensors like GPS (Global Positioning System), image sensors, and biometric sensors, and
input them into a database. After integrating the data, we used deep learning to obtain
meaningful representations. We simultaneously updated three components: user-item
embedding layers, user clusters, and reinforcement-learning back-propagation. By utilizing
updates from these three components, we smoothly integrated the training of deep learning
and reinforcement learning.

In the initial phase, we acquired preliminary user and item information, as well as
group items, based on a scoring mechanism. In the stable phase, we continuously modified
the numerical values and parameters of the three components to obtain precise user and
item representations that were more conducive to recommendations.

Our specific contributions were as follows:

• We proposed a joint-training method using deep reinforcement learning and dynamic
user grouping to address issues related to changing user preferences and data sparsity.

Electronics 2023, 12, 5034 3 of 18

• We introduced a user-grouping mechanism that classified users based on project
features. By aggregating users through shared parameters, this approach effectively
alleviated challenges posed by sparse data and cold-start problems.

• The proposed joint-training algorithm combined deep learning and reinforcement
learning. By concurrently operating between embedding layers and the decision
layer in reinforcement learning, it captured users’ evolving preferences and provided
optimal recommendations based on current user preferences.

• The experimental results on large datasets, such as MovieLens and Amazon, demon-
strated a significant performance improvement, as compared to baseline algorithms.
The model particularly excelled at mitigating cold-start and data-sparsity challenges.
Additionally, its predictive accuracy surpassed that of baseline algorithms.

Figure 1. Data source and general operation process.

2. Related Work

In this section, algorithms and previous research relevant to our work are reviewed,
including the matrix factorization algorithms we employed, the clustering bandit prob-
lem, the concept of user-based collaborative filtering, and attention mechanisms. These
algorithms and concepts corresponded to different aspects of our study.

2.1. Matrix Factorization

Matrix factorization (MF) models are widely applied in machine-learning and recom-
mendation systems. Recently, many MF models have been studied, aiming to decompose
a large matrix into two or more smaller matrices in order to extract valuable informa-
tion. A common approach has been to combine matrix factorization with other methods
to create recommendation models. For example, NeuMF integrated traditional matrix
methods with neural networks [12]. By using a multi-layer neural-network and matrix
techniques, it captured interactions between users and items, enhancing NeuMF’s abil-
ity to model complex user–item relationships and provided more accurate personalized
recommendations. BPR-MF employed a Bayesian framework specifically designed for
handling implicit feedback data [13]. It learned user and item embeddings by maximizing
ranking probabilities. This method was highly effective for personalized recommenda-
tions by handling implicit relationships between users and items, thereby elevating the
level of personalization in recommendations. Guo et al. proposed the DeepFM model to
address click-through-rate prediction problems by combining neural networks and fac-
torization machines [14]. DeepFM could simultaneously capture low-level and high-level
feature interactions, performing well in click-through-rate prediction tasks. It leveraged

Electronics 2023, 12, 5034 4 of 18

the powerful representation capabilities of neural networks, thus improving the accuracy
of click-through-rate predictions. Most of the mentioned algorithms combined matrix
factorization with other techniques to achieve the ultimate goal of recommendations, rather
than solely relying on matrix factorization.

Considering existing matrix factorization algorithms, we believed that solely using
matrix factorization algorithms showed excellent performance in some recommendation
scenarios. Matrix factorization algorithms often needed to be combined with other al-
gorithms to address the cold-start and data-sparsity issues and achieve optimal recom-
mendation results. Therefore, by drawing inspiration from these works, we incorporated
their ideas into our study to design our subsequent experiments. Furthermore, many
matrix decompositions relied on abundant feature data, which could negatively impact the
precision of the recommendation outcomes when the information was scarce. As a result, it
was necessary to integrate these algorithmic concepts and devise new methods to alleviate
data sparsity.

2.2. Contextual Multi-Armed Bandit Algorithm

This algorithm is distinctive in that it considers contextual information from the
environment to intelligently select arms. Specifically, it employs methods like knowledge-
graph embeddings to acquire contextual information about users and items. By taking into
account these contextual details, the algorithm can better adapt to different environments
and make wiser decisions.

In recent years, fundamental bandit algorithms have included the LinUCB [15] al-
gorithm, Thompson [16] sampling, and emerging multi-armed bandit (MAB) algorithms
based on deep reinforcement learning. For example, Gan et al. proposed a knowledge-
enhanced contextual multi-armed bandit (CMAB) model that utilized knowledge-graph
embeddings to obtain contextual information about users and items, ultimately treating
items as arms for recommendations [17]. Other researchers have also attempted to build slot-
machine models based on human emotions. For example, Huang et al. employed causal
reasoning and introduced soft interventions to model arm-selection strategies [18]. This
indicated they were trying to understand the interaction between user behavior and recom-
mendation systems and use this as a foundation for devising recommendation strategies.

We drew inspiration from these experiments, as well, not only modeling items as arms
in a slot machine but also considering emotions and deeper human thought processes,
which were key to improving recommendation accuracy. We continuously updated user
parameters based on feedback, ensuring that user preferences aligned as closely as possible
with their current preferences.

2.3. User-Based Collaborative Filtering

User-based collaborative filtering (CF) has been a widely utilized approach in recom-
mendation systems [19]. In this approach, the system identified similar users based on
their item ratings and generated recommendations for the active users according to the
preferences of similar users. Several similarity metrics have been proposed to measure the
similarity between users, such as cosine similarity, Pearson’s correlation coefficient, and the
Jaccard coefficient [20–22]. These metrics calculate user similarity by comparing their item
ratings and have been used to construct similarity matrices representing the relationships
among all pairs of users.

User-based CF has been successfully applied in various domains, like e-commerce,
music, and social media. For example, Amazon.com used a user-based CF algorithm
to recommend products to customers based on their purchase history and ratings [23].
New users were shown popular recommendations based on the preferences of other users,
assuming their tastes aligned with the majority.

Zhao et al. focused on improving accuracy by enhancing user similarity metrics
and neighborhood-selection methods to precisely capture preference relationships among
users [24]. However, user-based CF had limitations, such as the cold-start problem for

Electronics 2023, 12, 5034 5 of 18

new users and the sparsity problem for users with few ratings. The cold-start problem
occurred when a new user signed up but had not rated or expressed any preferences. In
such cases, the system lacked information about the user’s preferences, hindering accu-
rate recommendations. The sparsity problem occurred when users provided few ratings,
making it challenging to identify similar users and generate accurate recommendations.

To address these challenges, various enhancement techniques have been proposed. A
common technique has been neighborhood selection, involving the selection of a group
of similar users to generate recommendations for the active user [25]. These techniques
have successfully improved the performance of user-based CF, especially in scenarios with
sparse data or a large user base.

These collaborative user-based filtering algorithms have provided us with powerful
inspiration. By leveraging these fundamental algorithms, we could maximize the explo-
ration and the utilization of user and item information, effectively alleviating data sparsity
and cold-start issues. The necessary pre-training could overlook changes in user interests.
Therefore, inspired by the collaborative filtering approach, we combined it with other
methods to capture the evolving preferences of users.

2.4. The Attention Mechanism

The attention mechanism evaluated item features from various perspectives to empha-
size those relevant to the recommendation task. Consequently, for each item, the attention
mechanism adjusted its contribution in order to generate prior probabilities based on the
importance of its features. This empowered the multi-armed bandit (MAB) algorithm to
consider features holding higher informational value, enabling a more precise selection of
optimal choices during the recommendation process.

Chen et al. proposed a collaborative filtering method using attention mechanisms and
by considering different components of multimedia items [26]. This approach evaluated a
user’s interest in various components of items, improving the effectiveness of multimedia
recommendations. For example, Jin et al. designed an algorithm where attention mech-
anisms were used to extract key features from infrared images. By introducing channel
attention and pixel attention, the network could focus on the more crucial parts of the
task, enhancing overall visual quality. Li adopted attention mechanisms and short-term
memory networks, contributing to better-capturing user interests and learning trajectories,
thereby improving recommendation accuracy [27]. Wang et al. developed an algorithm
that incorporated both dynamic attention-mechanism-based user-preference modeling and
DL-based matching-score prediction [28]. The model integrated an attention mechanism to
more effectively capture user preferences for subsequent operations. These mechanisms
made the network more adaptive, enabling it to better handle diverse input scenarios.
Inspired by these approaches, we designed a process for assigning attention values based
on input.

3. Preliminaries

Following the reinforcement-learning (RL) paradigm [29], we treated the RL compo-
nent as a multi-armed bandit problem. In the context of top-k recommendations, each
item group was treated as an arm. The agent explored all arms based on their values and
selected the arm with the maximum value. Subsections describe the methods employed in
the reinforcement-learning part of this study.

3.1. Agent

In the design of our model, our primary objective was to guide the agent toward
making choices that maximized its overall returns. We aimed for the agent to interact in
various environments, learn, and optimize its decision-making strategy so that it could
make decisions that could significantly increase returns when faced with diverse scenarios.
Throughout this process, we focused on the adaptability of the agent’s decisions in different
environments and how reinforcement-learning methods could enable it to choose actions

Electronics 2023, 12, 5034 6 of 18

more flexibly when encountering challenges. Through our model, we hoped the agent
could learn a decision-making strategy that could perform optimally across a variety
of situations.

3.2. States

Characterizing the current context of the environment involved defining a state, which
was a detailed description of the environment reflecting the present location, condition,
and situation where the agent was positioned. This state was influenced by the actions
undertaken by the agent, as they led to changes in the environment. Specifically, in the
context of our scenario, each element within the set represented a list of recommendations.
The state at any given moment in time could be expressed as follows:

Au = (au1, au2, au3, . . .) (1)

Here, Au symbolizes the state for a particular user u, and au1, au2, au3, . . . denotes the
specific recommendations associated with that user at that specific moment. This state
captures the dynamic nature of the environment, where alterations in the agent’s actions
contribute to the evolution of the state, subsequently influencing the recommendations
provided to the user.

3.3. Actions

In reinforcement learning, an agent can perform actions. The agent influences the
environment by selecting actions. The selection of an action is the result of the agent’s policy
decision in a particular state. At each moment, the system selects an action representing an
arm, groups all items in the candidate pool based on the user’s preferences, and generates
a recommendation list using a classifier, as follows:

au = (x1, x2, x3 . . .) (2)

where au is the set of candidate lists for user u.

3.4. Rewards

In our model, xt,a refers to the feature vector obtained by the user at time t after taking
action a and pulling the arm, commonly known as the reward. This reward vector encom-
passed information about the changes in the environment state after the user interacted
with it, serving as a crucial factor for evaluating the effectiveness of the agent’s actions.

More specifically, the reward vector xt,a could include a series of features reflecting the
user’s preferences, behavioral history, and feedback from the environment after executing
a particular action. Analyzing the reward vector allowed a deeper understanding of the
outcomes of user–system interactions, guiding the learning process of the agent and opti-
mizing recommendation strategies. In the framework of reinforcement learning, acquiring
rewards was a critical step for the agent’s learning, as it reflected the contribution of user
behavior to the system’s performance and provided essential information for the agent to
make informed decisions in subsequent steps.

4. Proposed Method
4.1. Overview

Our problem could be divided into several main parts, including the multi-information
representation module, the dynamic clustering module, the multi-level item-filtering mod-
ule based on ratings, and the joint-training module. We abbreviated our model as DJT-RS
and use this acronym throughout the rest of the text for reference, as shown in Figure 2.
The overall implementation process is shown in Algorithm 1. Firstly, we split the problem
by using a rating matrix and enhancing singular value decomposition to obtain user and
item feature vectors [30]. Once we had these feature vectors, we used the nearest-neighbor
algorithm to cluster users with similar preferences together, which was the role of the

Electronics 2023, 12, 5034 7 of 18

smart user-group module. This allowed users to spread information within the community,
addressing the cold-start and data-sparsity issues. It was worth noting that when user
embeddings changed, their preferences changed accordingly, leading to adjustments in the
user groups. For each user U, we categorized items into several categories, forming “super
arms”. Then, based on a selection strategy, we chose the most promising “arm”. During
this process, we utilized back-propagation from the deep-learning and feedback values
from the reinforcement learning for joint training. Based on the feedback, we adjusted user
feature vectors, refined user groups, and repeated this process to achieve personalized
recommendations.

Figure 2. DJT-RS Comprehensive Fact Sheet.

In the given context, rui indicates the rating provided by user U to item I, ŷui denotes
the predicted rating by user U for item I, and U and I refer to the embeddings of the users
and the items, respectively. The parameter ρ is a regularization parameter that helps to
control the model’s complexity.

Algorithm 1 Dynamic User Groups and Reinforcement Learning

Input: Rating data and contextual data.
Output: Recommend list
Data organization and data cleaning.
for t = 1, 2, 3, . . . do

After utilizing data to obtain perceptual information in the embedding layer, acquire
the average parameters Wx for each user group.

Grouping of items based on current user preferences, Get all the arms a = cate()

The largest arm i∗ = arg maxi∈F
(

xt,a + α
√

xT
t,aW̄−1

n xt,a log(1 + t)
)

is carried out ac-
cording to the equation

Observe the difference between the true and predicted total loss (L1+L2) for back-
propagation

After examining the final results, adjust the feature information in the embedding
layer based on L1.

Observe the final results again and modify the user group average parameters Wx
based on L2.

Adjust the user cluster where u belongs to
Move u from n1 to n2

end for

Electronics 2023, 12, 5034 8 of 18

4.2. Multi-Information Representation

To make the raw data more informative, we introduced basic embedding logic into
the multi-information representation layer. Unlike just obtaining embeddings, here we also
dynamically updated feature vectors in coordination with other modules.

In the multi-information representation layer, the rating matrix was primarily de-
composed using singular value decomposition. As shown in Figure 3, it started with the
matrix decomposition, followed by feeding it into an embedding layer to obtain prediction
values. Then, iterative back-propagation using the mean-squared error was applied until
convergence. The loss function was defined as follows:

Loss = ∑
(u,i)

(rui − ŷui)
2 + λ

(
∥U∥2

F + ∥I∥2
F

)
, (3)

Next, to enhance representation capabilities, we obtained high-dimensional feature vectors
for users (such as age, gender, occupation, etc.). Then, we obtained embeddings repre-
senting item categories. In the first round of recommendations (training), the embedding
vectors of the users and the item components were connected separately. At this point, the
initial feature construction was complete. The next stage involved the following tasks.

Figure 3. Eigenvector aggregation method.

After obtaining the embedding vectors, we introduced a weight redistribution mech-
anism. We used the obtained user and item embedding vectors, expanded them into
several dimensions, and then used softmax to determine the importance of each weight.
We added these dimensions together and used the average to obtain the final interpretable
item feature. Please note that the attention mechanism, due to its resource-intensive nature,
was only processed once before the first round and did not involve loop operations in
subsequent iterations. The formula for synthesizing the final feature values for each feature
domain was as follows:

∑n
i=1 αixi

∑n
i=1 xi

, (4)

4.3. Dynamic Clustering

Once we had obtained all the user feature vectors, we performed k-means cluster-
ing [31], dividing users into several user clusters. Each cluster’s parameters were repre-
sented by the average of the user feature vector within that cluster. The real-time user
grouping implemented dynamic updating. For the first round of clustering, we used the
Euclidean distance, the input was the user feature vector, the closest users were closely

Electronics 2023, 12, 5034 9 of 18

linked together, and the parameter of each user was the user feature vector calculated
earlier. Therefore, the average parameter of each user group was:

Wn =
∑i=m

i=1 ui

m
, (5)

where u is an integer less than 50 and m is the number of users in each group. This provided
the parameters shared externally by each user group Wn and the use of shared parameters
to mitigate the problem of under-representation of parameters by individual users.

Then, during the recommendation decision-making process, we used a user’s own
feature vector, along with the parameters of the cluster to which they belonged, for person-
alized recommendations.

As shown in Figure 4, after each recommendation and based on feedback received, we re-
calculated the distances between the user and each cluster to update their cluster assignment.

Figure 4. The user leaves the original group and moves to the nearest group.

Additionally, a user’s feature vector was updated after each recommendation, not
only at the end of training. This allowed the system promptly capture users’ changing pref-
erences for more accurate recommendations. At this point, the gradient descent algorithm
was used to comprehensively update user and item embedding information. The update
produced a loss function that we defined as L1, as follows:

L1 =
1

u ∗ i

u∗i

∑
i=1

(yi − ŷi)
2, (6)

where yi is the real rating and ŷi is the predictive score of the model. At this point, the
training was over, and we could derive a rich vector representation of users as well as items.
It was worth noting that this portion of the trained vectors was used for user clustering and
prior probability initialization, and the user and vector representations were also re-scaled
based on the loss values of subsequent recommendations.

Once the updates were complete, the refreshed user feature vectors were incorporated
into the smart user group module for further computations.

The second phase involved using the constructed user and item features for user
grouping and item categorization. This approach had the advantage of mitigating data
sparsity and cold-start issues, as well as enabling the creation of personalized recommen-
dation lists from which users could choose, thereby improving the robustness and the
accuracy of the recommendation system.

Then, the k-means clustering algorithm was employed to categorize all users into
groups. The clustering process began by initializing k data centroids, followed by iterative
“assignment”, “update”, and “repeat” operations, until completion. In the assignment
phase, assuming that pi represents the feature vector of a data point, qi is the center of

Electronics 2023, 12, 5034 10 of 18

cluster j, and n is the dimensionality of the feature vector, the formula for assigning data
point pi to the nearest cluster center qi based on the distance was as follows:

d(pi, qj) =

√
n

∑
k=1

(pi,k − qj,k)2, (7)

for each cluster j, calculate the mean vector of all data points within that cluster as the new
cluster center:

qj =
1

|Cj| ∑
pi∈Cj

pi (8)

Then, in the iterative process, minimize the loss function, which was expressed as:

J =
m

∑
i=1

K

∑
j=1

wi,jd(pi, qj), (9)

where m represents the number of data points; K represents the number of clusters; wi,j is
an variable that equals 1 if data point pi belongs to cluster j, otherwise wi,j equals 0; and
d(pi, qj) represents the distance between data point pi and cluster center qi. In this way, we
ultimately obtained k clusters. It was worth noting that, to avoid performing clustering at
each recommendation, this operation was only executed once, and the subsequent updates
to the clustering were handled by our algorithm.

4.4. A Multi-Level Item-Filtering Module Based on Ratings

When it came to delivering services such as news recommendations, product rec-
ommendations, and advertising, they have often been presented in the form of lists. In
designing our service system, we took this into consideration. Therefore, we created a
filtering mechanism to better categorize items.

First, we gathered a group of highly-rated items and divided them based on the maxi-
mum list size. Then, for items with relatively even ratings, we categorized them based on
different categories. We also considered the user’s previous feedback in recommendations.
Next, for lower-rated items, we shuffled and placed them in a low-probability pool, where
they could be randomly selected with a low probability. This was performed because there
were still many niche preferences within the broader audience.

In the design, we first categorized the highly rated items with the following formula:

Ci =
Ri

max(R)
, (10)

where Ci is the categorization score of the item i, Ri is the rating of the item i, and max(R)
is the highest rating among all the items. The categorization ensured that the high-rated
items had more weight in the recommendation list.

Considering user feedback, we introduced a user feedback score:

Si = θ · Ri + (1 − θ) · Fi, (11)

where Si is the score of the item i after considering the user’s feedback, θ is a parameter
that weighs the rating and the feedback, and Fi is the user’s previous feedback score. To
increase the selection probability of low-rated items, we used the following formula:

Pi =
BaseProbability

BaseProbability + e−β·Ri
, (12)

where BaseProbability is the base selection probability and β is a parameter that adjusts
the degree of enhancement of the selection probability of low-rated items. This selection

Electronics 2023, 12, 5034 11 of 18

probability function ensured that the low-rated items had additional flexibility in their
probability of being selected, making them more likely to appear in the recommendation list.

4.5. Joint Training

Considering the continuously changing user preferences and behaviors based on
emotions, we not only introduce reinforcement-learning algorithms to maximize returns
but also utilized the changes in the embedding vectors representing users and items as
a reflection of evolving user preferences [32]. Therefore, before starting the training, we
spent some time training the representation layer of the users and the items. When it
quickly converged, we initiated the entire system. The benefit of this approach was that it
provided relatively accurate prior probabilities for the operation of selecting arms in the
reinforcement learning.

During system operation, we could start recommendations at any time. After users
had made recommendations, the system would update user and item embedding vectors
based on the recommendation results. Simultaneously, it adjusted the parameters for the
users and the user groups in the reinforcement learning. This was carried out to achieve
joint training.

First, we had Loss1, which was a classic mean-squared-error (MSE) loss function. Its
task was to match the model’s predictions to real data (usually user ratings or clicks) to
ensure that the model performed well in terms of basic predictive accuracy.

We then introduced Loss2, which was the essence of reinforcement learning. Loss2
was computed by comparing the model’s recommendation results with the user’s actual
clicking behavior. Specifically, we observed the difference between the items actually
clicked on by the user and the items predicted to be clicked on by the model. The difference
between the model’s recommendations and the actual clicks was interpreted as an error
in its recommendations. If the model’s recommendations were very similar to the actual
clicks, the Loss2 value would be close to zero. However, if the recommendations were
significantly different from the actual clicks, the Loss2 value would be a large positive
number. This loss function has commonly been used in reinforcement learning for tasks
that were driven by rewards. The formula for L2 is shown below, where h represents the
number of recommended items.

L2 =
∑h

1(uhiht − uhihp)
2

N
, (13)

The final total loss was the combination of Loss1 and Loss2. Our goal was to minimize
the total loss. This optimization process was performed by back-propagation, in which
the parameters of the model, including the embedding vectors of the users and the items,
were updated. This optimization process not only focused on the predictive accuracy of
the model but also considered the performance of the model in user interactions to provide
more personalized and effective recommendations.

In rating prediction, we classified different item classes based on labels and used each
class to characterize the externally exposed item-feature vectors, and in the recommenda-
tion, each item class was considered as an action, i.e., an arm, which was selected based on
the following equation:

i∗ = argmaxi∈F

(
xt,a + α

√
xT

t,aW̄−1
n xt,a log(1 + t)

)
, (14)

where i∗ denotes the best action to be selected; argmax indicates that the action to be
selected is to find the action that maximizes the following expression among the set of
possible actions; i ∈ I denotes the set of optional actions, usually representing different
slot arms (actions) in a multi-arm slot problem; xt,a denotes the value of action a at time
t, usually representing the reward or benefit of a slot arm at a given time-step; α is a
hyper-parameter used to balance the importance between the weight vector and the action

Electronics 2023, 12, 5034 12 of 18

feature vector; W̄−1
n is the inverse matrix of W̄n, the matrix of the user group in which the

user is located, which is often used to represent the uncertainty of the action eigenvectors;
and log(1 + t) is a logarithmic function over time-steps, which increases over time.

The goal of this formulation was to select the action x̂ that should be taken at each
time-step t to maximize the value of the value function. This value function consisted
of the actual reward value of the action xt,a and a correction term that took into account
uncertainty according to the inverse matrix of the covariance matrix W̄−1

n . According to
the equation, as time t increased, the consideration of uncertainty gradually increased,
which meant that the system would choose its actions more carefully to maximize long-
term returns.

This type of strategy has commonly been used in reinforcement learning to solve
multi-arm slot-machine problems, where different actions (slot machine arms) could have
different reward distributions. The goal was to find a strategy that maximized the total
cumulative reward while accounting for uncertainty. This type of problem could be found
in numerous domains, including online advertising [33,34], automated control [35,36], etc.

5. Experimental Results and Evaluation

In this section, we provide a thorough explanation of our algorithm’s experimental
process. We conducted our experiments using two popular datasets, namely the MovieLens
movie-rating dataset and the Amazon e-commerce dataset. We discuss detailed information
about the datasets we used and also compare our results with baseline algorithms in the
following sections.

5.1. Experimental Setup
5.1.1. Datasets

In this section, we explain the experimental process of our algorithm in detail. For this
experiment, we used two well-known datasets: the MovieLens dataset and the Amazon
e-commerce dataset. The MovieLens dataset contained rating data, user features, and item-
category information. After data cleaning, there were a total of 943 users, 1682 item records,
and 100,000 rating data points. In the case of the Amazon dataset, we used a dataset related
to clothing purchases, which included 158 users, 98 items, and 30,000 rating data points.
We provide a detailed explanation of the baseline algorithms used for comparison in the
following sections.

5.1.2. Evaluation Metrics

DJT-RS primarily employed four metrics for evaluation. In addition to the three fun-
damental metrics for the recommendation systems, we also incorporated diversity metrics
to assess the model’s ability to adapt to cold-start scenarios and alleviate data sparsity.

In our experiments, accuracy was defined as the ratio of the number of correct predic-
tions to the overall predictions, i.e.,

Precision =
True Positives

True Positives + False Positives
(15)

where True Positives is the number of users correctly predicted to be interested in the users
and False Positives is the number of users that were incorrectly predicted to be interested.

Recall was defined as how many of all true-positive category samples were correctly
predicted as positive by the model.

Recall =
True Positives

True Positives + False Negatives
, (16)

where True Positives is the number of users correctly predicted to be interested and
False Negatives is the number of users incorrectly predicted to be uninterested.

Electronics 2023, 12, 5034 13 of 18

The F1-score was a reconciled average of accuracy and recall and provided a compre-
hensive performance metric. It was calculated using the following formula:

F1 = 2 × Precision × Recall
Precision + Recall

(17)

The F1-score considered the trade-off between accuracy and recall. It ranged from 0 to
1, with higher scores indicating that the model performed better in balancing precision
and recall.

Finally, we defined the diversity metrics with the following formula:

Diversity =
1
|U| ∑

u∈U

σdomains(R(u))
µdomains(R(u))

, (18)

where U is the set of users, R(u) is the recommendation list of user u, σdomains is the
standard deviation of the number of items in different categories in the recommendation
list, and µdomains is the average number of items in different categories. The diversity
metric evaluated the adaptability of the recommendation system in a cold-start state, that
is, the larger the metric, the better the diversity of the recommendation system, in terms of
providing different categories of items.

5.1.3. Baselines

When making recommendations, we used a method similar to a slot machine. During
the comparison process, we focused on training both deep learning and reinforcement
learning together. We selected the following algorithms to determine their effectiveness for
improving data-scarcity problems within the recommendation system by analyzing user
behavior patterns.

• SVD [37]: SVD is a classic matrix factorization algorithm that decomposed the rat-
ing matrix into three matrices: the user matrix, the item matrix, and the singular
value matrix.

• LFM [38]: LFM is a probability-based matrix factorization method that introduced
latent variables (hidden factors) to model the relationships between users and items.
By learning these latent factors, the model could make personalized recommendations.
This was a probabilistic matrix factorization method that introduced latent variables
(hidden factors) to model the relationships between users and items. By learning these
latent factors, the model could make personalized recommendations.

• NCF [39]: Neural collaborative filtering is a recommendation system method that
combined the characteristics of neural networks to enhance the recommendation algo-
rithms and improve the accuracy of personalized recommendations. It utilized neural
networks to capture the complex relationships between users and items, allowing
for better predictions of user interest in items. Typically, this approach introduced
neural network layers on top of collaborative filtering to enhance the recommendation
precision and personalization.

• LinUCB [40]: LinUCB is an algorithm for multi-armed bandit problems. It was based
on linear models and the concept of confidence intervals in order to make the best
decisions within a limited time frame. The algorithm estimated potential rewards and
uncertainties for each choice and selected the optimal action based on these estimates.

• TS [41]: Thompson sampling is a reinforcement-learning algorithm used in multi-
armed bandit problems and recommendation systems. It made optimal choices based
on Bayesian probability.

5.2. Comparison with Baseline Algorithms

When comparing DJT-RS with other algorithms, we conducted top-k recommendations.
The comparison results are shown in Table 1. Single recommendations often led to a significant
drop in metrics. Here, we used three common metrics to compare various algorithms. Firstly,

Electronics 2023, 12, 5034 14 of 18

when k = 10, DJT-RS consistently outperformed other algorithms, regardless of which metric
we examined. This was because it lacked sufficient reliable information and timely updates
for recommendation results. It only performed one-time embedding. When facing sparse
data, it often resulted in poor performance.

For example, when k varied, the SVD algorithm had the highest metrics of recall
0.4354, precision 0.4031, and F1-score 0.4186. In the Amazon dataset, the corresponding
recall, precision, and F1-score metrics were 0.4662, 0.4736, and 0.4699, which are relatively
lower, as compared to other algorithms.

Comparatively, the LFM algorithm showed a slight improvement over the SVD al-
gorithm. It could provide personalized lists for each user and utilized latent factors to
fully explore implicit relationships in the data. However, it also lacked updates for the
recommendation results, resulting in average performance.

Similarly, NCF was limited by data sparsity, which restricted its performance. In
contrast, when using algorithms like Linucb and Thompson sampling, they could provide
timely feedback on the recommendation results in order to guide the next recommendation.
These two algorithms notably enhanced performance, as compared to the top three deep-
learning algorithms.

Finally, at k = 10, the DJT-RS algorithm improved recall by 19% and 16% on MovieLens
and Amazon, respectively. Precision increased by 15% on MovieLens, and F1-scores
improved by 17% and 2% on MovieLens and Amazon, respectively. Similar improvements
were observed at k = 20 and 30. For example, on MovieLens, at k = 20, the accuracy reached
0.5572, representing a 21% performance increase. This indicated that the algorithm’s
accuracy gradually improved and captured user preferences through iterative trial and
exploration. On Amazon, the accuracy was slightly lower than Thompson sampling
due to the algorithm’s inclination to recommend more items to users, increasing recall
while introducing more false positives and, thus, reducing accuracy. However, recall
and F1-scores were consistently higher than Thompson sampling, demonstrating that our
algorithm tended to strike a balance between exploration and exploitation and leaned
towards trying new items for user recommendations. Additionally, in both datasets, when
k = 20, the three metrics were generally higher than when k = 10 or k = 30, suggesting that
recommending lists at k = 20 aligned more with user preferences and achieved the highest
recommendation accuracy after balancing exploration and exploitation.

To assess the effectiveness of the algorithm for addressing data-sparsity and cold-
start issues, we employed the standard-deviation diversity-detection method. The results
indicated that DJT-RS, by utilizing a joint-training approach and providing timely feedback
control for the recommended results, consistently exhibited superior diversity performance
for any given value of k. This suggested that the DJT-RS method excelled at offering diverse
items in the early stages of a recommendation system, mitigating biases towards popular
items. It involved a wide range of item categories, ensuring better fairness for each item in
the recommendation pool.

Table 1. Performance comparison on MovieLens and Amazon.

Datasets Models
k = 10 k = 20 k = 30

Recall Precision F1 Diversity Recall Precision F1 Diversity Recall Precision F1 Diversity

MovieLens

SVD 0.3902 0.3213 0.3538 0.2863 0.4354 0.4031 0.4186 0.2765 0.3954 0.3643 0.3793 0.3065
LFM 0.4993 0.4214 0.4573 0.4658 0.4577 0.4003 0.4275 0.4895 0.5038 0.4357 0.4674 0.5268
NCF 0.3894 0.3765 0.3829 0.4256 0.4038 0.3714 0.3872 0.4565 0.3953 0.3754 0.3852 0.6696

LinUCB 0.5552 0.4662 0.5077 0.2659 0.6024 0.4721 0.5303 0.3596 0.5764 0.4921 0.5316 0.3985
TS 0.5654 0.4532 0.5043 0.2685 0.5901 0.4601 0.5179 0.2985 0.6043 0.4945 0.5449 0.3698

DJT-RS 0.6742 0.5364 0.5974 0.6859 0.7024 0.5572 0.6223 0.7596 0.6535 0.5313 0.5865 0.7776

Amazon

SVD 0.4353 0.3532 0.3902 0.3986 0.4662 0.4736 0.4699 0.4265 0.4276 0.3829 0.4043 0.4586
LFM 0.5743 0.4564 0.5094 0.5463 0.4985 0.4355 0.4655 0.5796 0.5434 0.4875 0.5144 0.5593
NCF 0.5432 0.4865 0.5139 0.5996 0.4576 0.4053 0.4301 0.6059 0.4363 0.3955 0.4148 0.6003

LinUCB 0.6342 0.5334 0.5793 0.3236 0.6742 0.5623 0.6137 0.3363 0.5323 0.5231 0.5276 0.3238
TS 0.6341 0.5962 0.6145 0.3696 0.6465 0.6041 0.6246 0.3889 0.5873 0.5437 0.5648 0.3826

DJT-RS 0.6643 0.5923 0.6266 0.7652 0.6924 0.5963 0.6404 0.7966 0.6389 0.5212 0.5742 0.7652

Electronics 2023, 12, 5034 15 of 18

5.3. Ablation Study
5.3.1. Basic Ablation Study

During the analysis, we discussed the impact of various components of our model,
such as the joint-training module, item-categorization module, and intelligent user-group
module, on algorithm performance.

Firstly, we set k to different values in order to limit the number of recommended
items. We split it into four values: k = 5, k = 10, k = 15, and k = 20. Then, we dissected
the joint module, updating only the reinforcement learning without modifying the already
trained user embeddings. This algorithm was referred to as static-DJT-RS, as shown in
Figures 5 and 6. If the embeddings had not been updated, system efficiency significantly
decreased. This happened because user interests no longer adapted to changing preferences.
Personalized recommendation efficiency also decreased, which was especially evident on
the Amazon dataset, where user and item feature information were relatively scarce, as
compared to the MovieLens dataset, leading to missing embedding-layer information and
insufficient interest updates, resulting in a noticeable performance drop.

(a) Recall on MovieLens (b) Precision on MovieLens (c) F1 on MovieLens

Figure 5. DJT-RS ablation experiment on the MovieLens dataset.

(a) Recall on Amazon (b) Precision on Amazon (c) F1 on Amazon

Figure 6. DJT-RS ablation experiment on the Amazon dataset.

Subsequently, we removed the intelligent user-group module, opting for recommen-
dations based on individual user information without relying on their community. This
algorithm was referred to as “without user community”. We observed that the achieved
thresholds were not very high for any k-value. This was due to the user-group setting,
effectively mitigating cold-start and data-sparsity issues.

Finally, removing the item-categorization module, referred to as “without item filter-
ing”, resulted in a slight decline in system performance. In Figure 5, the effect was the same
as the complete DJT-RS, but in other performance metrics, it still had a positive impact on
recommendations. Possibly, in some recommendation rounds, the item-filtering module,
based on ratings, effectively categorized items and filtered out popular items among users,
leading to an improvement that may not have been significant.

In summary, the algorithm performed best when equipped with all three compo-
nents: the joint-training module, intelligent user-group module, and item-categorization
module. Each component enhanced user satisfaction to varying degrees, especially the
joint-training module.

Electronics 2023, 12, 5034 16 of 18

5.3.2. Diversity Comparison

To compare the DJT-RS algorithm with other baseline algorithms in terms of addressing
data sparsity and overcoming cold-start challenges, we conducted top-k recommendations
on the MovieLens dataset. We set k to 20 and performed tests on the first 100 users. All
baseline algorithms were trained and tested from the same starting point. As shown in
Figure 7, our algorithm exhibited a significant improvement in diversity, as compared to
the other algorithms. This indicated that our algorithm could recommend items from a
wider range of categories to users while maintaining stable increases in the accuracy and
recall metrics. A higher diversity value implied a greater variety of recommended item
categories, showcasing a higher proportion of exploration in the recommendations. This
provided evidence that our algorithm could mitigate cold-start and data-sparsity issues, to
some extent.

Figure 7. Comparison of diversity between DJT-RS and baseline algorithms.

6. Conclusions

Our experimental results indicated that, as compared to algorithms trained directly
with deep learning for feature extraction, our joint-training approach was more conducive
to capturing dynamically changing preferences among users. Unlike the multi-armed
bandit algorithm, our input context was both interpretable and time-varying. User pref-
erences evolve over time, and in the initial recommendation stage, our algorithm could
quickly identify user points of interest, significantly reducing the cold-start time of the
recommendation system. In summary, our proposed service recommendation system based
on dynamic user groups and reinforcement learning was an effective recommendation
system that could provide insights and inspiration for practical application scenarios. In the
future, we will continue to explore ways to further enhance the efficiency and the accuracy
of the algorithm in order to make more significant contributions to the development of
recommendation systems.

Author Contributions: Conceptualization, E.Z., W.M., J.Z. and X.X.; Methodology, W.M.; Software,
E.Z. and J.Z.; Validation, E.Z. and W.M.; Formal analysis, E.Z., W.M., J.Z. and X.X.; Investigation, E.Z.;
Data curation, E.Z.; Writing—original draft, E.Z.; Writing—review & editing, W.M.; Visualization,
E.Z.; Supervision, W.M., J.Z. and X.X.; Project administration, W.M. All authors have read and agreed
to the published version of the manuscript.

Funding: This work is supported by the National Nature Science Foundation of China (No. 61602399),
Shandong Provincial Nature Science Foundation, China (ZR2020MF100), and Youth Innovation
Science and Technology Support Program of Shandong Provincial under Grant 2021KJ080.

Electronics 2023, 12, 5034 17 of 18

Data Availability Statement: Data presented in this study are openly available in DJT-RS at
https://zenodo.org/doi/10.5281/zenodo.10394631.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Singh, J.; Sajid, M.; Yadav, C.S.; Singh, S.S.; Saini, M. A Novel Deep Neural-based Music Recommendation Method considering

User and Song Data. In Proceedings of the 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI),
Tirunelveli, India, 28–30 April 2022; pp. 1–7.

2. Zha, D.; Feng, L.; Tan, Q.; Liu, Z.; Lai, K.H.; Bhushanam, B.; Tian, Y.; Kejariwal, A.; Hu, X. Dreamshard: Generalizable embedding
table placement for recommender systems. Adv. Neural Inf. Process. Syst. 2022, 35, 15190–15203.

3. Intayoad, W.; Kamyod, C.; Temdee, P. Reinforcement learning based on contextual bandits for personalized online learning
recommendation systems. Wirel. Pers. Commun. 2020, 115, 2917–2932. [CrossRef]

4. Sanz-Cruzado, J.; Castells, P.; López, E. A simple multi-armed nearest-neighbor bandit for interactive recommendation. In
Proceedings of the 13th ACM Conference on Recommender Systems, Copenhagen, Denmark, 16–20 September 2019; pp. 358–362.

5. Elena, G.; Milos, K.; Eugene, I. Survey of multiarmed bandit algorithms applied to recommendation systems. Int. J. Open Inf.
Technol. 2021, 9, 12–27.

6. Qin, L.; Chen, S.; Zhu, X. Contextual combinatorial bandit and its application on diversified online recommendation. In
Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, PA, USA, 24–26 April 2014; pp. 461–469.

7. Jiang, J.; Jiang, Y. Leader-following consensus of linear time-varying multi-agent systems under fixed and switching topologies.
Automatica 2020, 113, 108804. [CrossRef]

8. Li, S.; Lei, W.; Wu, Q.; He, X.; Jiang, P.; Chua, T.S. Seamlessly unifying attributes and items: Conversational recommendation for
cold-start users. Acm Trans. Inf. Syst. (TOIS) 2021, 39, 1–29. [CrossRef]

9. Aldayel, M.; Al-Nafjan, A.; Al-Nuwaiser, W.M.; Alrehaili, G.; Alyahya, G. Collaborative Filtering-Based Recommendation
Systems for Touristic Businesses, Attractions, and Destinations. Electronics 2023, 12, 4047. [CrossRef]

10. Lv, Z.; Tong, X. A Reinforcement Learning List Recommendation Model Fused with Graph Neural Networks. Electronics 2023,
12, 3748. [CrossRef]

11. Ahmadian, S.; Ahmadian, M.; Jalili, M. A deep learning based trust-and tag-aware recommender system. Neurocomputing 2022,
488, 557–571. [CrossRef]

12. Ahmadian, M.; Ahmadian, S.; Ahmadi, M. RDERL: Reliable deep ensemble reinforcement learning-based recommender system.
Knowl.-Based Syst. 2023, 263, 110289. [CrossRef]

13. Rendle, S.; Freudenthaler, C.; Gantner, Z.; Schmidt-Thieme, L. BPR: Bayesian personalized ranking from implicit feedback. arXiv
2012, arXiv:1205.2618.

14. Guo, H.; Tang, R.; Ye, Y.; Li, Z.; He, X. DeepFM: A factorization-machine based neural network for CTR prediction. arXiv 2017,
arXiv:1703.04247.

15. Semenov, A.; Rysz, M.; Pandey, G.; Xu, G. Diversity in news recommendations using contextual bandits. Expert Syst. Appl. 2022,
195, 116478. [CrossRef]

16. Kawale, J.; Bui, H.H.; Kveton, B.; Tran-Thanh, L.; Chawla, S. Efficient Thompson sampling for Online Matrix-Factorization
Recommendation. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12
December 2015; Volume 28.

17. Gan, M.; Kwon, O.C. A knowledge-enhanced contextual bandit approach for personalized recommendation in dynamic domains.
Knowl.-Based Syst. 2022, 251, 109158. [CrossRef]

18. Huang, W.; Zhang, L.; Wu, X. Achieving counterfactual fairness for causal bandit. Proc. AAAI Conf. Artif. Intell. 2022, 36,
6952–6959. [CrossRef]

19. Setiowati, S.; Adji, T.B.; Ardiyanto, I. Point of Interest (POI) Recommendation System using Implicit Feedback Based on K-Means+
Clustering and User-Based Collaborative Filtering. Comput. Eng. Appl. J. 2022, 11, 73–88. [CrossRef]

20. Yunanda, G.; Nurjanah, D.; Meliana, S. Recommendation system from microsoft news data using TF-IDF and cosine similarity
methods. Build. Informatics, Technol. Sci. (BITS) 2022, 4, 277–284. [CrossRef]

21. van den Heuvel, E.; Zhan, Z. Myths about linear and monotonic associations: Pearson’s r, Spearman’s ρ, and Kendall’s τ. Am.
Stat. 2022, 76, 44–52. [CrossRef]

22. Jain, G.; Mahara, T.; Sharma, S.C.; Sangaiah, A.K. A cognitive similarity-based measure to enhance the performance of collabora-
tive filtering-based recommendation system. IEEE Trans. Comput. Soc. Syst. 2022, 9, 1785–1793. [CrossRef]

23. Linden, G.; Smith, B.; York, J. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Comput. 2003, 7,
76–80. [CrossRef]

24. Zhao, Z.D.; Shang, M.S. User-based collaborative-filtering recommendation algorithms on hadoop. In Proceedings of the 2010
Third International Conference on Knowledge Discovery and Data Mining, Phuket, Thailand, 9–10 January 2010; pp. 478–481.

25. Hsieh, F.S. Trust-based recommendation for shared mobility systems based on a discrete self-adaptive neighborhood search
differential evolution algorithm. Electronics 2022, 11, 776. [CrossRef]

https://zenodo.org/doi/10.5281/zenodo.10394631
http://doi.org/10.1007/s11277-020-07199-0
http://dx.doi.org/10.1016/j.automatica.2020.108804
http://dx.doi.org/10.1145/3446427
http://dx.doi.org/10.3390/electronics12194047
http://dx.doi.org/10.3390/electronics12183748
http://dx.doi.org/10.1016/j.neucom.2021.11.064
http://dx.doi.org/10.1016/j.knosys.2023.110289
http://dx.doi.org/10.1016/j.eswa.2021.116478
http://dx.doi.org/10.1016/j.knosys.2022.109158
http://dx.doi.org/10.1609/aaai.v36i6.20653
http://dx.doi.org/10.18495/comengapp.v11i2.399
http://dx.doi.org/10.47065/bits.v4i1.1670
http://dx.doi.org/10.1080/00031305.2021.2004922
http://dx.doi.org/10.1109/TCSS.2022.3187430
http://dx.doi.org/10.1109/MIC.2003.1167344
http://dx.doi.org/10.3390/electronics11050776

Electronics 2023, 12, 5034 18 of 18

26. Chen, J.; Zhang, H.; He, X.; Nie, L.; Liu, W.; Chua, T.S. Attentive collaborative filtering: Multimedia recommendation with item-
and component-level attention. In Proceedings of the 40th International ACM SIGIR conference on Research and Development in
Information Retrieval, Tokyo, Japan, 7–11 August 2017; pp. 335–344.

27. Li, B. Optimisation of UCB algorithm based on cultural content orientation of film and television in the digital era. Int. J. Netw.
Virtual Organ. 2023, 28, 265–280. [CrossRef]

28. Wang, R.; Wu, Z.; Lou, J.; Jiang, Y. Attention-based dynamic user modeling and deep collaborative filtering recommendation.
Expert Syst. Appl. 2022, 188, 116036. [CrossRef]

29. Aramayo, N.; Schiappacasse, M.; Goic, M. A Multiarmed Bandit Approach for House Ads Recommendations. Mark. Sci. 2023, 42,
271–292. [CrossRef]

30. Al-Ajlan, A.; Alshareef, N. Recommender System for Arabic Content Using Sentiment Analysis of User Reviews. Electronics 2023,
12, 2785. [CrossRef]

31. Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.;Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review,
variants analysis, and advances in the era of big data. Inf. Sci. 2022, 622, 178-210. [CrossRef]

32. Dang, C.N.; Moreno-García, M.N.; Prieta, F.D. An approach to integrating sentiment analysis into recommender systems. Sensors
2021, 21, 5666. [CrossRef]

33. Naeem, M.; Rizvi, S.T.H.; Coronato, A. A gentle introduction to reinforcement learning and its application in different fields.
IEEE Access 2020, 8, 209320–209344. [CrossRef]

34. Iacob, A.; Cautis, B.; Maniu, S. Contextual bandits for advertising campaigns: A diffusion-model independent approach.
In Proceedings of the 2022 SIAM International Conference on Data Mining (SDM), Alexandria, VA, USA, 28–30 April 2022;
pp. 513–521.

35. Ding, Q.; Kang, Y.; Liu, Y.W.; Lee, T.C.M.; Hsieh, C.J.; Sharpnack, J. Syndicated bandits: A framework for auto tuning hyper-
parameters in contextual bandit algorithms. Adv. Neural Inf. Process. Syst. 2022, 35, 1170–1181.

36. London, B.; Joachims, T. Control Variate Diagnostics for Detecting Problems in Logged Bandit Feedback. 2022. Available online:
https://www.amazon.science/publications/control-variate-diagnostics-for-detecting-problems-in-logged-bandit-feedback (ac-
cessed on 12 December 2023).

37. Colace, F.; Conte, D.; De Santo, M.; Lombardi, M.; Santaniello, D.; Valentino, C. A content-based recommendation approach based
on singular value decomposition. Connect. Sci. 2022, 34, 2158–2176. [CrossRef]

38. Fang, H.; Bao, Y.; Zhang, J. Leveraging decomposed trust in probabilistic matrix factorization for effective recommendation. In
Proceedings of the AAAI Conference on Artificial Intelligence, Quebec City, QC, Canada, 27–31 July 2014; Volume 28. . [CrossRef]

39. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182.

40. Shi, Q.; Xiao, F.; Pickard, D.; Chen, I.; Chen, L. Deep Neural Network with LinUCB: A Contextual Bandit Approach for
Personalized Recommendation. In Proceedings of the Companion Proceedings of the ACM Web Conference 2023, Austin, TX,
USA, 30 April–4 May 2023; pp. 778–782.

41. Agrawal, S.; Goyal, N. Analysis of thompson sampling for the multi-armed bandit problem. In Proceedings of the Conference on
Learning Theory, Lyon, France, 29–31 October 2012; JMLR Workshop and Conference Proceedings; pp. 39.1–39.26.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1504/IJNVO.2023.133865
http://dx.doi.org/10.1016/j.eswa.2021.116036
http://dx.doi.org/10.1287/mksc.2022.1378
http://dx.doi.org/10.3390/electronics12132785
http://dx.doi.org/10.1016/j.ins.2022.11.139
http://dx.doi.org/10.3390/s21165666
http://dx.doi.org/10.1109/ACCESS.2020.3038605
https://www.amazon.science/publications/control-variate-diagnostics-for-detecting-problems-in-logged-bandit-feedback
http://dx.doi.org/10.1080/09540091.2022.2106943
.
http://dx.doi.org/10.1609/aaai.v28i1.8714

	Introduction
	Related Work
	Matrix Factorization
	Contextual Multi-Armed Bandit Algorithm
	User-Based Collaborative Filtering
	The Attention Mechanism

	Preliminaries
	Agent
	States
	Actions
	Rewards

	Proposed Method
	Overview
	Multi-Information Representation
	Dynamic Clustering
	A Multi-Level Item-Filtering Module Based on Ratings
	Joint Training

	Experimental Results and Evaluation
	Experimental Setup
	Datasets
	Evaluation Metrics
	Baselines

	Comparison with Baseline Algorithms
	Ablation Study
	Basic Ablation Study
	Diversity Comparison

	Conclusions
	References

