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Abstract: Sensor-related indoor localization has attracted considerable attention in recent years. The
accuracy of conventional fingerprint solutions based on a single sensor, such as a Wi-Fi sensor, is
affected by multipath interferences from other electronic devices that are produced as a result of
complex indoor environments. Light sensors and magnetic (i.e., geomagnetic) field sensors can be
used to enhance the accuracy of a system since they are less vulnerable to disturbances. In this
paper, we propose a deep feedforward (DFF)-neural-network-based method, termed DFF-WGL,
which integrates the data from the embedded Wi-Fi sensor, geomagnetic field sensor, and light sensor
(WGL) in a smart device to localize the device in an indoor environment. DFF-WGL does not require
complex and expensive auxiliary equipment, except for basic fluorescent lamps and low-density Wi-Fi
signal coverage, conditions that are easily satisfied in modern offices or educational buildings. The
proposed system was implemented on a commercial off-the-shelf android device, and performance
was evaluated through an experimental analysis conducted in two different indoor testbeds, one
measuring 60.5 m2 and the other measuring 38 m2, with 242 and 60 reference points, respectively.
The results indicate that the model prediction with an input consisting of the combination of light, a
magnetic field sensor, and two Wi-Fi RSS signals achieved mean localization errors of 0.01 m and 0.04
m in the two testbeds, respectively, compared with any subset of combination of sensors, verifying
the effectiveness of the proposed DFF-WGL method.

Keywords: deep feedforward neural network; Wi-Fi; magnetic field sensor; light sensor; indoor
localization; fingerprint; sensor fusion; android device

1. Introduction

The indoor localization of smartphones is typically achieved by using embedded
sensors to gather information about the surrounding environment [1–7]. These sensors can
detect a variety of signals, including electronic signals from Bluetooth or Wi-Fi sensors; light
signals from light or camera sensors; motion or inertial signals from accelerometers, gyro-
scopes, and magnetometers given in inertial measurement units (IMU); etc. These signals
are then processed to estimate the smartphone’s location within an indoor environment. In
addition to the schemes based on using the signals acquired from smartphone platforms
for indoor localization, wireless sensor networks (WSNs) [8,9] and Frequency-Modulated
Continuous Wave radar (FMCW) [10–12]-based schemes have garnered research attention
in recent years.

On a smartphone platform, Wi-Fi and Bluetooth signals are the two main electronic
signals used for indoor localization. Even though channel state information (CSI)-based Wi-
Fi [13] can be used to track the location of smartphones with higher accuracy than received
signal strength (RSS)-based Wi-Fi localization, this method requires specific hardware
and software that are not commonly found in most commercial devices. However, RSS-
fingerprint-based radio map methods are commonly researched with regard to both Wi-
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Fi [14] and Bluetooth localization [15]. These methods require a minimum infrastructure
consisting of Wi-Fi access points (AP) and Bluetooth Low-Energy (BLE) beacons.

On the contrary, the geomagnetic field is a naturally occurring, ubiquitous, and rel-
atively stable phenomenon. Furthermore, the use of geomagnetic field fingerprinting
as a localization technique presents an appealing alternative to Wi-Fi- and Bluetooth-
fingerprinting methods, as it does not rely on any infrastructure. Some authors have per-
formed geomagnetic fingerprinting for indoor localization [6,16–18]. On the one hand, elec-
tronic signals are less stable and pervasive than the geomagnetic field. On the other hand,
the geomagnetic field has a consistent presence, and its force fingerprinting can exhibit dis-
tinctiveness within a confined indoor space, making it a viable option for fingerprint-based
indoor localization.

In comparison to electronic signals and geomagnetic field fingerprinting, light signals
are more stable and less prone to interference, making them a potentially reliable option for
indoor localization. Moreover, the unique fingerprinting of light signals can offer precise
localization information within a confined indoor space. Some studies have explored the
use of visible light communication signals and smartphones for indoor localization [19,20].
However, light sensor localization schemes suffer from the drawback of being limited by
dark or non-line-of-sight (NLOS) environmental conditions.

In conventional RSS-based Wi-Fi localization schemes that do not use fusion, numerous
Wi-Fi RSS samples are required during the site surveillance process to maintain high
localization accuracy. Due to hardware limitations with regard to scanning Wi-Fi signals,
the Wi-Fi scan speed is usually not very fast, making the site surveillance process laborious
and tedious. Approaches involving crowdsourcing [21–23] have been commonly employed
to tackle this issue; however, they are susceptible to a decrease in accuracy due to variations
in device accuracy. In the event of the unfeasibility of crowdsourcing, we aim to achieve
precise localization and reduce site-surveying time by incorporating data from light and
magnetic sensors with a higher sampling rate than that of Wi-Fi scanning whilst minimizing
the number of Wi-Fi sample data.

Fingerprint augmentation (FA) is another method used in Wi-Fi-fingerprint-based
localization schemes in which the fingerprint of each reference point (RP) in a fingerprint
database is used to generate a virtual RSS fingerprint via interpolation [24–26]. This tech-
nique leverages the known RSS fingerprints at RPs to estimate the signal strengths at
locations in between, effectively expanding the coverage of the database and improving lo-
calization accuracy. Linear and k-nearest neighbor (KNN) interpolation [27] are commonly
employed for this purpose, allowing a system to make accurate predictions even in areas
with limited or no direct fingerprint measurements.

To construct the training dataset for the deep learning model by combining data from
multiple sensors, we employed Sequential Feature Selection [28]. In this technique, there is
an initially empty set of features, which are incrementally added through a search across
the feature space. Then, the features that contribute to enhancing the overall accuracy of the
model are selected. This systematic approach ensures that the most informative sensor data
are included in the training dataset, facilitating the development of a robust and accurate
model. Furthermore, it allows for the efficient utilization of sensor data, optimizing a
model’s performance for various applications in sensor-based tasks.

The proposed method is designed for localizing robots by equipping a tablet-like
device on the top part of the robot rather than for human targets equipped with smart-
phones in their hands or pockets. This is because the direction of and gesturing applied to
smartphones are more complex, and in such scenarios, an accelerometer and a gyroscope
yielding measurements in IMU should be used, while the collected light sensor data may
be less related to the actual target’s position. In summary, the main contributions of this
study are as follows:

• We proposed a fusion method to integrate the fingerprint information from the em-
bedded light sensor, magnetometer, and Wi-Fi sensor in a commercial off-the-shelf
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Android device for indoor localization. The method does not require heavy equipment
or expensive infrastructure, so it can be quickly deployed for a new region of interest.

• We utilized a DFF neural network model as a tool for analyzing and detecting spe-
cific signal features within the fingerprint signals collected from the embedded sen-
sors in commercially available mobile devices. By leveraging the DFF model, we
achieved significant improvements compared to conventional fingerprint localization
schemes. The proposed method demonstrates a potential for practical application in
real-world scenarios.

• We assessed the varying impacts of fingerprint data, such as light-illumination-level
signals, magnetic field strengths, and Wi-Fi signals, on localization performance. We
conducted a series of comparative experiments to analyze the contribution of each
sensor type. Through the results obtained, one can establish criteria to determine
sensor combinations adaptively for diverse application scenarios.

The subsequent sections of this paper are structured as follows. Section 2 provides
an overview of the relevant literature and distinguishes the proposed approach from the
current state-of-the-art systems. Section 3 outlines the localization model that utilizes the
DFF network. Section 4 delineates the experimental design, data analysis, and system
performance evaluation. Finally, Section 5 summarizes the conclusions drawn from this
study and outlines possible future research directions.

2. Related Works

In recent years, various researchers have proposed a multitude of valuable approaches,
employing a fusion of diverse sensors embedded within smart devices to achieve reliable
indoor localization for location-based services (LBS) in indoor environments. For instance,
in [29], a fusion method combining BLE and inertial navigation based on a particle filter
was proposed. In [30], the fusion process involves CSI and magnetic field strength (MFS) for
smartphones. Additionally, the authors of [31] presented a fusion technique that combines
crowdsourced Wi-Fi fingerprinting with micro-electro-mechanical system sensors using
an enhanced complementary filter. In [32], the fusion method incorporates accelerome-
ters, gyroscopes, and magnetometers in smartphones along with Wi-Fi fingerprinting for
pedestrian dead reckoning (PDR). Migicol [33] introduced a fusion method that combines
Wi-Fi and magnetic signals based on a two-pass bidirectional particle-filtering approach to
enhance accuracy. In [34], a fusion algorithm based on PDR and Wi-Fi RSS fingerprinting
was proposed for achieving high accuracy in indoor positioning. This approach utilizes
PDR data for step counting and distance estimation and RSS fingerprinting for correct-
ing position errors. VMag, proposed in [35], is an infrastructure-free indoor-positioning
method fusing geomagnetic and visual images captured using smartphone cameras; it
also utilizes particle-filtering and neural network techniques. Moreover, a pedestrian-
positioning method [36] fusing IMU data of smartphones and surveillance video was
proposed, although these data may not always be readily available in certain environments.

Additionally, the combination of magnetic sensor data and deep learning has also
been researched. In [37], the researchers proposed a deep learning method for creating
a permanent magnet localization model for tongue tracking by training a feedforward
neural network. In [38], a deep-learning-based neural network is introduced within the
context of DC magnetic cleanliness for space missions entailing the modelling of magnetic
dipoles. In [39], a real-time magnetic localization method was introduced, combining a
hybrid feedforward neural network and the Levenberg–Marquardt (LM) algorithm.

In recent times, machine learning and deep learning have yielded successful results
in the realm of indoor localization. In [40], the authors proposed a deep neural network
(DNNs)-based indoor localization method for a smartphone integrating Wi-Fi fine-timing
measurement (FTM) and RSS. Convolutional neural network (CNN)-based schemes have
been proposed in recent years [41,42]. In [42], a method fusing Wi-Fi and MFS signals
to fingerprint images was proposed in order to implement an accurate and orientation-
free positioning system. Approaches based on recurrent neural networks (RNNs) and
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their variants, long-short-term-memory (LSTM)-based methods, were proposed in [16,43].
In [43], the authors formulate the indoor localization problem as a recursive function
approximation problem, which was solved by using an LSTM network to fuse Wi-Fi and
PDR signals obtained from smartphones. The neural networks used in these methods
are complex and require careful parameter tuning and long training times. The authors
of [44] proposed an LSTM-network-based method fusing Wi-Fi RSS measurements and
PDR techniques to estimate the location of a smartphone. The accuracy of this system
is influenced by Wi-Fi signal quality and requires periodic calibration for accurate PDR
estimates. The author of [45] utilized a deep LSTM neural network to integrate data from
magnetic and light sensors in smartphones for indoor localization. This method leverages
the high sampling rate of magnetic and light sensors to improve the accuracy of indoor
localization. The drawback of this approach is that it requires a large quantity of labeled
training data for the deep LSTM model, which may be time consuming and costly to obtain.

In summary, most of the aforementioned methods rely on extensive offline fingerprint
databases, complex infrastructure, or intricate neural networks that incur long training
times or high hardware costs. In this paper, we propose an infrastructure-free method
making use of a relatively lightweight DFF neural network, along with the integration of
data from light, magnetometer, and Wi-Fi sensors in a smart device, designed to achieve
stable and accurate indoor localization. The advantage of sensor fusion lies in the reduction
in site-surveying time for building fingerprint radio maps in comparison to relying on a
single type of sensor data, such as Wi-Fi RSS signals. Moreover, the use of multiple sensor
sources can enhance robustness against environmental interference.

3. Proposed DFF-WGL Framework

We present DFF-WGL, an Android-device-based multiple sensor fusion scheme for
localizing a mobile device (MD) in an indoor environment. DFF-WGL employs a deep
learning model—the DFF neural network—to extract fingerprint features from a radio
map, which is created using signals from the embedded light sensor, magnetometer, and
Wi-Fi sensor in an Android device. DFF-WGL provides a real-time indoor localization
framework consisting of two phases, namely, offline site surveillance and online localization,
as illustrated in Figure 1.
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Figure 1. Schematic diagram of the proposed deep-feed-forward-neural-network-based indoor
localization scheme integrating data from multiple sensors.

In the offline phase, an MD is used to survey the region of interest (RoI), collecting
fingerprint data at predefined reference points. The fingerprints of light-illumination-
level signals, MFS signals, and Wi-Fi signals from two preselected access points (APs) are
collected as prior information. Data preprocessing, including filtering, augmentation, and
normalization, is performed after data collection. The index of each RP in the RoI is stored
and used as a label to train the DFF network. After training the model, it is deployed on
the Android platform to enable location estimation prediction during the online phase.
During the online phase, when an MD is located in an unknown position, it collects new
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sensor data from the three embedded sensors and inputs them into the trained model. After
the preprocessing process, the raw data are then fed to the trained network model, and
the location estimate of the MD is calculated using the output probability from the DFF
network’s output layer weighted according to the RP’s coordinates.

3.1. System Description

We developed an Android application for collecting fingerprint data. To expedite site
surveillance, we implemented a multi-threaded approach for reading data from the light
sensor, magnetometer, and Wi-Fi scanner, as depicted in Figure 2. Each sensor-reading
process is handled via a separate thread. The light sensor and magnetometer require
approximately 200 ms to read each sample of data, whereas the Wi-Fi scanner extracts
the RSS data for specific Wi-Fi signals at one sample per second. As all three threads
begin executing simultaneously upon a device’s readiness at the RP, the threads for the
light sensor and magnetometer complete their respective reading processes before the
Wi-Fi-scanning thread. Consequently, the total time spent at each RP depends on the Wi-
Fi-scanning time required for 100 samples. Detailed information about the data collection
process is given in Section 4.1.
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the offline site surveillance process.

Light-illumination-level data, MFS data, and Wi-Fi RSS data from two APs at k RPs are
collected from the embedded sensors in the MD to construct the fingerprinting database,
which can be described as

F =
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1 My
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1 W1
1 W2
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where Lk, Mx
k, My

k, Mz
k, and W1

k , W2
k denote the light-illumination-level signal vector; the

MFS signal vector in the x, y, and z axes; and the Wi-Fi RSS signal vector from two different
Aps collected at the kth RP, with the same vector length. In our experiment, we collected
100 sample data at each RP; hence, the vector length is 100. Sk denotes the label of the kth
RP, for example, ‘RP0’.

3.2. Data Preprocessing
3.2.1. Filtering for Light Illumination Level Data and Wi-Fi RSS Data

To eliminate the initial instability of the data collected from a tablet’s embedded light
sensor and Wi-Fi sensor, several low-pass filtering methods can be employed. Notable
options include the exponential moving average (EMA) filter [46], the simple moving
average (SMA) filter [47], and the moving median (MM) filter [48]. These filters are adept
at smoothing erratic or unstable data, resulting in a more consistent and representative
signal. As shown in Figure 3, the SMA, however, has a drawback: it initially produces a
filtered value of zero. This characteristic may not align with the typical behavior of light
sensor data, where real-world light illumination levels do not always start at zero. The
EMA, on the other hand, tends to generate non-integer values, which may not be suitable
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for training neural network models that work optimally with integer data. The Moving
Median (MM) filter, however, maintains the integer data type in its output. This feature
makes it particularly well suited for light sensor data, where the original readings are in
integer form. When training neural network models for tasks involving light illumination
levels, using integer values as inputs is advantageous. Therefore, the MM filter is a fitting
choice for filtering such data. Because MFS is less susceptible to interference, we did not
apply any filtering to the MFS data in this scheme.
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3.2.2. Data Augmentation

Linear interpolation [49] was used as a data augmentation method for enhancing our
sensor data for three critical sensor types: light illumination level, MFS, and Wi-Fi RSS data.
This method involves filling in data gaps between reference points by estimating intermedi-
ate values based on known data points. For example, in the case of light illumination data,
we used linear interpolation to predict illumination levels at unmeasured points within the
data range. This process expanded our dataset, increasing its granularity and coverage,
while preserving the original data’s characteristics, as shown in Figure 4.

3.2.3. Normalization for MFS signal

To enhance the practicality of the proposed technique, we utilized pre-installed signal
sources, such as ceiling lamps and Wi-Fi access points. As both light illumination and
MFS signals can be obtained from any location, we selected the Wi-Fi signals that exhibit
stable signal strength and can cover the entire RoI to generate a useful signal fingerprint.
Specifically, as the MFS data stem from three different axes, it is necessary to normalize
the data from each axis to mitigate potential errors. The values M =

[
mx, my, mz

]
obtained

from the magnetometer can be normalized using ↕2 norm:

Mnorm =

[
mx

||M||2
,

my

||M||2
,

mz

||M||2

]
(2)

where ||M||2 =
√

m2
x + m2

y + m2
z , mx, my, and mz represent the magnetic signal from the

x-axis, y-axis, and z-axis, respectively.

3.2.4. Feature-Level Fusion for Multiple Sensor data

To enhance the localization accuracy of the deep learning model, feature-level fu-
sion [50] was employed in the construction of the training dataset. This method entails con-
catenating feature vectors from three distinct embedded sensors, as illustrated in Figure 4.
The dataset matrix includes raw filtered light-illumination-level data, normalized MFS data,
and two Wi-Fi signal RSS data, each placed in a separate row. These rows correspond to dif-
ferent RPs and serve as inputs to the deep learning model, directly connecting to the input
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layer of the DFF model. This approach optimizes the model’s ability to leverage information
from multiple sensor sources, ultimately improving its accuracy in localization tasks.
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each possible class. Let X be the input data and Y be the output data. We define a DFF with
three layers as follows.

The first layer takes the input X and applies an affine transformation with weights W1
and biases b1, followed by a non-linear activation function (Relu) f1:

Z1 = f1(W1·X + b1) (3)

For each subsequent layer l = 2 · · · L, we apply another affine transformation with
weights Wl and biases bl , followed by a non-linear activation function (Relu) fl :

Zl = fl(Wl ·Zl−1 + bl) (4)
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The output layer applies another affine transformation with weights Wl and biases bl ,
followed by a softmax activation function to obtain the predicted class probabilities:

Ŷ = so f tmax(WL·ZL−1 + bL) (5)

where so f tmax(zi) = ezi /∑K
j=1 ezj , zi denotes the scores inferred by the network for each

class in K. The loss function used during training is the cross-entropy loss function:

loss
(
Y, Ŷ

)
= −∑K

j=1 Yi·log
(
Ŷi
)

(6)

We train the network using backpropagation via the RMSprop optimization algorithm,
where the weights are updated using

vdw = β· vdw + (1 − β)·dw2 (7)

vdb = β· vdb + (1 − β)·db2 (8)

W = W − η√
vdw + ε

dw (9)

b = b − η√
vdb + ε

db (10)

where vdw is the moving average of the squared gradients of the weight parameter w,
calculated over time using the previous value vdw and the current squared gradient dw2.
vdb is the moving average of the squared gradients of the bias parameter b, calculated over
time using the previous value vdb and the current squared gradient db2. dw and db are the
gradients of the loss function with respect to the weight parameters w and b, respectively.
β is the hyperparameter that controls the decay rate of the moving average, with a typical
value of 0.9. η is the learning rate that controls the step size for updating the parameters.
ε is a small constant added to the denominator of the update rule to avoid division by
zero and improve numerical stability. Finally, W and b are the weight and bias that are
being updated.

The detailed DFF network structure we adopted in our scheme includes the following
layers: the first layer, which is the input layer with six input nodes; the second Dense layer,
consisting of 256 nodes with a ReLU activation function; and the third Dense layer, which
also includes 256 nodes with a ReLU activation function. The output layer contains either
242 or 60 nodes (depending on the experiment in testbed 1 or testbed 2) with a Softmax
activation function.

3.4. Generation of Location Estimate

In the online phase, when the MD is located in an unknown position, a set of newly
collected sensor sample data is denoted as Ft =

[
lt, mx

t , my
t , mz

t , w1
t , w2

t

]
, where lt, mx

t , my
t ,

mz
t , w1

t , and w2
t are the mean values received over time t. The output layer of the DFF

network, acting as a multi-class classifier in Figure 4, consists of a group of probability
values that correspond to the number of RPs in the RoI. yi represents the probability value
output from the last layer of the DFF model when the MD is located at the ith RP with the
current sample data Ft as an input. Since the summation of all the probability values in the
output layer equals one, the final location estimate can be calculated as follows:

x̂ = ∑K
i=1 yi × lrpi

(11)

where K denotes the quantity of RPs in RoI, and lrpi
represents the centroid coordinate of

the ith RP.
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4. Experiments and Analysis
4.1. System Description

This study was conducted in two distinct indoor testbeds located on the sixth floor of
the Hwado Building at Kwangwoon University in Seoul, South Korea. The first testbed
was a wide rectangular corridor area measuring 60.5 m2 (11 m × 5.5 m), while the second
testbed was a narrow rectangular corridor area measuring 38 m2 (19 m × 2 m). A total of
242 and 60 RPs were designated for the two areas, respectively, and the distances between
adjacent points were 0.5 m and 1 m as determined according to Euclidean distance. The
experimental setup, including a floor plan and a photographic depiction of the testbeds,
can be found in Figures 5 and 6, respectively.
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Figure 6. (a) Schematic floor plan of testbed2. (b) Experimental setup photograph depicting data
collection using mobile device.

During the site surveillance stage, an Android tablet serving as the MD was placed
on a box atop a swivel chair with the monitor oriented vertically towards the ceiling to
enable accurate measurements of environmental light illumination from lamps. The swivel
chair was only moved to marked RPs, and at each RP, a period of approximately 1 min
40 s is required for the MD to collect 100 samples each of light sensor data; MFS data from
the x-axis, y-axis, and z-axis of the magnetic sensor; and RSS data from two selected Wi-Fi
signals. The label assigned to each RP was used to annotate the corresponding environment
data in the dataset, which was temporarily stored in an Excel file format on the tablet. Once
the site survey stage was completed, the dataset was uploaded to a computer using UART.

In a single round of data collection at an RP, a total of 100 measurements of the
light illumination level; 100 measurements of the MFS along the x-axis, y-axis, and z-axis;
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and 100 measurements of RSS for two selected Wi-Fi RSS signals were acquired. These
measurements were utilized to construct four independent fingerprint datasets. In testbed1,
datasets 1 and 2 each have a length of 145,200 data points (242 × * 100 × 6), representing
100 measurements for 242 RPs and six sensor signals. Similarly, in testbed 2, datasets 3 and
4 each have a length of 36,000 data points (60 × 100 × 6), representing 100 measurements
for 60 RPs and six sensor signals. The detailed information about the four datasets is
summarized in Table 1. A 3D visualization of the four datasets is shown in Figure 7.

Table 1. Detailed information about datasets.

Dataset Location Samples/Signal Signal Kinds RP Total Data Date

1 Testbed1 100 6 242 145,200 12 June 2022

2 Testbed1 100 6 242 145,200 22 June 2022

3 Testbed2 100 6 60 36,000 13 April 2023

4 Testbed2 100 6 60 36,000 20 April 2023
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Figure 7. Three-dimensional figure depicting four groups of sensor fingerprint datasets collected
in different testbeds and on different dates. Dataset1: (a–f), collected in testbed1 on 12 June 2022;
Dataset2: (g–l), collected in testbed1 on 22 June 2022; Dataset3: (m–r), collected in testbed2 on 13
April 2023; Dataset4: (s–x), collected in testbed2 on 20 April 2023.

The DFF model was trained on Google Colab using a dataset partitioned into training,
validation, and test sets in a ratio of 6:2:2. Keras, a deep learning API within the TensorFlow
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framework, was utilized to develop the model. Specifically, the TensorFlow API version
was 2.12.0, and the Keras version was 2.12.0.

During the online localization process, the trained neural network runs on the Android
platform, while the MD collects new environment data and then inputs them to the trained
model. Finally, the estimated position is calculated and subsequently displayed on the
tablet’s monitor.

4.2. Fingerprint Correlation Analysis

To establish the practicability of the proposed scheme, which involves the integration
of data from a light sensor, a magnetometer, and a Wi-Fi sensor to achieve localization, Pear-
son correlation coefficient computation was performed using the four authentic fingerprint
datasets. The Pearson correlation coefficient r is calculated as follows:

r = ∑ (xi − x)(yi − y)√
∑(xi − x)2∑(yi − y)2

(12)

where xi and yi are the values in the first and second datasets, and x and y are the mean
values for the first and second datasets, respectively.

Figure 8a,b present the correlation matrices for testbeds 1 and 2, respectively, based
on four distinct fingerprint datasets. The figure reveals that the light sensor data demon-
strate the highest correlation coefficient, which can be attributed to their relatively stable
illumination intensity, which persists unless there is a change in the light source position
or damage to the source itself. Conversely, the MFS data exhibit a lower correlation coeffi-
cient compared to the light-illumination-level data, indicating that the MFS signal varies
over time. Lastly, the Wi-Fi RSS signal exhibits the lowest correlation coefficient across
both testbeds, further accentuating the inherent instability of Wi-Fi RSS signals in indoor
environments and their proneness to electronic interference.
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4.3. Impact of Different Sensor Combinations

To assess the impact of various sensor combinations on the localization error dis-
tribution, we devised multiple groups of sensor signal combinations. We conducted a
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comparative analysis to elucidate the distinct contributions of these sensor signals using a
test dataset sourced from the offline Dataset1. For ease of exposition, the MFS signals from
the x, y, and z-axes were treated as a single signal type, while the two Wi-Fi RSS signals, de-
spite their intrinsic similarity, were categorized as two distinct signal types. Consequently,
cases C1 to C4 encompass a single type of sensor signal, cases C5 to C8 correspond to two
types of sensor signals, cases C9 to C11 involve three distinct signal types, and case C12
integrates four diverse signal types. The cumulative distribution function (CDF) of the
localization error under the proposed model is presented in Figure 9.
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Firstly, we present the experimental results for single-sensor signal-based localization
(C1~C4). Beginning with case C1, it is evident that prediction performance remained subpar,
and localization accuracy was consistently low across various learning rates. Although the
light-illumination-level signal exhibits remarkable stability, its coverage area is limited. As
illustrated in Figure 7a,g, the light illumination levels recorded on different dates are nearly
identical. However, valid illumination is detected only within specific regions beneath
the lamps, distinct from the case for other RPs. In most other areas, the illumination
levels are close to zero. Consequently, the network model struggled to acquire sufficient
location-related information solely from the light-illumination-level signal. This deficiency
is reflected in the notably low prediction accuracy within the test datasets.

Similarly, the performance of a single Wi-Fi signal (C1~C4) also proved unsatisfactory.
The highest accuracy within 2 m did not exceed 20%, and more than 50% of localization
errors exceeded 3 m, as evidenced in Figure 9C3,C4. These outcomes underscore the
unreliability of single-Wi-Fi-signal-based fingerprinting methods in indoor environments.
The presence of severe multipath effects and interference results in frequent fluctuations in
indoor Wi-Fi signals, thereby exacerbating challenges within the localization system. Con-
trastingly, the results obtained from the MFS signal (C2) outshine those of the other single-
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signal experiments. Notably, the embedded magnetometer captured three-dimensional
data from the x, y, and z axes, providing C2 with more information than other single-signal
approaches and consequently yielding superior prediction performance.

In the experiments conducted from C5 to C8, we investigated the performance when
two sensor signals were used. A comparison between C8, C3, and C4 highlights the
advantage of employing two Wi-Fi signals over a single Wi-Fi signal, resulting in improved
prediction accuracy. However, the test accuracy of 21.7% achieved in C8 remains insufficient
for accurate indoor localization. The second lowest test accuracy, 54.2%, was observed in
C6, where one light-illumination-level signal and Wi-Fi signal 1 were used. Comparing
C6 (54.2%) with C8 (21.7%) and C3 (6.8%), we can observe that the light-illumination-level
signal increases test accuracy by 47.4%, while Wi-Fi signal 2 only boosts it by 14.9% when
compared to C3 (6.8%). This suggests that the light-illumination-level signal, due to its
stability and strong location-related characteristics, may be a preferable choice over Wi-Fi
in specific applications.

The highest test accuracy was achieved in C5, amounting to 92.1%, followed closely by
that of 89.1% in C7. The discrepancy in accuracy between C5 and C7, attributed to the use
of a light-illumination-level signal versus Wi-Fi signal 1, aligns with the earlier analysis.

Moving on to C9~C11, designed to assess performance under three sensor signals, we
found that the inclusion of the light-illumination-level signal in C9 (96.05%) contributed
a 6.95% accuracy increase when compared to C7 (89.1%). Furthermore, in C9 (96.05%)
and C11 (93.5%), the illumination-level signal provided a 2.55% accuracy boost over Wi-Fi
signal 2. Comparing C8 (21.7%), C10 (78.05%), and C11 (93.58%), we can observe that the
MFS signals outperform the light-illumination-level signal, with the former exhibiting a
substantial 71.88% accuracy increase, which can be compared to the 56.35% accuracy boost
provided by the latter. These results align closely with the comparisons between C3 (6.8%),
C6 (54.2%), and C7 (89.1%), demonstrating accuracy improvements of approximately 82.3%
and 47.4%, respectively.

The final experiment, denoted as C12, employed all available sensor signals, achieving
a remarkable 96.85% test accuracy with a learning rate of 0.01 and an even higher accuracy
of 97.32% with a learning rate of 0.001. Notably, C12 demonstrated the highest test accuracy
among all twelve experiments and exhibited the smallest localization error within the test
dataset. C12 (97.32%) and C9 (95.85%) displayed similar performance, with the slight
variance observed being attributable to the influence of Wi-Fi signal 2. Despite its relatively
modest contribution, Wi-Fi signal 2 still contributed to a 1.47% accuracy improvement.

4.4. Impact of Learning Rate

To assess the influence of different learning rates (lr) on the neural network model’s
performance, we selected four representative values, namely, 0.1, 0.01, 0.001, and 0.0001,
for a comprehensive evaluation across all comparative experiments. Underfitting occurred
when lr = 0.1, as this learning rate proved excessively large in relation to the dataset,
hindering the model’s ability to capture intricate dataset features. This resulted in non-
convergence, elevated test loss, and a test accuracy lower than the training accuracy during
the training process. Conversely, overfitting occurs at an lr = 0.0001, at which point the
model learns an excessive number of intricate details, including noise and inaccuracies,
leading to the highest training and test losses among the four learning rates.

In Figure 9, encompassing all twelve experiments, lr = 0.0001 yields the lowest aver-
age localization error, with lr = 0.1 ranking as the second lowest, except for the specific
cases of Figure 9C1,C3,C4, where the models fail to converge and attain exceedingly low
accuracy. Comparatively, the model employing lr = 0.01 exhibited slightly improved
localization accuracy. This improvement is attributed to the larger step length in the gradi-
ent descent algorithm associated with lr = 0.001, which enhances the learning process’s
efficiency based on the current dataset.
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4.5. Performance in Real-Time Localization

Based on previous experimental findings and parameter analyses, we conducted
real-time online experiments to assess the practical performance of the proposed DFF-
WGL scheme within two distinct testbeds. Separate experimental paths were designed for
testbeds 1 and 2. In Figure 10a,b, we present 2D plots depicting twelve sets of localization
errors obtained under varying sensor signal combinations while the MD collected real-time
environmental data in both testbeds. To facilitate the comparative evaluation of system
performance across different signal combinations, we employed box plots in Figure 10,
revealing the distribution, spread, and central tendency (median) of the localization errors.
Subsequently, in Figure 11, we compare the mean, median, and variance values of the
localization errors for each result group.

In Figure 10, showing the box plot, and Figure 11, presenting the histogram, we can
observe that in testbed1, for the results for C1, C3, C4, C6, and C8, the combination of light-
illumination-level data and two Wi-Fi RSS signals failed to provide sufficient and stable
location-related information. Consequently, the DFF network struggled to converge and
make accurate localization predictions in testbed1. Even with the addition of light and Wi-
Fi signals in C10, the localization error only marginally decreased, resulting in a mean error
of approximately 0.87 m. In contrast, the MFS signal from the magnetometer, specifically in
C2, achieved a localization error as low as 0.15 m. However, this signal exhibits instability,
as indicated by the 2D figure and variance values in Figure 11. Combining the MFS signal
with the light sensor in C5 yields superior results compared to the combination with Wi-Fi
in C7, with the latter combination producing lower mean localization errors and variances.

Comparing the results from C9 to C12, we discerned that C10 performs the poorest,
relying solely on the light sensor signal and two Wi-Fi RSS signals. Next in performance is
C11, followed by C9, as the light-illumination-level signal offers more stable information
than a Wi-Fi signal. The most favorable localization error is achieved in the C12 combination,
which provides sufficient and stable fingerprint information to enable the DFF network to
make accurate localization predictions.
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For the results obtained in testbed2, the majority of outcomes align consistently with
those observed in testbed1. It is important to highlight that in the case of the C1 combination,
there are three ceiling lamps in testbed2, resulting in a higher volume of light-illumination-
level data collected by the MD compared to that in the testbed1 experiment. Consequently,
the mean localization error for C1 in testbed2 is approximately 1.1 m, an improvement
over the 2.1 m error observed in testbed1. Due to the contribution of the light illumination
signal, both C6 and C10 failed to achieve satisfactory localization performance in testbed1
but exhibited nearly zero median values in testbed2.

In conclusion, the sensors’ ability to furnish adequate and stable fingerprint infor-
mation corresponds to the following sequence: magnetometer > light sensor > Wi-Fi
sensor. These real-time experimental results align with the analyses conducted using offline
datasets (Figure 9).

4.6. Performance Comparison

To evaluate the performance of the proposed scheme, we compared the localization
error with that of the existing state-of-the-art schemes, including EZ [52], BPNN [53], and
Magicol [33], as shown in Figure 12. It can be observed that the proposed DFF-WGL
scheme outperforms Magicol by more than 80 percentile error within 2 m. The Magicol
fusing Wi-Fi signals, MFS signals, and dead reckoning with a particle filter achieved high
accuracy but also presented high computational complexity. EZ and BPNN utilize only
Wi-Fi signals to estimate the target’s position. Conversely, the proposed scheme achieved
the best localization performance by integrating signals from multiple sensors with a deep
feed-forward network.
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5. Conclusions

In this study, we proposed a novel approach for indoor active localization using a DFF
neural network for classification by fusing fingerprint data obtained from multiple sensors,
including the light sensor, magnetometer, and Wi-Fi sensor embedded in a commercial
Android device. We adopted a neural network as a multi-class classifier to learn the fine
features from the signal fingerprints collected from each RP within the region of interest.
Different sensor combinations were evaluated, and localization performance was compared
in two real indoor environments. Since the magnetometer is sensitive to the direction
and position of the device, in this scheme, we kept the mobile device in a stable state
and facing the same direction and oriented the device’s monitor vertically towards the
ceiling. This ensured that the embedded light sensor near the front camera collected stable
light-illumination-level data throughout the experimental process.

Since magnetic measurements can be obstructed by magnetic materials or 50 Hz signals
and harmonics in the power network in indoor environments, we will set about solving this
problem by implementing more stringent measurement procedures, as described in [54,55],
to adapt to more complex application scenarios in the future. We also aim to increase
the practicality of our proposed scheme in larger regions of interest under more complex
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indoor environments and test the performance of the proposed scheme at different times of
day. We also aim to solve the direction-aware problem. Additionally, the proposed scheme
will be further developed to adaptively sense variations in light intensity and generate
appropriate localization strategies to enable the constant usage of this scheme.
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