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Abstract: With a large number of intrusion detection datasets and high feature dimensionality, the
emergent nature of new attack types makes it impossible to collect network traffic data all at once.
The modified three-way attribute reduction method is combined with a Self-Organizing Incremental
learning Neural Network (SOINN) algorithm to propose a self-organizing incremental neural network
intrusion detection model based on three-way attribute reduction. Attribute importance is used
to perform attribute reduction, and the data after attribute reduction are fed into a self-organized
incremental learning neural network algorithm, which generalizes the topology of the original data
through self-organized competitive learning. When the streaming data are transferred into the model,
the inter-class insertion or node fusion operation is performed by comparing the inter-node distance
and similarity threshold to achieve incremental learning of the model streaming data. The inter-node
distance value is introduced into the weight update formulation to replace the traditional learning
rate and to optimize the topological structure adjustment operation. The experimental results show
that T-SOINN achieves high precision and recall when processing intrusion detection data.

Keywords: intrusion detection; incremental learning; attribute reduction; self-organizing neural networks

1. Introduction

In the current 5G era, the Internet penetration rate is rapidly rising, the network
environment is becoming more complex, and the network security problem is becoming
increasingly serious. Traditional firewalls, data encryption, and other network security
protection methods have had difficulty coping with the needs of network security protec-
tion [1]. Continuous improvements to the defensive capabilities of networks have become
an increasingly important hot topic. Intrusion detection enhances a network’s security
defense capabilities by collecting information in the network, detecting abnormal behavior,
and identifying dangers and alarms. The working principle of the intrusion detection
system is to classify the collected network traffic data and to divide them into normal
or abnormal types, in which the abnormal-type data can be refined into different attack
categories [2]. The field of machine learning has been growing rapidly in recent years, and
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a large number of machine learning algorithms have been applied to intrusion detection
systems, such as support vector machine [3], decision tree [4], and naive Bayes [5].

However, with the advent of the era of big data, these traditional machine learning
algorithms are having difficulty handling intrusion detection. Deep learning has shown a
good feature extraction ability in the face of massive and high-dimensional data. There-
fore, some scholars have applied deep learning algorithms such as convolutional neural
network [6] and recurrent neural network to intrusion detection. For example, Henry [7]
combined convolutional neural networks with a gated recurrent unit for intrusion detec-
tion, used different CNN-GRU combination sequences to optimize parameters, improved
the dependence of deep learning on feature learning, and achieved a good classification
effect of intrusion detection. Chen [8] conducted research experiments on recurrent neu-
ral networks, used the window-based instance selection algorithm to further streamline
the data, then adjusted the parameters in the model, and finally used them for intrusion
detection to improve the overall performance of intrusion detection. Compared with the
above two kinds of neural networks, the self-organizing neural network can automatically
adjust the structure and parameters of the network to adapt to the data mode and changes
according to the distribution and characteristics of the intrusion detection data and can
dynamically learn and adjust its own representation ability. Therefore, some scholars have
considered the use of self-organizing incremental learning to handle intrusion detection
data. Li [9] combined the possibility theory and SOINN algorithm to define the possibility
membership to judge the sample category and formed the SOINN cluster input probability
neural network to obtain the PS-PNN network, which finally improved the accuracy and
recall rate of the intrusion detection system.

While self-organizing incremental neural networks can handle massive and high-
dimensional dynamic data, this does not mean that the more data and attributes, the better.
The attributes of many datasets are not conducive to the detection of network intrusion
outcomes. At this point, an indicator, namely attribute importance, is used to select the
attribute, which can detect the degree of association between the intrusion detection results
and the attribute. Attribute importance is an indicator used in a rough set to measure the
degree of correlation between conditional attributes and decision attributes and is often
used for decision tree node division, such as in Wang [10], where the heuristic function
was defined for decision tree division criteria. Attribute importance is also often used for
attribute reduction. For example, in order to improve the operation efficiency and accuracy
of a classification algorithm, Zhou [11] proposed a fast attribute reduction algorithm
based on improving the importance of a neighborhood rough set, and Zheng [12] gave an
evaluation strategy of attribute importance and designed an algorithm by integrating the
multi-fork tree theory. All the above studies used attribute importance to reduce the data,
and the results were significantly improved.

In the aforementioned studies, only properties in the positive domain were considered
in the calculation of attribute importance, and properties in the boundary domain were
not considered. The attributes in the boundary domain also contributed to the decimation
result and it is obviously not appropriate to delete them directly, so the attributes in the
boundary domain need to be taken into account. The decision boundary entropy proposed
by Zhang [13] can not only consider the information in the boundary domain but also
consider the information entropy, which can measure the uncertain information. Then,
they defined a new measure of attribute importance, finally proposed a three-way attribute
random selection algorithm to handle the dataset in random forest, and achieved good
results in the intrusion detection datasets [14]. Based on the above analysis, the algorithm
process was improved, and the three-attribute reduction algorithm was proposed and
combined with the self-organized incremental neural network. Finally, the T-SOINN
algorithm was obtained. The precision and recall, which are commonly used evaluation
indicators of intrusion detection, were selected to validate the performance of the model.
The results validate the advantages and disadvantages of T-SOINN.

The contributions of this article are as follows:
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• The three-way attribute selection algorithm is improved, and a new attribute reduction
method is proposed;

• The distance between nodes is introduced into the weight update formula, so that the
weight update value is adjusted with the distance between neurons, to optimize the
dynamic update operation of the topology structure;

• SOINN is used for network intrusion detection to obtain an incremental intrusion detec-
tion model and combined with three-way attribute reduction for the T-SOINN algorithm.

The structure of this paper is as follows: Section 1 provides an introduction. Section 2
provides the related work on incremental learning, attribute reduction, and three-way
decisions. Section 3 briefly introduces incremental learning, the self-organization of an
incremental neural network, and attribute reduction. Section 4 introduces the T-SOINN
algorithm in detail. Section 5 presents the experimental verification algorithm, and finally,
Section 6 provides a summary.

2. Related Work
2.1. Incremental Learning

The idea of incremental learning was first introduced in the 1980s. In 2001, Polikar [15]
published the incremental learning algorithm of Learn++ and elaborated on the concept of
incremental learning. The idea of incremental learning is a simulation of humans’ learning
ability and is a solution to some real-life problems [16]. Incremental learning is often used
in image classification [17], target detection [18], and speech recognition [19]. In the field
of network intrusion detection, not only is the volume of intrusion data large but also the
categories are constantly updated, resulting in data that cannot be collected completely all
at once. Incremental learning can not only continuously learn new knowledge from new
samples but also save the majority of the learned knowledge, so it is gradually applied to
intrusion detection systems. According to the current real-time update problem of intrusion
detection data, the traditional machine learning algorithms support vector machine and K
nearest neighbor have been integrated, the idea of incremental learning has been added,
and an expansion of the knowledge base has been considered [20]. Models incorporat-
ing incremental ideas can not only handle problems in real time but also significantly
improve accuracy. Liu [21] applied the incremental GHSOM algorithm to DDoS detection,
dynamically generated the network structure, constrained the quantification error, and
deleted the immature subnetwork structure in the process of continuous sample input.
While this model achieves a high detection rate on static data, it also shows good detection
performance on dynamic data.

Yang [22] used the incremental Growth-type Hierarchical Self-organization Mapping
Neural Network model for intrusion detection and obtained the initial network structure
by using static data training, and then, the dynamic data were input into the network
structure and constantly adjusted to realize incremental learning. Liu [23] used stacked
sparse autoencoders to realize sparse coding and feature extraction of known class attacks.
SOINN used adaptive clustering to form the topological representation of original features
and dynamically adjusted the topological structure to adapt to new data. This model
effectively improves the accuracy of the incremental learning intrusion detection model.

2.2. Attribute Reduction

Although large amounts of dynamic data can be processed by incremental learning,
this does not mean that more data are better and more properties are better. As the datasets
and dimensions of intrusion detection increase, the neural network structure will become
more and more complex and the difficulty of dataset training will gradually increase during
the experiment. Therefore, some scholars have considered reducing the dimensionality of
the original dataset when processing the data, and then training and classifying them in
combination with related algorithms. Laghrissi [24] used the principal component analysis
algorithm to reduce the original data, used mutual information to select the features, and
finally used long- and short-term memory network classification to achieve high accuracy
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on the basis of improving the training time. In [25], decision tree was used to distinguish
the original data, thus reducing the overall data amount; then, PCA was used to reduce
the original data; and finally, the data were introduced into the improved DNN model for
training. Luo [26] combined the genetic attribute reduction algorithm based on a rough
set with the BP neural network, which effectively improved the convergence speed of the
model, sped up the runtime, and significantly increased the detection rate.

Attribute reduction algorithms based on a classical rough set do not require prior
knowledge. It is the most common approach for attribute reduction to find the rule of the
problem by using only the information provided by the data itself. The attribute reduction
algorithm based on the rough set includes the attribute reduction algorithm [27] based on
the decision rough set model and the attribute reduction algorithm based on the attribute
importance. The latter includes the attribute reduction algorithm based on attribute de-
pendence [28], conditional information entropy [29], and mutual information [30]. There is
uncertainty in the data information, and information entropy and approximate classifica-
tion quality are measures of uncertain information. As a result, the attribute importance
defined by combining information entropy, attribute dependence, and approximate classifi-
cation quality is used to measure the attribute [13]. We improved the three-way attribute
random selection algorithm in [13] to obtain a new reduction method, thus achieving the
purpose of dimension reduction.

3. The Basics
3.1. Incremental Learning

Incremental learning is a simulation of humans’ learning ability and the solution to
some real-life problems [16]. The use of incremental learning can improve some of the
drawbacks of traditional machine learning: Traditional machine learning suffers from
low recognition accuracy in the face of new data and is prone to forgetting old data
when learning new data types. However, incremental learning, in which new knowledge
is learned to selectively preserve and discard old knowledge, effectively improves the
catastrophic forgetting problem. Furthermore, with current invasion detection datasets
being large and have high characteristic dimensions, one-time complete learning will
produce many problems, such as the high space requirements, the long learning time, new
data being required after learning, the high consumption of data, etc.; however, incremental
learning through dynamic partial read data training will further enhance the efficiency of
the model. The incremental learning process [16] is shown in Figure 1.
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3.2. Self-Organized Incremental Learning Neural Network

In 2006, Professor Shen Furao [31] first proposed the unsupervised clustering neural
network model SOINN, which is a two-layer neural network structure with competitive
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learning ability. The initial training data are received and the prototype neurons are
generated adaptively using the first layer network structure. The second layer network
then estimates the intra-class and inter-class distances based on the results from the first
layer network. The prototype neurons are used as the initial data in this process, leading to
the acquisition of a stable topological structure.

The SOINN algorithm uses a set of neurons distributed over the feature space to
approximate the distribution of the input data [32], that is, the distribution of the original
dataset is represented by a small number of neurons. During learning, neurons belonging
to the same cluster are connected to form a topology similar to the form of a connected
graph to represent the current distribution of the learned data. As new data continue
to be input, the topology is adjusted and updated according to the distance between the
new data and the surrounding neurons. When the difference between the new data and
the original neuron is large, the inter-class insertion operation is performed to generate
new categories, and when the difference is small, the node fusion operation is performed.
Furthermore, noisy nodes are removed based on the number of winning neurons and the
number of surrounding neighbor nodes, which ensures not only the incremental learning
of SOINN but also the stability of the learning results.

3.3. Attribute Importance

In real datasets, the importance of different attributes may be different. The rough set
method can be used to measure the importance of some attributes. Three-way decisions
are used to select the attributes.

The decision table is DT = (Un, At, V, f ). Un is the universe, which is a non-empty fi-
nite set containing all instances. C =

{
c1, c2, · · · , cp

}
denotes the conditional

attributes, D =
{

d1, d2, · · · , dq
}

denotes the decision attribute. At = C ∪ D contains all at-
tributes. V is a set of attribute values, and f : Un× At→ V is a mapping.
For any I ⊆ C ∪ D, the indiscernibility relation IND(I) on Un is defined as
IND(I) = {(x, y)|(x, y) ∈ Un×Un : ∀c ∈ I( f (x, c) = f (y, c))}.

Definition 1. Given a decision table Dt = (Un, C ∪ D, V, f ), for ∀I ⊆ C ∪ D and X ⊆ Un, the
lower and upper approximations of X are expressed as

X I = ∪{[x]I ∈ Un/IND(I) : [x]I ⊆ X} (1)

X I = ∪{[x]I ∈ Un/IND(I) : [x]I ∩ X ̸= ∅} (2)

M− I(X) = X I − X I is called a boundary domain of X with respect to I, and
L− I(X) = Un− X I is called the negative domain of X with respect to I.

Definition 2. (Approximate classification accuracy) Given a decision table Dt = (Un, C ∪
D, V, f ), for ∀I ⊆ C ∪D and Un/IND(D) =

{
D1, D2, · · · , Dq

}
, the approximate classification

accuracy αI(D) of D with respect to I is defined as

αI(D) =

∣∣∣∣ m
∪

i=1
Di I

∣∣∣∣∣∣∣∣ m
∪

i=1
Di I

∣∣∣∣ (3)

Obviously, the approximate classification accuracy αI(D) ∈ [0, 1] describes the percent-
age of correct decisions among all possible decisions when classifying decision attribute D
under I. αI(D) = 1 means that I can completely describe decision attribute D. αI(D) = 0
means that I cannot describe decision attribute D at all.
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Definition 3. (Decision boundary entropy, DBE) [14] Given a decision tableDt = (Un, C ∪
D, V, f ),Un/IND(D) =

{
D1, D2, · · · , Dq

}
, for anyI ⊆ C, the decision boundary entropy

of Dwith respect toIis defined as

DBE(D, I) = (1− αI(D))×
m

∑
i=1

|M− I(Di)|
|Un| log2

(
|M− I(Di)|
|Un| + 1

)
(4)

αI(D) denotes the approximate classification accuracy, and M− I(Di) denotes the
boundary domain.

Definition 4. (DBE-based importance of an attribute) [14] Given a decision table Dt = (Un, C ∪
D, V, f ), for any I ⊂ C, c ∈ C − I, the significance of attribute c with respect to I and D is
defined as

IMP(c, I, D) = DBE(D, I − {c})− DBE(D, I) (5)

3.4. Three-Way Decisions

Three-way decisions based on the evaluation function give an uncertain division of
element x ∈ X ⊆ Un in a certain target object set X according to the evaluation function
g(x). The, a threshold pair (α, β), where 0 ≤ β < α ≤ 1, is introduced. For any x ∈ X,
when g(x) ≥ α, the element x is divided into the positive domain R−(X) of the set X.
When g(x) ≤ β, the element x is divided into the negative domain M−(X) of the set X.
When β ≤ g(x) ≤ α, the element x is divided into the delay domain L−(X) of the set X.
Then, X can be divided into three disjoint regions, as shown in Figure 2.

R− = {x ∈ X | g(x) ⩾ α}
M− = {x ∈ X | β < g(x) < α}
L− = {x ∈ X | g(x) ≤ β}
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It should be noted that the function g evaluates the attributes, and by comparing
parameters α and β, the attributes are divided into the positive, boundary, and negative
domains. This is explained in detail in Section 4.1.

4. T-SOINN Incremental Intrusion Detection Model

The T-SOINN model is divided into two parts: three-way attribute reduction and
SOINN incremental clustering. The specific process is described as follows:

(1) Preprocess the initial dataset: symbol digitization and K-means clustering discretization;
(2) Calculate the importance of each attribute in the original dataset;
(3) Set the attribute importance as the evaluation function and the threshold (α, β) to

realize three-way attribute reduction;
(4) Select k/2 attributes, and delete the rest to obtain a subset of the dataset;
(5) Transfer the incremental dataset subset into SOINN for initialization;
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(6) Find the first and second winning neurons;
(7) If d1 > Ts1 or d2 > Ts2 , insert new nodes;
(8) Update the age values of any edges connected between two winning neurons;
(9) Update the age values for all edges connected to the first winning neuron;
(10) If d1 < Ts1 and d2 < Ts2 , update the weights of the two winning neurons;
(11) Sum up the quantification error of the winning node;
(12) Judge the age value of the connected edge, and delete redundant connections;
(13) For each inputted λ sample, perform intra-class node insertion and denoising operations;
(14) End the process.

The flow of the T-SOINN algorithm is shown in Figure 3.
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4.1. Three-Way Attribute Reduction

The attribute importance based on DBE is set to the evaluation function in the three-
way decisions that is g(c) = IMP(c, C, D). The value of (α, β) is then set for any c ∈ C: c is
classified into the positive decision domain R− if IMP(c, C, D) ≥ α; c is classified into the
negative decision domain L− if IMP(c, C, D) ≤ β; and c is classified into the delay decision
domain M− if α ≤ IMP(c, C, D) ≤ β.

Then, 
R− = {c ∈ C | IMP(c, C, D) ⩾ α}
M− = {c ∈ C | β < IMP(c, C, D) < α}
L− = {c ∈ C | IMP(c, C, D) ≤ β}

(7)

After dividing the attributes into three domains, the three-way attribute selection rules
are defined as follows:

(1) |R−| > p
2 is satisfied, the random p

2 attributes in the positive domain are a subset
of attributes.

(2) |R−|+ |M−| > p
2 is satisfied, the random p

2 attributes in the positive domain and the
boundary domain are a subset of attributes.
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(3) |R−|+ |M−| ≤ p
2 is satisfied, the |R−|+ |M−| attributes in the positive and bound-

ary domains, plus the random p
2 − |R−| − |M−| attributes in the negative domain,

constitute a subset of properties.

p = |R−|+ |M−|+ |L−| denotes the total number of attributes, and |R−|, |M−|, and
|L−|, respectively, denote the number of attributes in the positive domain, the boundary
domain, and the negative domain.

In the process of applying the three-way attribute selection rules, rule (1) is considered
first, followed by rule (2) and rule (3).

The detailed steps of Three-way attribute reduction algorithm are shown in Algorithm 1.

Algorithm 1 Three-way attribute reduction algorithm.

Input: Dataset Un = {x1, x2, · · · , xn}, Decision table Dt = (Un, C ∪ D, V, f ), Three-way attribute
selection threshold (α, β)
Output: Dataset U∗ containing attributes C′

1: Initialization R− = {∅}, M− = {∅}, L− = {∅}
2: For c ∈ C do
3: Calculate g(c)
4: If g(c) > α then
5: R− ← c
6: Else
7: If β < g(c) < α then
8: M− ← c
9: Else
10: L− ← c
11: End if
12: End if
13: End for
14: If

∣∣R−∣∣ > p/2 then
15: draw p/2 attributes from R− to constitute an attributes subset C′

16: Else
17: If

∣∣R−∣∣+ ∣∣M−∣∣ > p/2 then
18: draw p

2 attributes from R− and M− to constitute an attributes subset C′

19: Else

20:
draw

∣∣R−∣∣+ ∣∣M−∣∣ attributes from R− and M−, draw p
2 −

∣∣R−∣∣− ∣∣M−∣∣ attributes
from L− to constitute an attributes subset C′.

21: End if
22: End if
23: U∗ containing attributes C′

When determining the number of attributes, if the number of attributes is too much,
the effect of dimension reduction cannot be achieved; if the number of attributes is too
small, the model accuracy may be affected. In reference [13], the authors take

√
p attributes

to train a subtree and obtain a random forest. If it is obviously not appropriate to continue
to select

√
p attributes, here, half of the original attributes are selected as the number of

attributes after attribute selection.

4.2. SOINN Incremental Clustering

(1) The data subset after attribute reduction is received, and two samples are randomly
selected to initialize the neuron set N = {x1, x2}, a set of neurons connected via the
relationship M ⊆ N×N. The two initialized neurons have no connection relationship,
and their weights are, respectively, wx1 , wx2 .

(2) Finding the winning neuron: set the newly received sample as ζ, and the two most sim-
ilar neurons to ζ are sought as the first and second winning neurons, s1, s2 respectively.
The calculation formula are

s1 = argminx∈N
∣∣wζ − ws1

∣∣ (8)
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s2 = argminx∈N\{x1}
∣∣wζ − ws2

∣∣ (9)

At this point, the winning number ts1 of the first winning neuron is updated. If node
s1 becomes the winning neuron for the first time, then ts1 is denoted as 1; otherwise, ts1 is
added to 1.

(3) The similarity thresholds Ts1 and Ts2 of the winning neurons s1 and s2 are then
calculated. For any neuron τ, if there is a connected neuron, it is proved that there is a
neighbor neuron to this neuron and it forms a class with it. In this case, the similarity
threshold is the maximum intra-class distance, and the calculation formula is

Tτ = max
∣∣wτ − wj

∣∣, j ∈ Nτ (10)

If no neurons are connected to τ, the similarity threshold is defined as the minimum
inter-class distance, with the formula calculated as

Tτ = min
∣∣wτ − wj

∣∣, j ∈ N\{τ} (11)

(4) According to the similarity threshold for performing the corresponding operation
ζ, the distance between ζ and the first and second winning neurons are d1 and d2,
respectively. If d1 > Ts1 or d2 > Ts2 , the current ζ differs greatly from the previously
learned data, so ζ is inserted into the new neurons to update the neuron ensemble
N = N ∪ {ζ}. Next, return to step 2 to continue processing other new samples. The
sample insertion diagram is shown in Figure 4.
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(5) Update the parameter age for the connection edges. When the first and second
winning neurons are activated simultaneously by the input sample ζ, the two winning
neurons are somewhat related. Thus, if there are connections between two winning
neurons, then ages1,s2 + 1; if there is no connection, the two winning neurons are
connected and the parameter ages1,s2 is set to 1.

(6) All edges connected to the first winning neuron have an age value plus one:

ages1,i = ages1,i + 1, ∀i ∈ Ni (12)

(7) The quantization error of the winning neuron is accumulated:

Es1 = Es1 + |ζ − ws1 | (13)

(8) If d1 < Ts1 and d2 < Ts2 , the current sample ζ is similar to the neuron in topology and
there is no need to generate new neurons. Next, we need to update the weights of
the winning neuron based on ζ and move toward ζ, that is, the process of the fusing
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sample ζ into the topology. When the samples are fused, the winning neuron will
move by updating its weights. A sample fusion diagram is shown in Figure 5.
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Updating the weights: Since the coefficient of the original weight-updated value is
a predefined fixed value and cannot be adjusted according to the actual situation, the
coefficient is updated to

ws1 = ws1 +
1

ts1 ∗ (d2 + 1)
(
wζ − ws1

)
(14)

ws2 = ws2 +
1

ts2 ∗ (d1 + 1) ∗ (d2 + 1)
(
wζ − ws2

)
(15)

The coefficient of the weight change is the learning rate, and the multiplication is
performed by adding one to the Euclidean distance so that the denominator of the updated
coefficient is greater than one. tsi is the total number of wins for a node. Neurons with a
high number of wins are highly represented, and neurons that are close to each other have
a high probability of belonging to the same class and moving a relatively large distance.
Therefore, the Euclidean distance is introduced into the coefficients of the node movement
weights, so that the node movement value is changed by the number of node wins and the
distance between nodes.

(9) The learning cycle is λ; after learning each λ sample, the denoising operation should
be performed. If age(i,j) > agemax, then the connection edge between neurons i and j
is overaged, and the set M = M\{(i, j)} of neuron relations is updated. If learning is
not complete, go back to step 2 of Algorithm 1 and continue processing new samples.

If the value of λ is small, it is applicable to the datasets with many noise points, the
noise nodes and connections can be found in time, and the deletion operation can be
performed. Conversely, λ is suitable for datasets with less noisy points. When the dataset
structure is more complex, the smaller agemax is, the more correct the topology. Generally,
the value of agemax is between 50 and 100.

The dataset after three-way attribute reduction is used for SOINN incremental cluster-
ing, and the T-SOINN algorithm is obtained. The detailed steps of T-SOINN are shown in
Algorithm 2.
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Algorithm 2. T-SOINN algorithm.

Input: Dataset Un = {x1, x2, · · · , xn}, Decision table Dt = (Un, C ∪ D, V, f ), Three-way attribute
selection threshold (α, β)
Output: The set N of neurons and the set M of connection relations

1:
Algorithm 1 is used to reduce the attributes of the original dataset, obtain U∗ containing
attributes C′

2:
Initialize the set of neurons within a single competitive learning cycle N, The set
M ⊆ N × N of neuronal connection relations

3: Input ζ, Computing the winning neurons s1 and s2
4: s1 = argmin|ζ −Wτ |, τ ∈ N
5: s2 = argmin|ζ −W|τ , τ ∈ N\{s1}, Wτ denotes the weights of τ

6: Let the set of neighbor neurons of τ be Nτ

7: Calculate d1, d2 and the similarity thresholds Ts1 and Ts2 of the winning neurons s1 and s2
8: If Ni ̸= ∅ then
9: Tτ = max

∣∣∣Wτ −Wj

∣∣∣, j ∈ Nτ

10: Else
11: Tτ = min

∣∣∣Wτ −Wj

∣∣∣, j ∈ N\{τ}
12: End if
13: If d1 > Ts1 or d2 > Ts2

14: N = N ∪ {ζ}
15: If there is no connection between s1 and s2
16: C = C ∪ {(s1, s2)}
17: age(s1,s2) = 1
18: Else
19: age(s1,s2) = age(s1,s2) + 1
20: End if
21: ages1,i = ages1,i + 1, ∀i ∈ Ni
22: Es1 = Es1 + |ζ − ws1 |
23: Else
24: d1 < Ts1 and d2 < Ts2 , ζ is fused into the topology
25: ws1 = ws1 +

1
ts1∗(d2+1)

(
wζ − ws1

)
26: ws2 = ws2 +

1
ts2∗(d1+1)∗(d2+1)

(
wζ − ws2

)
, t is the number of node wins

27: End if
28: If the input sample is λ integer times,
29: Perform intra-class node insertion and denoising operations
30: End if
31: If the input does not end
32: Return to step 2 in algorithm 1 to continue
33: End if
34: Stop running the algorithm, and the set N and M of connection relations are output.

The used symbols and their meanings are shown in Table 1.

Table 1. Symbol table.

Symbol Meaning

ζ Input new sample
N Ensemble of neurons
M The set of edge-connecting neurons
Tτ The similarity threshold of node τ
Nτ The set of neighbor neurons of node τ
tτ The number of wins for node t
wτ The weight of nodes in τ

age(i,j) Age parameter of the connecting edge between nodes i and j
agemax The biggest predefined age

λ Execution of the denoising operation interval
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5. Experimental Results and Analysis
5.1. Experimental Dataset

KDD CUP99 is selected as the experimental dataset. The dataset KDD-CUP99 contains
network connectivity data collected from a simulated Air Force Local Area Network. This
dataset has been widely used in experiments with different intrusion detection models and
is a classical challenge for intrusion detection and machine learning research [33].

5.2. Experimental Environment and Evaluation Indicators

The experimental hardware environment: Windows 10 operating system,
AMDRyzen53500UCPU with 8 GB of memory. Software environment: Python3.6, Keras
deep learning framework based on TensorFlow, to study the performance of T-SOINN model.

Since the experimental results all have a small range of fluctuations, the average of the
ten experimental results is selected as the final detection for comparison across the different
experiments. Precision, recall, F1-score, false positive rate (FPR), and false negative rate
(FNR) were selected as the evaluation indicators of intrusion detection. For an intrusion
detection model, the higher the precision and recall of the experiment and the lower the
false positive rate and false negative rate, the better the performance of the intrusion
detection model.

5.3. Data Preprocessing

Part of the features in the dataset are of the string type, and symbolic feature digi-
tization is needed to convert the corresponding non-numeric type features into numeric
identifiers [33].

The KDD-CUP99 dataset contains properties with character values. For example, the
protocol_type attribute has values for TCP, UDP, and ICMP, so it is necessary to convert
these properties to numbers. Since the calculation method of attribute significance based
on a rough set requires that the attribute values are discrete values, K-means clustering is
used to discretize the data.

The 32 continuously valued attributes of the original dataset are visualized to obtain
the distribution law of each attribute and thus to determine the number of clusters for
each attribute. The 32 continuous attributes are visualized separately. Figure 6 shows the
distribution diagram of attribute dst_host_srv_serror_rate. The K value of each continuous
attribute is determined using the results of the visual demonstration, and then, the K-means
clustering discretization process is carried out.
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5.4. Experimental Comparison
5.4.1. Parameter Analysis

The importance of all attributes is calculated, and the importance of some attributes is
shown in Table 2.
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Table 2. Attribute importance of some attributes.

Name of Attribute Importance of Attributes

srv_diff_host_rate 1.316681× 10−3

dst_host_count 1.969368× 10−2

dst_host_srv_count 1.310848× 10−4

dst_host_same_srv_rate 1.088951× 10−4

dst_host_same_srv_rate 4.053212× 10−5

dst_host_same_src_port_rate 2.014152× 10−5

dst_host_srv_diff_host_rate 3.529692× 10−4

According to the partition attribute of (α, β), it is divided into a positive region, a
negative region, and a boundary region. The differences in the importance of different
attributes in Table 2 are relatively large. The value of attribute importance is divided into
several equidistant intervals, and the average value of attribute importance in each interval
is taken as the threshold value of (α, β), where α > β. Due to the randomness of the
three-way attribute reduction method, the selected attribute subset is different according to
the difference of (α, β), and the model checking result also changes.

The changes in precision and recall under different α and β are shown in
Figures 7 and 8, respectively. When (α, β) = (1.969368× 10−2, 6.673866× 10−5), the preci-
sion and recall of the model are optimal; when (α, β) = (1.969368× 10−2, 1.676748× 10−5),
the precision and recall of the model are the lowest. In this case, the original attribute is
divided into three parts, and the part with the lowest attribute importance has the largest
number. In the random selection process, the number of attributes with low importance
is selected, so the overall accuracy and recall of the model are low, indicating that having
many attributes with low importance will reduce the detection performance.
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The changes in FPR and FNR under different α and β are shown in Figures 9 and 10,
respectively. From the results of the experiment, when (α, β) = (1.969368× 10−2, 6.673866×
10−5), the precision and recall of the model are optimal and the FPR and FNR of the
model are the lowest. The effect of the model reached an optimal level. At this time, most
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attributes were selected from the positive domain and the boundary domain, while the
number of attributes selected from the negative domain was small. That is, with more
high-importance attributes, the T-SOINN model’s detection performance was better.
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With the values of the above parameters, the data subset after attribute reduction was
passed into SOINN for training. The value of agemax was between 50 and 100. The value of
λ was between 100 and 200. The range of agemax and λ was divided equally. agemax took
values of 50, 60, 70, 80, 90, and 100. λ took values of 100, 120, 140, 160, 180, and 200.

With different values of agemax and λ, the precision and recall changes in the model
are shown in Figures 11 and 12 and the FPR and FNR changes in the model are shown in
Figures 13 and 14, respectively. According to Figures 11–14, when agemax = 70 and λ = 180,
the precision and recall are the highest and the FPR and FNR are the lowest. According to an
analysis of the above parameters, (α, β) = (1.969368× 10−2, 6.673866× 10−5), agemax = 70,
and λ = 180.
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5.4.2. Analysis of Experimental Results

The parameter values were obtained from the above analysis. The changes in precision,
recall, false positive rate, and false negative rate of the model with the incrementally
incoming stream data are shown in Figure 15. With the incremental data input, the precision
and recall gradually show an upward trend after certain fluctuations, while the FPR and
FNR show a downward trend. In other words, when the amount of training data is small,
the model detection results fluctuate a lot, while the model detection performance gradually
stabilizes as the amount of training data increases.
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Figure 15. Incremental change in the evaluation index: (a) precision and recall; (b) FPR and FNR.

The total number of nodes is constantly changing during the training of the T-SOINN
model. When the difference between the new sample and the data previously learned by
the T-SOINN model is too large, that is, d1 > Ts1 or d2 > Ts2 , the new node is inserted and
the total number of nodes increases. After λ cycles, intra-class insertion and denoising
operations are needed for the entire SOINN structure. The intra-class node insertion
operation requires selecting the two nodes with the largest quantization error among all
nodes, inserting new nodes in the middle to reduce the quantization error of the neurons,
and increasing the total number of nodes. When performing the denoising operation,
the noise and outliers in the network structure and the associated connections should be
removed, at which point the total number of nodes is reduced. The growth changes in
the nodes and edges are shown in Figure 16. Figure 16a shows, as an incremental data
input, the change in the total number of nodes during the topological structure adjustment
process. Figure 16b shows the evolution of the total number of connected edges in the
topology adjustment process with increasing data input.
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Figure 16. The number of nodes and edges varies. (a) Nodes. (b) Edges.

The winning neurons s1 and s2 are activated simultaneously and make connections
as new data are input. When the value of age reaches the maximum, then the current
connection is removed and the number of connection edges decreases. In the denoising
operation after λ cycles, the noise and outlier points and related connections in the network
structure are deleted, and the number of connection edges decreases. The change in the
number of deleted nodes and edges is shown in Figure 17. Figure 17a shows the change in
the total number of deleted nodes in the topology adjustment process when incremental
data are input. In Figure 17b, as the incremental data are input, a number of topological
structure adjustments were removed during the changes.
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In order to verify the experimental effect, the T-SOINN model is compared with
SOINN and LASSO-SOINN on the KDD-CUP99 dataset. Three-way attribute reduction is
a dimensionality reduction method, and so is LASSO. LASSO is combined with the SOINN
algorithm to obtain LASSO-SOINN, and it is applied to the KDD-CUP99 dataset. The
performance comparison results of the three algorithms are shown in Table 3.

Table 3. Performance comparison.

Evaluation Index T-SOINN SOINN LASSO-SOINN

precision 99.43% 97.45% 97.74%
recall 99.21% 97.73% 97.99%
FNR 0.79% 2.27% 2.01%
FPR 0.36% 1.63% 1.39%

If only the SOINN algorithm is used on the KDD-CUP99 dataset, the precision and
recall are 97.45% and 97.73%, respectively. For SOINN, the precision and recall are increased
by 0.31% and 0.26%, respectively, when LASSO is used for dimension reduction. Utilizing
three-way attribute reduction for dimensionality reduction, the precision and recall are
improved by 1.98% and 1.48%, respectively, which not only significantly improves the
performance of SOINN but also outperforms LASSO. Similarly, using three-way attribute
reduction for dimensionality reduction, not only are the FPR and FNR significantly reduced
but also the performance is better than that of LASSO. According to the above analysis, the
effectiveness of the three-way attribute reduction for optimizing the SOINN algorithm is
evident, and T-SOINN is a good method for processing intrusion detection data.

6. Conclusions and Prospect

In view of the large scale of intrusion detection data that cannot be completely collected
all at once, the T-SOINN incremental intrusion detection model was proposed. Through
three-way attribute reduction, attribute importance was used as the evaluation function
to calculate the attribute subset to achieve data dimensionality reduction. After receiving
the dimensionality reduction data, SOINN generated a topological representation of the
original data and achieved incremental learning by dynamically adjusting the topological
structure. The results show that the precision and recall rate of the T-SOINN model are
effectively improved.

In the future, we will further consider the optimization of the inter-class insertion
operation, add three decisions to the inter-class insertion discrimination, and re-input the
topological structure of the uncertain data combined with more information, so as to further
improve the overall performance of the model. The comparison process of the similarity
threshold and the Euclidean distance is relatively independent, and there are some errors.
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Therefore, in the future, we can continue to enrich the comparison process and to improve
the comparison content.
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