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Abstract: In the field of software engineering, large and complex code bases may lead to some burden
of understanding their structure and meaning for developers. To reduce the burden on developers, we
consider a code base visualization method to visually express the meaning of code bases. Inspired by
remote sensing imagery, we employ graphical representations to illustrate the semantic connections
within Java code bases, aiming to help developers understand its meaning and logic. This approach
is segmented into three distinct levels of analysis. First, at the project-level, we visualize Java projects
by portraying each file as an element within a code forest, offering a broad overview of the project’s
structure. This macro-view perspective aids in swiftly grasping the project’s layout and hierarchy.
Second, at the file-level, we concentrate on individual files, using visualization techniques to highlight
their unique attributes and complexities. This perspective enables a deeper understanding of each
file’s structure and its role within the larger project. Finally, at the component-level, our focus shifts
to the detailed analysis of Java methods and classes. We examine these components for complexity
and other specific characteristics, providing insights that are crucial for the optimization of code
and the enhancement of software quality. By integrating remote sensing technology, our method
offers software engineers deeper insights into code quality, significantly enhancing the software
development lifecycle and its outcomes.

Keywords: remote sensing technology; software engineering; code visualization; remote sensing
imagery; java code analysis

1. Introduction

In the field of software engineering, deeply understanding the structure and meaning
of codebases is a crucial but troublesome task for programmers [1,2]. This not only adds
an extra burden on them but also increases the monotony of programming work [3,4].
While existing methods like dependency graphs, UML (Unified Modeling Language) views
and code annotations provide a foundation for understanding code structure [5,6], they
are limited in terms of intuitiveness and comprehensibility. We specifically selected the
Java code analysis platform due to its widespread adoption in the software engineering
community, its comprehensive library ecosystem, and robust support network, making it
highly suitable for our innovative visualization approach.

Traditional remote sensing methods, known for their proficiency in data analysis and
visualization, are adept at processing and interpreting various data types. These methods
have found extensive application in diverse fields such as Earth science, environmental
monitoring [7–9], and agriculture [10]. In software engineering, applying these methods
to code data opens new avenues for extracting insights about code quality, complexity,
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and structure. This paper concentrates on merging data analysis and visualization tech-
niques from remote sensing with code data in software engineering [11]. By preprocessing
and transforming code data, and utilizing intelligent evaluation techniques and data min-
ing algorithms [12,13], our method offers a multi-perspective analysis that uncovers crucial
information about code complexity, structure, and potential issues.

As illustrated in Figure 1, the multi-perspective analysis offered by our method en-
compasses three distinct views: the project view, the file view, and the code component
view. These perspectives collectively serve to enhance software engineers’ understanding
and analysis capabilities of Java codebases. First, the project view, also known as the “code
forest”, offers a macro-view overview of the project structure. In this view, each Java file
is innovatively depicted as a tree, creating a metaphorical forest. This visualization is
not only intuitive but also insightful, enabling programmers to quickly grasp the overall
architecture and interrelations of project components. Observing the density and distribu-
tion of the “code forest” allows programmers to easily identify important modules and
potential complex areas in the project. The file view delves deeper into individual file
attributes, encouraging programmers to engage with file-view complexities. This view
assists programmers in understanding how each file interacts with other parts of the project
and how to optimize these files to enhance the overall code quality. Finally, the code
component view offers a detailed examination of individual Java methods, considering
aspects like complexity and method-specific characteristics, thus enabling programmers to
better understand the functionality of the code and areas for potential improvement [14].
The contributions of this paper are summarized in the following:

• We introduce a method that utilizes remote sensing imaging techniques to visualize
Java codebases. This method not only simplifies the understanding of complex code
structures but also makes it more intuitive and engaging for programmers.

• We present a multi-perspective analysis (project-, file-, and component-level) that
provides comprehensive insights into code complexity, structure, and potential issues
to assist in the analysis of code.
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Figure 1. Multi-perspective visualization for enhanced code understanding.

Based on this context, our study introduces a novel method of codebase visualization,
designed to make the structure and meaning of code more apparent through intuitive and
visual means [15]. This method, which employs remote sensing imaging techniques, effec-
tively reveals and illustrates the semantic connections within Java codebases. In this way, it
assists developers in swiftly and accurately extracting information, simplifying the complex-
ities of the code, and reducing the monotony typically associated with programming tasks.

Our experimental results show that integrating three-dimensional terrain mapping
techniques from remote sensing into software engineering provides a novel, intuitive
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method for code visualization. This method significantly improves the comprehensibility
and maintainability of software systems and brings new insights into the software develop-
ment process. The relevant source code can be found at https://github.com/lidiancracy/
Java_3D. The rest of the paper is organized as follows: Section 2 reviews related work, situ-
ating our study within the broader literature. Section 3 provides a detailed description of
our proposed method, including the design of evaluation metrics [16]. Section 4 discusses
the practicality of our method, highlighting its accuracy, efficiency, and user satisfaction.
Finally, Section 5 summarizes our contributions and explores future research directions in
this exciting area.

2. Related Work

The integration of remote sensing techniques into engineering has garnered increasing
attention in recent years, a trend evidenced by a surge in research efforts [17–19]. This
emerging field reflects a growing awareness of the value that such techniques can bring to
the complex world of development.

Early applications of remote sensing in environmental and geological sciences, as ex-
emplified by the use of airborne laser scanning to map tree crowns, have significantly
advanced our understanding of natural landscapes and proved invaluable for forestry
management [20,21]. This pioneering method underscores the precision and versatility of
remote sensing techniques. Similarly, advances in 3D radiative transfer modeling, integral
to the field of remote sensing, have shed light on the complexities and computational
demands involved in accurately simulating natural processes [22]. This progress paves the
way for broadening the application of remote sensing techniques across various disciplines.

The innovations in environmental and geological analysis have led to new research
directions in software engineering. Atzberger et al. [23] made a significant contribution
with their method of visualizing source code similarity through the use of 2.5D semantic
software maps. Their method involved placing 3D glyphs on a two-dimensional plane
to represent semantic relationships within source code, offering a novel method that
facilitates enhanced code review and bug detection processes. Moreover, Khaloo et al. [24]
introduced Code Park, a tool that reimagined codebase visualization as an interactive 3D
environment. Innovations in software engineering visualization have led to intriguing
developments, such as the method by Khaloo et al. [24], which transforms classes in a
codebase into 3D rooms within Code Park. This method aims to make code comprehension
more immersive, although it struggles with large, complex codebases, often resulting in
cluttered visualizations. Likewise, Oberhauser et al. [25] proposed a 3D flythrough of
code, which proves especially beneficial for newcomers to software projects. While this
technique enhances various cognitive processes, it also encounters challenges when dealing
with extensive codebases. Those three methods collectively broaden the capabilities of
software engineers, each bringing its unique strengths to the field. Furthermore, the recent
study on daylight harvesting in building design demonstrates the integration of remote
sensing in urban development [26], using power over ethernet for efficient energy and
sensor management. This aligns with our work, where we use remote-sensing-based terrain
mapping to visualize Java source code in 3D, highlighting the versatility of remote sensing
in complex system optimization.

Distinct from the methods mentioned above, we introduce a groundbreaking method
for visualizing Java source code in 3D, utilizing terrain mapping techniques from remote
sensing. We transform Java projects into vivid 3D forests, where each tree represents a
distinct Java file, with attributes correlating to various code metrics. This visualization
not only provides an intuitive view of the software system but also significantly aids in
unraveling its structure and complexity. Our comprehensive multi-view analysis, incor-
porating project, file, and code component perspectives, enables a deeper, more nuanced
understanding of the system’s structure and complexity. Our method stands as a significant
advancement in the field of software visualization, marking a notable leap forward in how
software systems are understood.

https://github.com/lidiancracy/Java_3D
https://github.com/lidiancracy/Java_3D
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3. Methodology

In our methodology, we employ a method that encompasses both the analysis of
comprehensive datasets and the application of advanced visualization techniques. This
section outlines the various steps and components of our methodology, starting with a
detailed description of the datasets used in our study.

3.1. Dataset Description

The dataset [27] used for our study includes JDataMineMid and JDataMineLarge.
According to the dataset’s author, JDataMineMid encompasses over 300 Java projects,
which include more than 80,000 Java files. JDataMineLarge is even larger, containing over
400 Java projects and more than 230,000 Java files. These files are derived from well-known
projects on GitHub, each with a substantial number of stars, indicating their popularity
and relevance in the developer community. This extensive and diverse collection of Java
files provides a rich source of data, making it an ideal choice for our study.

3.2. Metric Selection for Different Perspectives

Appropriate metrics are a critical step in our method, as they directly influence the
quality and relevance of the visualization. Given that our tool offers visualization analysis
from three distinct perspectives-project view, file view, and code component view-, we have
identified a set of metrics for each view that best capture their respective characteristics,
as shown in Table 1.

Table 1. Metrics for project view, file view, and code component view.

Perspective Metrics

Project View Number of Java Files
File Position in Project Structure

File View
Number of Methods

Types of Member Properties
Average Method Complexity

Component View

Method Name
Token Count

Cyclomatic Complexity
Try-Catch Block Count

Loop Count

• Users are provided with a high-level overview of the project’s structure, visualized
as a “code forest”. Each Java file in the project is represented as a tree in this forest.
The metrics we consider at this level include the number of Java files (or trees in the
code forest) and the file position in the project structure. The number of Java files
gives an understanding of the project’s scale and complexity, while the position of a
file in the project’s structure is determined by the file’s relative location in the project’s
directory structure or its position in the code forest.

• In the file-level, we delve into individual files, highlighting various attributes that
provide insights into the file’s nature and role within the project. The metrics we
consider at this level include the number of methods, types of member properties,
and average method complexity. The number of methods in a file indicates the file’s
responsibilities and complexity. The types of member properties reflect the different
types present in a Java file. Lastly, the average method complexity metric gives a sense
of the complexity of the methods in the corresponding Java file.

• In the code component-level, we focus on individual Java methods. The metrics con-
sidered here are the method name, token count, cyclomatic complexity, try-catch block
count, and loop count. These metrics offer various perspectives on the complexity,
size, and potential for errors within individual methods.
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Collectively, these metrics offer a comprehensive view of the project’s, file’s, and method’s
characteristics, thereby facilitating a more informed and effective visualization.

3.3. Remote Sensing Inspired Code Visualization

Having established the overarching framework of layered structuring in the preceding
section, we shift our focus to a thorough examination of the specific principles, formulas
that constitute the core of our 3D visualization methodology. Our 3D code visualization
tool, inspired by remote sensing techniques, provides users with three distinct perspectives
to examine their projects: project-level, file-level, and code component-level.

3.3.1. Project-Level Construction

At the project-level, users are presented with a high-level overview of their project.
The project’s name and the number of Java files it contains are displayed in 3D text.
Similar to how remote sensing visualizes geographical data, each Java file in the project
is represented as a tree in a 3D forest. The position of each tree, which represents the
hierarchical relationship of the files, is determined by the following formula:

P(Ti) = hash(Fi) (1)

In Equation (1), hash(Fi) is a function that maps the file’s path. Fi represents the position
in 3D coordinates, and P(Ti) is the corresponding tree in the 3D forest visualization. This
function is crucial for establishing the hierarchical relationship of the files in the project.

3.3.2. File-Level Construction

As users approach a tree, the tool transitions to the file-level, displaying detailed
information about the corresponding Java file. At this level, different types of trees represent
different types of class members, as shown in the figure below. From left to right, the trees
represent member variables, regular methods, interfaces, and constructors.

Just as remote sensing uses color gradients to represent different data, the color of a
tree in our visualization represents the average complexity of the methods in the corre-
sponding Java file, with a gradient from green (low complexity) to yellow (high complexity).
The complexity is determined by various factors, including cyclomatic complexity, docu-
mentation comments, code line count, the number of try-catch blocks, and the number of
for-loops. The size of a tree is determined by the relative average line count of the methods
in the file, with larger trees indicating more lines of code. The color of the trees transitions
from green to yellow as the average complexity of the Java file.

S(Ti) = N(MFi ) (2)

C(Ti) =
1

N(MFi )

N(MFi
)

∑
j=1

CC(Mj) (3)

In Equations (2) and (3), N(MFi ) is the number of methods in file Fi, and CC(Mj) is the
cyclomatic complexity of method Mj. The size of a tree, S(Ti), is determined by the relative
average line count of the methods in the file, and the color of a tree, C(Ti), represents
the average complexity of the methods in the corresponding Java file. These visual cues
provide a quick understanding of the complexity and size of the Java files.

3.3.3. Code Component-Level Construction

Much like how remote sensing provides detailed data about specific geographical
areas, the code component-level offers a meticulous breakdown of every individual method
in a Java file. This perspective enhances the understanding of a method’s complexity and
structure, presenting detailed insights beyond those available at the file-level.
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The method name is essentially the identifier of the method. This is essentially the
identifier of the method, which can offer an initial clue about its function and purpose
based on the naming conventions used.

The token count represents the count of individual components in the method. This
represents the count of individual components in the method, such as variables, opera-
tors, and literals. A higher token count could imply a higher complexity of the method.
The token count, represented as T(Mj), is calculated with:

T(Mj) = CountTokens(Mj) (4)

In Equation (4), T(Mj) denotes the total number of tokens in method Mj, and “Count-
Tokens” is the function used to calculate it.

The cyclomatic complexity represents the complexity of a program based on the
number of linearly independent paths through the source code of the method. This rep-
resents the complexity of a program based on the number of linearly independent paths
through the source code of the method. A high cyclomatic complexity suggests a method is
more complex and potentially more challenging to maintain. The cyclomatic complexity,
represented as CC(Mj), is given by:

CC(Mj) = E − N + 2P (5)

In Equation (5), E stands for the number of edges in the flow graph, N is the number
of nodes, and P represents the number of connected components. To keep things simple,
we won’t detail each of the equations for these metrics. However, they include metrics such
as volume, difficulty, and effort, offering a comprehensive perspective on the complexity of
the software.

Overall, by offering these metrics, the code component-level allows users to delve into
the specifics of each method, leading to a comprehensive understanding of its structure
and complexity. This is particularly valuable for tasks such as code review, debugging,
and maintenance, where a deep grasp of the method’s behavior is crucial.

3.4. 3D Visualization of Datasets

Transforming our datasets into dynamic, interactive 3D visualizations was achieved
through the use of “Three.js”, which is a versatile tool that allows for the creation and
rendering of complex 3D scenes directly in a web browser. The goal of these visualizations
is to present the datasets in a manner that is both distinct and intuitive, moving beyond
the limitations of traditional 2D representations. The initial phase of this transformation
involved data preparation, where we extracted essential metrics from the datasets. These
included the number of Java files per project, the count of methods in each file, and various
metrics at the component-level. A combination of Java parsing libraries and custom
scripts were employed to process these metrics, shaping them into a JSON structure
readily interpretable.

In the next phase, “Three.js” was utilized to create individual 3D scenes for each type
of visualization—project-level, file-level, and code component-level. Each scene, acting as a
container, incorporated all the necessary elements, including objects, lights, and cameras.
The 3D objects representing different elements of the datasets were crafted using a variety
of geometries and materials to accurately depict different dataset characteristics. The posi-
tioning of these objects within each scene was meticulously determined by the dataset’s
underlying data, with trees in the project-level symbolizing Java files and positioned based
on the file’s path, while in the file and code component-levels, trees and blocks represented
class members and methods.

To enhance the realism and depth of the 3D visualizations, lighting, and camera
settings were carefully configured. A combination of ambient, directional, and point
lights illuminated the objects and created shadows, enhancing the three-dimensional effect.
Perspective cameras were set up to allow users to navigate the scenes and view objects
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from various angles. Finally, the rendering capabilities of “Three.js” brought these scenes to
life within a web browser, complete with interactive features that enabled users to explore,
zoom, and click on objects for more detailed information. This approach to 3D visualization
provides a comprehensive and intuitive overview of the codebase, empowering developers
to quickly identify key areas of interest or concern, and is particularly effective when
combined with the detailed metrics available at the project, file, and method levels.

4. Evaluation

In this study, we apply our methodology to two real-world Java datasets, JDataMine-
Mid and JDataMineLarge. Each dataset comprises a large number of Java projects, which
in turn contain numerous Java files. These projects and files are derived from well-known
projects on GitHub, each with a substantial number of stars, indicating their popularity
and relevance in the developer community.

4.1. Project-Level Analysis

First, we conducted a size analysis of the project-level metric. To assess the efficacy of
our method across Java projects with varying scales and complexities, we tallied the total
number of Java files in each project. The corresponding outcomes are displayed in Table 2.

Table 2. Number of projects and Java files in two datasets.

Dataset Number of Projects Number of Java Files

JDataMineMid 301 86,526
JDataMineLarge 425 231,065

The JDataMineLarge dataset comprises the highest number of Java files, with 231,065 files,
followed by JDataMineMid with 86,526 files. We observe a positive correlation where an
increase in the total number of Java projects within a dataset is associated with an increase
in the total number of Java files. For example, the JDataMineMid dataset, which has fewer
projects, contains 86,526 Java files, while the JDataMineLarge dataset, with more projects,
comprises 231,065 Java files.

4.2. File-Level Analysis

In this study, we undertook a comprehensive analysis of effective documentation com-
ments within two substantial Java datasets, namely JDataMineMid and JDataMineLarge.
We define effective documentation comments as those that either start with the syntax “/**”
or “/*” and encompass at least one line of substantive content. It is important to note that
our analysis specifically excludes single-line comments that begin with “//”, as these are
often less formal and may not provide substantial documentation.

Our findings offer valuable insights into the practices of Java documentation. We discov-
ered a notable prevalence of effective documentation comments in Java codebases. Specifically,
a significant majority of the Java files in both datasets exhibit this form of documentation.
In JDataMineMid, 65.5% of the analyzed files contain effective documentation comments,
while in JDataMineLarge, this figure rises to 82.0%. These results underscore the importance
and widespread use of detailed commenting in Java projects for enhancing code readability
and maintenance. The detailed breakdown of these findings is presented in Table 3.

Table 3. Number of Java files with effective documentation comments in codebases.

Dataset Files with Documentation Percentage

JDataMineMid 56,669 65.5%
JDataMineLarge 189,534 82.0%
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4.3. Component-Level Analysis

This experiment primarily investigates the complexity of code within the JDataMine-
Mid and JDataMineLarge code repositories, focusing on structural elements like the num-
ber of try-catch blocks and for-loop iterations. Control flow structures such as loops and
try-catch blocks are fundamental constructs in Java programming, where their presence
and frequency can significantly impact both the complexity and readability of the code.
For loops, introducing a level of iteration and repetition can increase a method’s complexity.
Similarly, try-catch blocks, crucial for exception handling, often mark areas in the code
where exceptions are anticipated and handled, adding to the method’s complexity.

Alongside these structural elements, we also delve into the lexical aspect of code
complexity by examining the distribution of method name token lengths. We analyze how
programmers tend to construct method names, which is indicative of preferences in coding
style and clarity. Our findings, based on the token count of method names, are visually
represented in Figure 2. The figure illustrates that method names with two tokens are most
common in all datasets, while those with eight or more tokens are comparatively rare. This
distribution suggests a general tendency among programmers to favor clear and concise
method names, opting for brevity over verbosity in naming conventions.

Figure 2. Distribution of method name token length.

In this subsection, we analyze the number of Java methods in our datasets that contain
loops and try-catch blocks. This analysis provides insights into the complexity of the
methods in the datasets and serves as a complement to the cyclomatic complexity analysis,
offering a more nuanced view of method complexity.

Figure 3a illustrates the distribution of for loops and try-catch blocks across the Java
files in the JDataMineMid dataset. The x-axis represents the number of loops or try-catch
blocks, while the y-axis represents the number of Java files. This figure shows that the
majority of Java files have a moderate number of loops and try-catch blocks, with a few
outliers having a high number of these constructs.

Similarly, Figure 3b depicts the distribution of for loops and try-catch blocks in the
JDataMineLarge dataset. The distribution in this larger dataset follows a similar pat-
tern to that of the JDataMineMid dataset, reinforcing the observations made from the
smaller dataset.
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Figure 3. Distribution of “for loops” and try-catch blocks across Java files in the JDataMineMid dataset
and the JDataMineLarge dataset: (a) Distribution in the JDataMineMid dataset; (b) Distribution in
the JDataMineLarge dataset.

These analyses provide a comprehensive view of the complexity of Java methods in
our datasets, considering the presence of key control flow constructs. These two metrics
can effectively reflect the overall complexity of the code.

In this section, we describe the methodology used to collect and filter the raw data
obtained from GitHub, resulting in three high-quality datasets. The experimental process
was divided into three parts: data acquisition, data statistics, and dataset scoring.

4.4. Visualization Experiments

In this section, we present the results of applying our 3D visualization methodology
to the JDataMineMid and JDataMineLarge datasets. We provide a detailed description of
the 3D models generated for each dataset, highlighting the insights that can be gained from
these visualizations.

4.4.1. Project-Level Visualization

Our approach commenced with the application of our innovative methodology at
the project-level, where we created a comprehensive 3D model for a representative project
from each of the datasets, JDataMineMid and JDataMineLarge. This step was instrumental
in providing a macroscopic view of each project’s structure and complexity. In the resultant
3D models, we uniquely represented each Java file as a tree within a virtual 3D forest.
The innovative aspect here is the depiction of each Java file’s size by the corresponding
tree’s size, offering a visually intuitive measure of the file’s magnitude. Furthermore,
the placement of each tree in this virtual forest was meticulously calculated using a hash
function. This function maps the file’s path to a specific 3D coordinate, thus ensuring that
each file is consistently and uniquely positioned within the model.

Another key feature of our visualization technique is the incorporation of the project’s
name in 3D text within the model, enhancing the ease of identification of each project
within its forest representation. This integration of text and 3D modeling provides a clear
and immediate reference point for viewers.

The visualizations effectively translate the architectural complexity of a software
project into an understandable and visually engaging format. The spatial arrangement and
distribution of trees in these models offer insights into the project’s file organization and
overall structure, converting the abstract concept of software architecture into a tangible
visual experience. The visual impact of these project-level visualizations for a selected
project from both the JDataMineMid and JDataMineLarge datasets can be fully appreciated
in Figure 4a,b, where the forest of trees metaphorically stands for the Java files, laying out
the structural blueprint of the projects.



Electronics 2023, 12, 5009 10 of 14

(a) (b)
Figure 4. Code forest visualizations: (a) A selected project from the JDataMineMid dataset;
(b) A selected project from the JDataMineLarge dataset.

4.4.2. File-Level Visualization

Progressing into the subsequent stage of our research, we amplified our methodology
to encompass the file-level, engendering unique 3D models for selected Java files within the
datasets. Each file is portrayed as a unique landscape, where diverse tree types symbolize
varying types of class members contained within the file. The color of each tree is dictated
by the average complexity of the methods in the associated Java file, with diverse colors
representing different complexity levels. The size of each tree symbolizes the relative
average line count of the methods in the file, providing a visually apparent measure of
the method’s size. The position of each tree is determined by the sequence of the class
members within the file, ensuring a coherent and consistent layout.

Figure 5 depicts the file-level visualizations for the “jacobian.java” file from the
JDataMineMid dataset and the “isometrictileTest.java” file from the JDataMineLarge
dataset, respectively. These figures vividly portray various types of trees representing
diverse class members in each Java file. The color and size of the trees provide a visually en-
gaging representation of the complexity and size of the methods in each file, with different
colors illustrating varying levels of method complexity.

(a) (b)
Figure 5. File-level visualizations in the JDataMineMid and JDataMineLarge datasets: (a) File-level
visualization of the “jacobian.java” file from the JDataMineMid dataset; (b) File-level visualization of
the “isoMetricsTest.java” file from the JDataMineLarge dataset.

Our 3D visualization approach at the file-level offers a distinctive lens to view the
structure and complexity of individual Java files. By transmuting each file into a 3D
landscape, we introduce a more intuitive and engaging mode to comprehend the file’s
contents. This could assist software engineers in swiftly identifying areas of interest or
concern, such as intricate methods or voluminous class members, thereby enabling more
informed decisions about code maintenance and optimization.

Additionally, our file-level visualization can also shed light on the overall structure
and organization of the Java files in the datasets. By contrasting the 3D models of different
files, we can discern patterns and trends in the distribution of class members and method
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complexity. This could offer valuable insights into the coding practices and conventions
adopted in the datasets, potentially influencing future software development practices.

In conclusion, our file-level visualization approach provides a powerful instrument for
comprehending and analyzing Java files. By embodying each file as a 3D landscape, we can
unearth insights that might not be immediately evident from the 2D textual depiction of the
file. This could prove invaluable for tasks such as code review, debugging, and maintenance,
where a profound understanding of the file’s contents is crucial.

4.4.3. Component-Level Visualization

In the final phase of our research, we concentrated on a more detailed view of analysis,
specifically focusing on individual methods within the datasets. By creating unique 3D
models for each method, we were able to deliver a comprehensive and interactive represen-
tation of component-level attributes, offering an in-depth perspective on the intricacies of
each method.

Our investigation included a detailed exploration of method name token lengths in
the JDataMineMid dataset. We discovered a clear trend indicating a preference for brevity
and simplicity in method naming conventions. Specifically, we observed that method
names consisting of two tokens are the most prevalent within this dataset, highlighting a
general tendency toward concise naming. Conversely, method names composed of seven
or more tokens are significantly less frequent. This pattern underscores the inclination
of programmers to avoid overly complex or verbose method names. The nuances of
these findings are vividly depicted in the 3D visualization shown in Figure 6, where the
distribution of method name token lengths is clearly illustrated, providing visual evidence
of these naming trends.

Figure 6. 3D visualization of method name token length distribution in the JDataMineMid dataset.

In our study, we first focused on examining the distribution of various method types
within the JDataMineMid dataset. This examination led to the creation of a 3D pie chart,
as depicted in Figure 7, which highlights the predominance of different methods. Notably,
the chart reveals that ’get’ methods form the largest segment, making up nearly one-fifth of
all methods. This finding provides critical insight into the prevalent practices of method
implementation within this dataset.
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get:	20.2%get:	20.2%

set:	8.7%set:	8.7%

is:	3.7%is:	3.7%

other:	67.4%other:	67.4%

Figure 7. Proportion of get, set, is, and other methods in the JDataMineMid dataset.

Following this, we delved deeper into the data with a detailed 3D heatmap analysis.
Our heatmap serves as a nuanced visual representation, with the x-axis labeled from
’a’ to ’z’ representing the first letter of method names, and the y-axis, similarly labeled,
representing the last letter. This categorizes the methods into 676 distinct groups based on
the combination of their initial and final letters. For each of these groups, we calculated
average scores using our predefined metrics. The heatmap’s height and color gradients,
which resemble a topographic map generated through remote sensing, represent these
scores. This visual tool not only provides an intuitive understanding of the performance
of each category but also facilitates a comprehensive overview and comparative analysis
across the different groups. This analysis is instrumental in yielding invaluable insights
into method naming trends and their broader implications within the dataset.

It is pertinent to highlight the distinctive features of our methodology in comparison
to other existing approaches. Table 4 provides a concise comparison between our method
and “Code Park” [24], underscoring the unique aspects of our approach. Specifically,
our methodology employs a three-layered structural visualization using Java, contrasting
sharply with “Code Park”’s C# blackboard-style presentation. The intuitive and multi-
perspective nature of our visualization, particularly at the component level, offers a more
profound and interactive understanding of code structures.

Table 4. Comparison between Our Method and Code Park.

Feature Our Method Code Park

Programming Language Java C#
Structural Layering 3 layers: Project, File, Component None
Visualization Style Trees representing code structure Source code on a blackboard
Understandability Easy Normal

In summary, our 3D visualization methodology provides a potent tool for code com-
prehension and analysis. By manifesting code in 3D, we can unveil insights that might not
be immediately perceptible from the 2D textual depiction of the code. This could prove to
be invaluable for tasks such as code review, debugging, and maintenance, where a profound
understanding of the code is paramount. Our component-level visualization, in particu-
lar, presents a detailed and interactive perspective of individual methods, enriching our
comprehension of their attributes and their role within the larger codebase.
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5. Conclusions and Future Directions

This research represents a significant advancement in the integration of remote sensing
technology with software engineering, with a specific focus on the visualization of Java code
data. We have developed a pioneering method for the 3D visualization of Java source code
files, markedly enhancing the ability of software engineers to comprehend and analyze code.
This approach not only simplifies complex data but also enriches the interpretation of Java
code, providing a more intuitive understanding for software engineers. By preprocessing
and transforming code data and applying intelligent techniques, we have unlocked crucial
insights into code complexity, structure, and potential issues. These insights are expected
to streamline software development processes and improve code quality. However, our
approach has limitations that offer opportunities for future research.

However, one aspect that requires further refinement is the management of visual-
ization density in larger and more complex codebases. This aspect can occasionally make
it challenging to efficiently extract meaningful insights about code quality, complexity,
and structure. Our future research aims to refine visualization methods to better han-
dle larger and more intricate codebases, potentially through transformation techniques,
and innovative visualization models. We also plan to extend our research to include more
programming languages beyond Java, enhancing the versatility of our approach. We will
employ more remote sensing technologies to address software engineering challenges, such
as aiding in energy monitoring and sustainability. Another focus will be on improving the
interactivity of our visualizations by incorporating advanced search functionality, filters,
and real-time updates to enrich the user experience. Our method is also planned to be uti-
lized for assessing its usability, efficacy, and impact on software development. In summary,
our research has made significant contributions to software engineering, and we are excited
about continuing to explore and innovate in the realm of intelligent visualization of code
data, pushing the boundaries of current methodologies.
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