
Citation: Li, B.; Zhou, F.; Wang, Q.;

Feng, D. A Secure and Efficient

Dynamic Analysis Scheme for

Genome Data within SGX-Assisted

Servers. Electronics 2023, 12, 5004.

https://doi.org/10.3390/

electronics12245004

Academic Editor: Domenico Rosaci

Received: 14 November 2023

Revised: 11 December 2023

Accepted: 12 December 2023

Published: 14 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Secure and Efficient Dynamic Analysis Scheme for Genome
Data within SGX-Assisted Servers
Bao Li , Fucai Zhou *, Qiang Wang and Da Feng

Software College, Northeastern University, Shenyang 110169, China; luckybao@stumail.neu.edu.cn (B.L.);
wangqiang1@mail.neu.edu.cn (Q.W.); dafeng@stumail.neu.edu.cn (D.F.)
* Correspondence: fczhou@mail.neu.edu.cn; Tel.: +86-139-4041-3064

Abstract: With the rapid development of the Internet of Things (IoT), more and more user devices
access the network and generate large amounts of genome data. These genome data possess signifi-
cant medical value when researched. However, traditional genome analysis confronts security and
efficiency challenges, including access pattern leakage, low efficiency, and single analysis methods.
Thus, we propose a secure and efficient dynamic analysis scheme for genome data within a Software
Guard Extension (SGX)-assisted server, called SEDASGX. Our approach involves designing a secure
analysis framework based on SGXs and implementing various analysis methods within the enclave.
The access pattern of genome data is always obfuscated during the analysis and update process,
ensuring privacy and security. Furthermore, our scheme not only achieves higher analysis efficiency
but also enables dynamic updating of genome data. Our results indicate that the SEDASGX analysis
method is nearly 2.5 times more efficient than non-SGX methods, significantly enhancing the analysis
speed of large-scale genome data.

Keywords: Intel SGX; security and privacy; data analysis; ORAM; IoT

1. Introduction

Cloud computing platforms [1] offer elastic storage space and stronger computing
power for gene data. With the rising development of e-healthcare technologies, the pool of
genetic data collected from distributed healthcare devices and centers is growing explo-
sively. Thus, the genetic data collected will be exposed and distributed among multiple
healthcare devices or centers. However, genomes can range anywhere from 4000 bases to
670 Gb, and involve important personal privacy. For example, humans have two copies of
their inherited genome of 3.2 Gb each. Genomes are stored in VCF file format. VCF is one of
the important file formats in the biomedical domain because of its critical role in describing
DNA and RNA variants. VCF can describe single- and multi-nucleotide polymorphisms
(SNPs and MNPs), insertions and deletions (INDELs), and simple structural variants (SVs)
against a reference genome [2]. The most common mutation in the human population is
called single nucleotide polymorphism (SNP). It is the variation in a single nucleotide at a
particular position of the genome. There are about 5 million SNPs observed per individual,
and sensitive information about individuals (such as disease predispositions) are typically
inferred by analyzing the SNPs. How to securely share genome data and efficiently analyze
them in the IoT environment is needed to solve the problem of information islands [3].
Therefore, the designed scheme must not only ensure the privacy and security of genome
data, but also ensure the security and efficiency of the genome data analysis process. The
main reason is that personal genome data can carry sensitive information, including infor-
mation that can reveal the identity of the owner [4] and even facial features [5]. For example,
Claes et al. have developed a 3D model of human faces based on gender, ancestral genomes,
and facial features [5], highlighting the potential risks of sharing sensitive genetic data.

Unfortunately, while traditional encryption algorithms, such as homomorphic encryp-
tion (HE) [6–9] and secure multi-party computing (SMC) [10–12] can ensure the confiden-

Electronics 2023, 12, 5004. https://doi.org/10.3390/electronics12245004 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12245004
https://doi.org/10.3390/electronics12245004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8944-7970
https://orcid.org/0000-0001-9874-8022
https://doi.org/10.3390/electronics12245004
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12245004?type=check_update&version=1

Electronics 2023, 12, 5004 2 of 16

tiality of gene data, they cannot be applied to massive genome data scenarios due to high
computational overheads and low computational efficiency. The emergence of trusted
execution environments (TEEs), such as Intel SGX, has made it possible to operate a device
with genome data in a trusted, isolated region called an enclave. Thus, the TEE brings
neither high computational overheads nor restrictions based on software technology and
makes it possible to securely and efficiently analyze massive genome data.

Nevertheless, existing schemes have various drawbacks. Most of the traditional
genetic data analysis schemes [6–12] are based on homomorphic encryption and secure
multi-party computation. These schemes suffer from the problem that the communication
cost between the client and the server is too high. In addition, the practical application
of homomorphic encryption and secure multi-party computing technology still has the
problem of low efficiency in computing large-scale data. The emergence of trusted execu-
tion environments has brought about a turning point in the above problems. While the
emergence of a trusted execution environment can to some extent alleviate the efficiency
issues in large-scale genetic data analysis, many schemes [13–15] based on trusted execution
environments still have shortcomings in aspects such as data access patterns, single-gene
data analysis methods, dynamic updates, and multi-user access control. For example,
Chen et al. first proposed a secure outsourcing genetic testing framework based on SGX
in [13]. Mandal et al. built a practical, private data oblivious genome variants search using
Intel SGX in [14]. Can et al. proposed a hardware–software hybrid approach SkSES to
perform statistical tests on genomic data presented as VCF files from different countries
in [15]. Previous schemes have not addressed a series of issues such as data access pattern
leakage, single analysis methods, and dynamic data update during multi-user analysis in
IoT scenarios. Thus, we propose a secure and efficient dynamic analysis scheme for genome
data within an SGX-assisted server. The main contributions of SEDASGX are summarized
as follows.

• SEDASGX provides a multi-party genome data analysis architecture for edge comput-
ing scenarios based on Intel SGX. This architecture uses the AES-GCM algorithm and
the attributes of SGX to ensure the confidentiality and integrity of the code, genetic
data, and analysis results. In addition, even if the terminal device does not require
hardware support, it still meets the needs of users for uploading and analysis, reducing
the hardware requirements of end users.

• SEDASGX is used to construct an oblivious data storage structure based on Path
ORAM to avoid the leakage of access patterns of genome data in the analysis and
update process, and encrypts them with a tamper-proof encryption algorithm (ASE-
GCM) to guarantee the confidentiality and integrity of gene data, as well as the
correctness of the analysis results.

• SEDASGX utilizes various genome analysis methods and dynamic updates. Addition-
ally, the identity encryption technology based on the SGX security analysis architecture
ensures that during the analysis process users cannot obtain each other’s analysis results.

2. Related Work

Privacy of genomic data has recently become a very hot research topic. Several privacy-
preserving schemes have been proposed for processing of genomic data in different secure
aspects. In the following, we present the detailed classifications of state-of-the-art work.

• Homomorphic encryption-based schemes. Kim et al. [6] used homomorphic encryp-
tion technology to encrypt a DNA sequence and conduct a secure evaluation of χ2

distribution over the encrypted data. Sarkar et al. [7] proposed a privacy-preserving
genotype imputation using machine learning and a Paillier homomorphic encryption.
Wang et al. [8] designed a homomorphic exact logistic regression model algorithm
aiming at reducing the computational and storage costs. Blatt et al. [9] presented a
privacy-preserving framework based on several advances in homomorphic encryption
and demonstrated that it can perform an accurate GWAS analysis for a real dataset of

Electronics 2023, 12, 5004 3 of 16

more than 25,000 individuals, keeping all individual’s data encrypted and requiring
no user interactions.

• Secure multi-party computation (SMC)-based schemes. Kamm et al. [10] proposed
secretly sharing the sensitive data among several parties and computing GWAS over
the distributed data. Dong et al. [11] proposed a secure and efficient GWAS scheme.
Zhu et al. [12] proposed a privacy-preserving framework for conducting genome-wide
association studies over outsourced patient data.

• Hardware-based schemes. Chen et al. [13] presented one of the first implementa-
tions of a Software Guard Extension (SGX)-based securely outsourced genetic testing
framework, which leveraged multiple cryptographic protocols and a minimal perfect
hash scheme to enable efficient and secure data storage and computation outsourcing.
Mandal et al. [14] built a memory oblivious structure to search genome variants us-
ing Intel SGX. Kockan et al. [15] proposed SkSES, which employs sketch algorithm,
data compression, and population stratification reduction methods to reduce the
memory consumption.

3. Preliminaries
3.1. Intel SGX

Intel SGX [16–20] is a set of new instructions and modifications to the memory access
architecture of Intel CPUs. Figure 1 summarizes the main features of SGX: memory isolation
and remote attestation.

(1)SGX Memory Isolation

Hardware

OS

App 2App 1

Enclave 2

Secure

Service

(2)SGX Remote Attestation
Verifier

1.Challenge

User Platform

8. Signature+

IAS

Quoting Enclave(QE)

EPID

6.EGETKEY

Application Enclave

5.REPORT

7.Signature

Application

3.EREPORT

2. QE ID

REPORT

4.

9. Signature

Verify

Figure 1. Intel SGX Features.

• Memory Isolation. When a program runs on the SGX-enabled platform, it is divided
into two parts: an untrusted storage region and a trusted isolated region (enclave).
An enclave is a separate block of physical RAM that cannot be accessed by other
applications, privileged software, OS, hypervisor, or the firmware on the system in
Figure 1(1). Meanwhile, the enclave is used to protect sensitive data and codes. When
an SGX program is hung or closed, the untrusted storage region mainly is utilized to
store the encrypted sensitive data separated from the enclave.

• Remote Attestation. SGX provides a cryptographic verification that an enclave is
running securely on a remote server platform. When an enclave is created, an app
enclave generates a set of claims (i.e., Key and REPORT), and an SGX component
QE (quoting Enclave) generates an attestation signature of the report by using the
EGETKEY instruction in Figure 1((2)-6). QE returns the signature to the App in
Figure 1((2)-7). After that, the App sends the signature and key to the verifier in
Figure 1((2)-8). Finally, the verifier checks the signature using the Intel attestation
services (IASs). In particular, QE only accepts measurements from trusted hardware,
and the hardware guarantees that only enclaves that have been correctly created can
be measured. Furthermore, a secure channel between the enclave and the client can
be established via ECDH [21] and ECDSA [22]. This trusted channel is used to share
the secret between the enclave and the client.

Electronics 2023, 12, 5004 4 of 16

3.2. Oblivious RAM

Oblivious RAM (ORAM) algorithms allow a user to hide the access pattern of data
that are accessed on a remote server by continuously shuffling and re-encrypting them.
An adversary can observe the physical locations of the data accessed, but the ORAM
algorithms ensure that the adversary learns nothing about the true access pattern during
frequent accesses between the enclave and the storage. Next, we give a definition of the
access pattern, and more details are given in [23].

Definition 1 (Access Pattern). Let
→
x =(q1, q2,. . . ,qn) denote a data effective request sequence

of length n, where qi=(opi, idi, datai), opi denotes a read idi or a write (idi, datai) operation.
Additionally, idi represents the identifier of a data block, and datai represents gene data written into
a data block with an identifier idi.

3.3. Genome Analysis Methods

• Chisquare statistics are mainly used to study the relation of gene mutations in
genome data. Because human beings are diploid and have two copies of all (non-
sex)chromosomes, each person will have either the genotypes aa, ab(ba), or bb for
each locus. For example, we sample the genomes of N individuals for particular
single nucleotide variants (SNV), of which some have a particular disease (cases),
and the rest do not (controls). The genotype aa, ab(ba), and bb represent 0, 1, and
2, respectively. Thus, person genomes can be represented by a vector g∈{0, 1, 2}N .
The i-th entry corresponds to the number of transcripts the person i has of a allele at
locus j. Let y∈{0, 1}N be a vector that represents the gene mutation state of a person
yi = 1 if the i-th person has the disease, and yi = 0 if he/she does not. More details
are described in [24]. As we will see, these values in Table 1 are sufficient to compute
the χ2 statistic using the following Equation (1).

χ2 = ∑
i∈{0,1}

∑
j∈{0,1}

(mij − cj × ri
2N)2

cj × ri
2N

(1)

Table 1. Genotype table.

Genotype a b Sum

Cases (yi = 1) m00 m01 r0
Controls (yi = 0) m10 m11 r1

Sum c0 c1 2N

• Fisher’s exact test [25] is a statistical test used to determine whether there is a nonran-
dom association between two categorical variables. It is generally used to determine
whether a gene locus is statistically associated with a factor, which is more accurate
than the Chisquare test. As preparation for extending to R × C contingency tables,
the cell counts in 2 × 2 tables are denoted by {mij} for i = 0, 1 and j = 0, 1. Given
the above Table 1, a more general formula is as follows (2). In simple terms, i = 0, 1
and j = 0, 1 are extended to i = 0, 1,. . . , R and j = 0, 1,. . . , C, followed by the row
margins {c0, c1,. . . , cR} and the column margins {r0, r1,. . . , rC}. Meanwhile, the formula
is extended to (3).

p =
c0!c1!r0!r1!

(2N)!m00!m01!m10!m11!
(2)

p =
∏i(ci!)∏j(rj!)

(2N)! ∏i ∏j(mij!)
(3)

• Logistic regression [26] methods are commonly used in statistical analysis. They are
also applied to genetic association studies due to the detection demand of massive
genetic marker predictor variables, e.g., case/control status. Given a dichotomous

Electronics 2023, 12, 5004 5 of 16

phenotype vector Y of m observations, and a matrix of single nucleotide polymorphism
(SNP) genotypes X, let p = P(Y = 1|X = x). The likelihood function is:

L = ∏
Y=1

p ∏
Y=0

(1 − p) (4)

where
p =

1
1 + e−(α+βX)

(5)

and β is the vector of coefficients.

3.4. Identity-Based Encryption (IBE)

The formal notion of an identity-based encryption scheme was developed in [27]. An
IBE scheme Π contains four algorithms: Setup, KeyGen, Enc, and Dec.

• Setup(1λ)→(pk, msk). This algorithm takes as input a security parameter λ. It outputs
the public parameter pk and a private master key msk.

• KeyGen(pk, msk, id)→skid. This algorithm takes as input the public key pk, the private
master key msk, and an identity id. It outputs private key skid of id.

• Enc(skid, m)→C. This algorithm takes as input a public key pk and a message m. It
outputs the ciphertext C for an identity id.

• Dec(skid, C)→m. This algorithm takes as input a private key skid and the ciphertext C.
It outputs the message m.

4. SEDASGX Scheme

A secure and efficient dynamic analysis scheme for genome data within SGX-assisted
is composed of seven polynomial time calculations, namely SEDASGX = (Setup, Enc,
Preprocess, Init, Analysis, Dec, Update). In this section, we will show the system model,
notations and definitions, and constructions.

4.1. System Model

As shown in Figure 2, SEDASGX consists of five entities (i.e., analysis users (AU), pa-
tients (P), edge server (ES), cloud server (CS), and authority (AUT)), and their respective
tasks are described as follows.

• The AU generates encrypted analysis queries and sends them to the CS . Additionally,
the AU decrypts the query results.

• The P encrypts genome data and uploads them to the ES . Meanwhile, the P sends
the update queries to the ES .

• The ES is divided into two parts: enclave and storage region. The enclave preprocesses
all genomic data within the jurisdiction. After that, the enclave encrypts the processed
data and sends them to the CS . The storage region mainly stores source data.

• The CS is divided into two parts: enclave and storage region. The enclave performs
initialization operation, genome analysis operation, and update operation. The storage
region mainly stores all encrypted data and oblivious storage structure.

• The AUT is primarily responsible for remotely verifying the trusted execution en-
vironment of all edge servers and cloud services. Furthermore, the AUT is also
responsible for generating keys for each entity within the system and distributing
them through secure channels.

As shown in Figure 2, the AUT executes a setup operation to generate system master
key pairs and secret key for each entity, and builds the secure channel by performing
remote attestation with the CS and each ES in step (1). In step (2), the P encrypts genome
data and uploads them to the ES . The ES receives all genome data within its jurisdiction
and performs a preprocessing operation within the enclave in step (3). Then, each ES
encrypts these processed genome data and sends them to the CS . After that, in step (4),
the enclave uses the processed genome data to construct some oblivious data structures, a
position map table, and a stash using an initialization operation. Then, the AU generates

Electronics 2023, 12, 5004 6 of 16

encrypted analysis queries and sends them to the enclave. The enclave decrypts these
encrypted analysis (update) queries and performs genome analysis (update) via loading
these oblivious data structures in step (5). The AU receives the encrypted analysis results
returned by the CS and performs decryption operations in step (6). Finally, the P sends the
update to the ES in step (7).

(3) Preprocess

Enclave

Edge ServerAnalysis Users

(4) Init

(5) Analyse

Stash

Position Map

Cloud Server

(7) Updates
Key

(1) Setup

Encrypted

Data

...(6) Dec

Patients

...

ORAM Trees

 (2) Enc

Enclave Enclave Enclave
Encrypted

Data

Key

Key

K
e
y

Authority

Enclave

Figure 2. System Model.

4.2. Notations and Definitions

We summarize some notations used in SEDASGX in Table 2 and define two security
definitions as follows.

Table 2. Notations.

Notations Descriptions

λ, G, g, H Security parameter, group, the generator group G, and hash function
ine pk, msk, skE, ski Public key, master key, ORAM tree structure key, the data key of i-th ES

ine skk, skij , mij The query key of k-th AU , the data key of P , the j-th data under the i-th ES
ine ivij , tagij The j-th initial vector under the i-th ES , the j-th tag in the i-th ES

ine addij , Size The j-th additional information under the i-th ES , preset block size
ine Cij , Miηi

The j-th ciphertext in the i-th ES , the ηi-th data block under the i-th ES
ine Z, pos, n The node capacity of ORAM tree, genome locus, the i-th nation(i-th ES)

ine N, M, pa, id The number of ES , the number of P , the path of ORAM tree, block identifier
ine Ti, PMi, Si The i-th ORAM tree, the i-th position map table, the i-th stash

ine ηi, Ni The sum number of data blocks under i-th ES , the size of Ti
ine Li, psizei, ssizei The high of ORAM tree, the size of PMi, the size of Si

ine maxpa, st The maximum path of Ti, the state of data block(True:1 and false:0)

Definition 2 (Correctness). The SEDASGX scheme is correct if the following holds: First, AUT
runs the Setup algorithm to generate public key pk and master key msk. For the genome data
Mij ,1≤i≤N,1≤j≤M, P executes the Enc algorithm to generate encrypted genome data Cij and
sends them to ES . Then, the enclave of the ES performs the Preprocess algorithm to generate
fixed-size data blocks Miηi

and encrypts Miηi
to Ciηi

. After that, the enclave of the CS calls the
Init algorithm to generate encrypted ORAM trees Ti, position map tables PMi, and stashes Si by
using Ciηi

. Given an analysis request Cq, the ciphertext analysis result CR can always decrypt into
the corresponding plaintext analysis result and can be successfully verified by the Dec algorithm
(AES-GCM).

Definition 3 (Query Unlinkability). Let
→
q = (q1, q2,. . . ,qn) denote a set of analysis sequences with

the same key and length. If any two analysis queries qi and qj are computationally indistinguishable,
the query pattern of the SEDASGX is secure.

Electronics 2023, 12, 5004 7 of 16

4.3. Constructions

We now give the detailed construction of each algorithm in the SEDASGX.
Setup(1λ)→(pk, msk, skij , ski, skk, skE). Taking a security parameter λ as input, the

enclave of the AUT generates a group G with order p, where g is a random generator of G.
The enclave picks up a α∈RZp, and selects a collision-resistant hash function H:{0, 1}∗→G.
Meanwhile, the AUT generates unique identities idij , idk, idi, and idE for P , AU , ES ,
and CS , and generates private keys skij = H(idij)

α, skk = H(idk)
α, ski = H(idi)

α, and
skE = H(idE)

α based on the these unique identities respectively, 1≤ i ≤ N, 1≤ j ≤ M,
and 1≤ k ≤ ς. Finally, the AUT publishes the public key pk = (G, p, g, H, idij , idi, idk, idE)
of the system, and keeps the master key msk =α secret. Meanwhile, the AUT sends the
private keys skij , ski, skk, and skE to the P , the ES , the AU , and the CS by the secure
channel respectively.

Enc(mij , ivij , aadij , skij)→(Cij , tagij). This algorithm takes as inputs data mij , the initial
vertor ivij , the additional authentication data addij , and the data key skij as input. It outputs
ciphertext Cij and the encrypted tag tagij . Then, each P uploads the Cij and the tagij to the
ES . Note that the Enc is an AES-GCM encryption algorithm.

Preprocess(mij , Size)→Miηi
. This algorithm takes genome data mij and a predeter-

mined size Size as input. It outputs a set of fixed-size blocks of data Miηi
, where i denotes

the i-th edge server and ηi represents the total number of data blocks preprocessed by the
i-th the ES , 1≤j≤M, 1≤i≤N. In particular, ηi = ΣM

j=1ηij , j represents the j-th patient under
the i-th ES , and ηij represents the number of data blocks after the mij is split. Firstly, the
enclave of each ES decrypts Cij and divides all genome data mij into fixed-size data block
Miηi

, recursively. If the last remaining data point is not sufficient to meet the predetermined
size, it needs to be randomly filled to reach the required size. Finally, the enclave encrypts
Miηi

to Ciηi
and sends them to the CS .

Init(Ciηi
, skE, Z, ski)→(Ti, PMi, Si). This algorithm takes all encrypted data blocks

Ciηi
, the ORAM tree structure key skE, the node capacity Z, and the data key ski of the ES

as input. It outputs position map tables PMi, stashes Si, and encrypted ORAM trees Ti,
1≤i≤N, 1≤j≤M, according to Algorithm 1.

• First, the enclave of the CS calculates the sum ηi of all data blocks in each ES . Then,
enclave computes Ni, Li, psizei, and ssziei using the Equations (6) and (7), where Pow
is a function that finds the power of 2 closest to ηi.

ηi = ΣM
j=1ηij ;Ni = Pow(ηi);Li = log2(Ni + 1)− 1 (6)

psizei = Ni ∗ Z; ssziei = (Li + 1) ∗ Z (7)

• Second, the enclave creates the position map tables PMi and stashes Si according to
psizei and ssizei. Meanwhile, the enclave randomly generates ssizei dummy genome
data blocks and encrypts them according to skE. Then, the enclave writes them to the
ORAM tree Ti according to Pi.

• Finally, the enclave computes ski by the α and utilizes them to decrypt Ciηi
to obtain

Miηi
. The enclave re-encrypts Miηi

to C∗
iηi

in the Si and writes them to Ti according to
updated Pi.

Query(skk, q)→Cq. This algorithm takes as inputs a query key skk of k-th analysis user
and an analysis query q. It outputs the encrypted query Cq.

• To generate a tailored analysis query q = H(µ||ν||pos|| f isher), the k-th AU first selects
the data from various ES (µ and ν, 1≤µ, ν≤N), a certain gene locus pos, and a certain
analysis method f isher, Chi-square, or LR based on their analysis requirements.

• Subsequently, the AU employs their query key skk to generate an encrypted analysis
query Cq using the Enc algorithm, and sends Cq to the CS .

Electronics 2023, 12, 5004 8 of 16

Algorithm 1: Init Algorithm
Input: ORAM structure key skE, encrypted data blocks Ciηi

, data key ski of ES , node
capacity Z.

Output: The position map PMi, stashes Si, and encrypted ORAM trees Ti,
1 ≤ i ≤ N.

Enclave:
1 Decrypt Ciηi

to obtain Miηi
, ηi = ΣM

j=1ηij , 1 ≤ i ≤ N, 1 ≤ j ≤ M;
2 For 1 ≤ i ≤ N do
3 Compute Ni = Pow(ηi), Li = log2(Ni + 1)− 1, ssziei = (Li + 1) ∗ Z,

psizei = Ni ∗ Z,
maxpa = 2Li ;

4 Initialize an Si = {ci, idi, posi, pai, ni, sti} of size ssizei and PMi = {idi, posi, pai, ni} of
size psizei;

5 For 1 ≤ t ≤ βi = ⌈psizei/ssziei⌉ ∗ ssizei do
6 Generate a dummy block m′

it , idit = t, pait = Random(2Li), posit = random,
and nit = i;

7 Copy m′
it , idit , pait , posit , and nit to Si.cit , Si.idit , Si.pait , Si.posit , Si.nit and set

Si.stit = 0;
8 IF t mod ssizei = 0
9 Encrypt blocks in Si and write them to Ti by PMi and empty Si;
10 For 1 ≤ i ≤ N do
11 Set βi = ⌈ηi/ssizei⌉ ∗ ssizei and generate βi − ηi dummy blocks m′

iι , ηi < ι ≤ β
12 For 1 ≤ j ≤ βi do
13 Copy j, Miηi

.pos, Miηi
.n, Miηi

.c to Si.idij , Si.posij ,Si.nij ,Si.cij , and set
Si.stij = 1

Si.paij = Random(maxpa);
14 PMi.idij = j, PMi.paij = Si.paij , PMi.nij = Si.nij ,PMi.posij = Si.posij ;
15 IF j mod ssizei = 0
16 Encrypt blocks in the Si and write them to Ti by PMi, and empty Si;
17 Return ORAM tree Ti, position map PMi, and stashes Si;

Analysis(skE, Ti, PMi, Si, skk, Cq)→CR. This algorithm takes the ORAM tree structure
key skE, the encrypted ORAM tree Ti, the position map table PMi, the stash Si, the query
key skk of k-th AU , and an encrypted query Cq as inputs. It outputs the encrypted analysis
result CR according to the following Algorithm 2.

• First, the enclave decrypts the Cq to obtain µ, ν, pos, and f isher.
• Second, the enclave acquires its corresponding ORAM tree Tµ and Tν based on the

values of µ and ν, and subsequently read the data from the ORAM tree Tµ and Tν to
the stash Sµ and Sν by utilizing the position map table PMµ and PMν, respectively.

• Finally, the enclave extracts the relevant information required for data analysis from
the data blocks that have been read, and calls the corresponding analysis algorithm
(e.g., f isher) to analyze the genome data according to the query request and obtain the
corresponding analysis results R. After that, the enclave encrypts the R by using the
corresponding query key skk and sends the CR to the k-th AU .

Electronics 2023, 12, 5004 9 of 16

Algorithm 2: Analysis Algorithm
Input: Encrypted ORAM tree Ti, structure key skE, query key skκ , encrypted analysis

query Cq.
Output: Encrypted analysis result CR.
AU :

1 Encrypt the analysis query q to Cq with query key skk;
Enclave :

2 Decrypt Cq to q = µ||ν||pos|| f isher with skk, and read PMµ and PMν to enclave;
3 For 1 ≤ i ≤ N do
4 For 1 ≤ j ≤ βi do
5 Find PMµ.idµj and PMµ.paµj corresponding to PMµ.posµj = pos;
6 Read all blocks on PMµ.paµj in Tµ and decrypt them to Sµ;
7 For 1≤ω≤ssizei do
8 IF PMµ.idµj = Sµ.idµω

9 Get Sµ.cµω , update Sµ.paµω , and PMµ.paµj , and re-encrypt Sµ.cµω ;
10 Repeat steps 3–10 to obtain Sν.cνω of ν;
11 Compute analysis result R according to Sµ.cµω of µ and Sν.cνω of ν via Fisher’s

exact algorithm;
12 Encrypt analysis result R to CR with skk and send it to the k-th AU ;
AU :

13 Decrypt encrypted analysis result CR and verify correctness;

Dec(CR, skk, tagR)→R. This algorithm takes as inputs an encrypted analysis result CR,
a query key skk, and an encrypted tag tagR. It outputs an analysis result R. In other words,
the AU verifies and decrypts this analysis result CR via the AES-GCM algorithm.

Update(Ti, PMi, Si, skE, C ′
it , ski)→(T ′

i , PM′
i, S ′

i). This algorithm takes as inputs
the ORAM tree Ti, position map PMi, stash Si, ORAM tree structure key skE, updated
encrypted data C ′

it , and data key ski. We are assuming that the updated data blocks have
been preprocessed by the ES and already reside within the CS . Furthermore, given the
vast volume of genomic data, we will only address scenarios involving the modification of
individual data blocks and the addition of a specific number of data blocks. See Algorithm 3
for details.

• Case 1: modify a single data block. First, the enclave decrypts the C ′
i1

to obtain up-
dated data, e.g., µ, pos, and M′

i1
. Then, the enclave finds pos in the PMµ to ob-

tain PMµ.paµj and PMµ.idµj . After that, the enclave loads all data blocks on the
PMµ.paµj in the Tµ and decrypts them into the Sµ. Next, the enclave searches the
PMµ.idµj on the Sµ and replaces Sµ.cµj with the updated content M′

i1
. Meanwhile, it

updates Sµ.paµj and copies it to PMµ.paµj . Finally, the enclave re-encrypts all data
blocks in the Sµ and re-writes them back to the Tµ according to the updated Sµ.paµj .

• Case 2: add small data blocks. Upon receipt of the updated data blocks C ′
it , ηi ≤ t ≤ psizei

uploaded by the ES , the enclave uses the ski to decrypt block by block. Then, the
enclave generates the updated ORAM tree T ′

i .
• Case 3: add massive data blocks. This is performed after receiving the encrypted data

blocks C ′
it , psizei − ηi ≤ i ≤ t uploaded by ES . Because the actual number of genome

data blocks in the storage region has exceeded the storage limit of the original ORAM
trees, the enclave needs to call the Algorithm 1 to regenerate the new ORAM tree T ′

i .

Electronics 2023, 12, 5004 10 of 16

Algorithm 3: Update Algorithm
Input: Encrypted ORAM tree Ti, ORAM tree key skE, data key ski, encrypted update

data blocks C′it ,
the position map PMi, the stash Si.

Output: Updated ORAM trees T ′
i , updated position map tables PM′

i, updated
stashes S ′

i .
ES :
1 Preprocess update data to C ′

it , and upload them to the CS ;
Enclave :
2 Decrypt C ′

it to M′
it , µ and posit with ski, and find the PMµ;

3 For 1 ≤ i ≤ N do
4 IF t = 1
5 For 1 ≤ j ≤ βi
6 Find PMµ.idµj and Pµ.paµj corresponding to PMµ.posµj = posit ;
7 Read all blocks on PMµ.paµj in Tµ and decrypt them to Sµ;
8 For 1≤w≤ssizei do
9 IF PMµ.idµj = Sµ.idµω

10 Update Sµ.paµω ,Sµ.cµω , and PMµ;
11 ELSE IF 1 < t ≤ psizei − ηi
12 For 1 ≤ l ≤ t do
13 Update PMµ.idiηi+l = ηi + l, PMµ.paiηi+l = Ransom(2Li), PMµ.posiηi+l =

posit ;
14 For 1 ≤ ξ ≤ ⌈t/ssziei⌉ do
15 For 1 ≤ ω ≤ ssizei do
16 Copy PMµ.idiηi+l ,PMµ.paiηi+l , Mil to Sµ.idiω , Sµ.paiω , Sµ.ciω and set

Sµ.stiω =1;
17 Encrypt Sµ and write them to ORAM Tµ by Sµ.paiω , and empty Sµ;
18 ELSE t > psizei − ηi
19 Regenerate new T ′

µ , PM′
µ, and S ′

µ with the Cµηi
and updated data blocks C ′

it ;
20 Return T ′

i , P ′
i , and S ′

i

5. Security Analysis

Combining the threat model assumed in Figure 1(1) by Intel SGX itself, only the CPU
can securely access data in the enclave. Thus, the adversary can impersonate cloud server
administrators (or OS), other entities in the system, and external attackers.

5.1. Correctness

In SEDASGX, the AU , P , AUT , and enclave are trusted, and they can execute all
algorithms correctly. The genome data separated from the enclave are encrypted by the
AES-GCM tamper-proof encryption algorithm and stored in the untrusted memory. The
correctness of the SEDASGX relies on the integrity of the data stored in the untrusted
memory. Thus, the correctness of the SEDASGX depends on the AES-GCM tamper-proof
encryption algorithm. Fortunately, the correctness of the AES-GCM algorithm has been
proved in [28].

5.2. Query Unlinkability

When the adversary is an external attacker, the adversary cannot obtain the key due
to the memory isolation feature of Intel SGX. The adversary cannot obtain any plaintext
information about the query without the key. Therefore, it is only necessary to prove that
the adversary cannot distinguish any two queries.

Theorem 1. SEDASGX can guarantee that the adversary cannot distinguish any two analysis
queries that are generated from the same analysis content.

Electronics 2023, 12, 5004 11 of 16

Proof. Assuming that with the two analysis queries qi and qj, the user randomly selects
different initial vectors ivi, ivj. Then, the user adopts the AES-GCM algorithm to encrypt qi
and qj with

Cqi = Enc(SC, ivi, qi, aadi),

Cqj = Enc(SC, ivj, qj, aadj)
(8)

The security of the AES-GCM encryption algorithm is based on a cryptographic
conjecture that the block cipher is a secure pseudo-random permutation. Even the same
analysis content will be encrypted into different ciphertext due to the randomness of the
initial vector. Thus, Cqi and Cqj are computationally indistinguishable.

5.3. Access Pattern

When the adversary is an administrator, SEDASGX uses the ORAM mechanism to
avoid access pattern leakage caused by frequent access to memory due to genome analysis.

Theorem 2. Let AP(
→
x) represent the access pattern of the storage sequence for a given analysis

query. An ORAM is secure if (1) for any two analysis queries of the same length, their access

patterns AP(
→
x) and AP(

→
y) are computationally indistinguishable except user and enclave, and

(2) the ORAM is correct in the case that returns on input
→
x data that is consistent with

→
x probability

≥ 1 − negl(|→x |), i.e., the ORAM may fail with probability negl(|→x |).

Proof. When a user sends an analysis request, the enclave loads all genome data blocks
based on a certain path PMi.paiηi

in the ORAM tree Ti each time. To prove the security of
ORAM, we assume that Q ={id1, id2, . . . , idpsizei} is an block identifier sequence with size
psizei. Thus, the access pattern p observed by the adversary is as follows:

p = {pospsizei [idpsizei],; pos1[id1]} (9)

where posκ [idκ] is the position of κ-th genome data block on a certain path. Every data block
is encrypted with the AES-GCM algorithm. Thus, any two access pattern sequences are
computationally indistinguishable due to initial vector iv generated randomly. Moreover,
PMi is accompanied by an update during the enclave data loads every time, e.g., any two
positions posκ1 [idκ1] and posκ2 [idκ2] are statistically independent of each other under κ1<κ2
and idκ1 = idκ2 . Likewise, posκ1 [idκ1] and posκ2 [idκ2] are statistically independent of each
other under κ1<κ2 and idκ1 ̸=idκ2 . Thus, we obtain the Equation (10) (by using Bayes rule).

Pr(p) =
psizei

∏
κ=1

Pr(posκ [idκ]) = (
1

2Li
)psizei (10)

This proves that AP(−→x) is computationally indistinguishable from a random sequence
of bit strings. The correctness of the ORAM was proven in detail in [23].

5.4. CCA Security

Theorem 3. If ΠE is a CPA secure encryption scheme, and ΠM is a message authentication code
with a unique tag, then SEDASGX is a CCA secure encryption scheme.

Proof. In the AES-GCM algorithm, plaintext data are encrypted using the AES-CTR mode,
and then an authentication tag (MAC) is generated through GHASH, and finally, the
ciphertext is obtained by XOR operation. Among them, the AES-CTR has been proved
in [29] to satisfy CPA security.

Now suppose there exists an adversary, denoted as A, who can distinguish the ci-
phertext. The A can choose two plaintexts m0 and m1 of the same length, |m0| = |m1|, and
receives an encrypted ciphertext cb = Enc(sk, mb), where sk is a symmetric key and b is
0 or 1, indicating the plaintext chosen by the A. Therefore, A’s goal is to infer b from cb.

Electronics 2023, 12, 5004 12 of 16

To achieve this goal, A can construct two valid authentication tags (MACs) with different
GHASH values, and select one of these tags to attempt to match the encrypted ciphertext.
However, since the GHASH function is collision-resistant, A cannot construct two valid
tags with the same GHASH value. Therefore, we prove that the SEDASGX scheme for
AES-GCM algorithm encryption with keys generated by the IBE scheme is CCA secure.

6. Experiment Analysis

We show the experimental results from experimental analysis of SEDASGX and
comparison of SEDASGX with a non-SGX server.

6.1. Implementation

We realize a series of experimental evaluations using a real-world genome dataset [30]
to evaluate SEDASGX in terms of preprocessing, update operation, and analysis efficiency.
The dataset we used is from the third phase of the 1000 Genomes Project in the UCSC
Genome Browser and represents 2504 samples on GRCh37. The 1000 Genomes Project
utilizes advanced DNA sequencing technologies to analyze the genomes of a diverse set of
individuals from various ethnic backgrounds. The 1000 Genomes Project dataset includes
the following features: sample diversity, whole genome sequencing, data accessibility, data
quality control, and clinical and population genetics applications.

We implemented SEDASGX in C/C++ and Python codes on real SGX hardware,
and used Intel SGX SDK 2.11 version library and SGX-OpenSSL 1.1.1 version library
for encryption and Setup, respectively. We used Python 3.11.5 version in The Python
Community to implement genetic data preprocessing inside SGX, and we evaluated the
performance of the algorithms in the SGX hardware debug mode. The experimental
environment was deployed on a PC with an Intel ® Core TM i7-10510U CPU (1.8 GHz∗8),
32G memory, and Ubuntu 20.04.3LTS operating system.

Table 3 shows the size of the genome data blocks of each country under different edge
servers and the size of the corresponding ORAM tree built on the cloud server.

Table 3. Sample data size.

Edge Server Japan Gambia Britain American China

Genome Blocks 383 414 4486 4715 9680
ORAM Tree Size 3066 3066 49,146 49,146 98,298

6.2. Function Analysis

Table 4 presents the function comparison between SEDASGX and existing research
solutions, including security, analysis method, and dynamic update. Here, reference [13]
mainly proposes a secure genetic testing framework based on SGX, which can defend
against malicious attacks. However, multi-analysis methods, dynamic update, and IBE are
not considered. Reference [14] adopts an oblivious RAM mechanism to avoid the access
pattern leakage of the interaction between the user and the server with SGX. Nonetheless,
it only supports the Chisquare analysis method and dynamic update is not considered.
Similarly, reference [15] also does not consider the diversity of analysis methods, IBE, and
the application of actual scenarios.

Table 4. Contrast of functions.

Scheme ChiSquare Fisher LR Update Obliviousness SGX IBE

[13] % % % % % ! %
[14] % % % % ! ! %
[15] ! % % % % ! %
SEDASGX ! ! ! ! ! ! !

The%represents not have this function and The!represents having this function in the Table 4.

Electronics 2023, 12, 5004 13 of 16

6.3. Performance Analysis

Figure 3 shows the performance of each algorithm in the SEDASGX. In the prepro-
cessing phase, the overhead of preprocessing increases with the increase in datasets under
different edge servers. Among them, the overhead of enclave initialization is roughly the
same for the same level of data volume. In the analysis process, the larger the ORAM tree
Ti created, the more genetic data on the read path, and the greater the analysis overhead.

Preprocess Init Enc
0

88
176
264
352

2660
2730
2800
2870
2940
6000
6100
6200
6300
6400
6500

R
un

 T
im

e
(s

)

 Japan
 Gambia
 Britain
 American
 China

Setup Query Fisher Dec Update
0.00

0.05

0.10

0.15

0.65

0.70

0.75

Ru
n

Ti
m

e
(s

)

 Japan
 Gambia
 Britain
 American
 China

Figure 3. Performance over each algorithm of SEDASGX.

Figure 4 illustrates the performance of data preprocessing by different edge servers. It
can be seen intuitively that as the amount of data held by the edge server increases, the
overhead of preprocessing operations will also increase, and there is a linear relationship
between the two, but the increase is not very drastic.

Figure 5 shows the comparison of the update time of the two edge servers with the
largest and smallest data volumes. The update cost of edge servers owned by China is
higher than the update cost of edge servers owned by The Gambia. Through comparison,
the update efficiency is not only related to the amount of original data but also related to
the number of update gene loci. Notice: The content presented in Figure 5 is the update
cost for a small number of loci on a chromosome. We only want to reflect the relationship
between the update cost and the number of updated gene loci according to Figure 5. Our
scheme is built based on real genetic datasets, so the framework of the scheme is easily
scalable to handle massive genetic loci.

Figure 6 shows the computational overhead of testing the three analysis algorithms
of Chisquare, Fisher, and Logistic Regression under the two cases of hardware SGX-assisted
cloud servers and traditional cloud servers. Experimental results show that the three
genetic data analysis methods under the SGX-assisted cloud server are significantly faster
than the three genetic data analysis methods under traditional cloud servers, and each
analysis algorithm is approximately 2.5 times faster. This is because the genetic data
analysis on the corresponding plaintext is performed after the ciphertext of a certain path
on the ORAM tree is decrypted in the enclave. Meanwhile, SEDASGX not only reduces the
communication cost between the client (User/Patient) and the cloud server but also makes
the client lightweight, so that the client does not need to preprocess their genomic data. In
summary, SEDASGX has high analysis efficiency.

Furthermore, in terms of security, SEDASGX not only inherits the data confidentiality
and integrity of the non-SGX traditional scheme, but also has a trusted hardware environ-
ment that the non-SGX scheme does not have to ensure the confidentiality and integrity of
the code. Therefore, the SEDAGX scheme can provide more secure genetic data analysis.
In terms of calculation speed, while ensuring the same security strength, the plaintext
calculation rate of the SEDASGX scheme within the SGX hardware is much higher than the
ciphertext calculation rate of the non-SGX traditional scheme.

Electronics 2023, 12, 5004 14 of 16

0

50

100

150

200

250

300

350

400

450

R
un

 T
im

e
(s

)

Preprocessing

 Japan
 Gambia
 Britain
 American
 China

Figure 4. The performance of the preprocessing operation.

0 500 10001500200025003000350040004500500055006000
0

100

200

300

400

500

600

700

U
pd

at
e

Ti
m

e
(s

)

Genome Locus number

 Gambia
 China

Figure 5. The comparison of update time.

ChiSquare Fisher LR
0

670
1,340

60,000

62,000

64,000

170,100

172,800

175,500

R
un

 T
im

e
(m

s)

 SGX
 Non-SGX

Figure 6. The comparison of analysis time.

7. Conclusions

In this paper, we construct a secure and efficient dynamic analysis scheme for genome
data within an SGX-assisted server. First, we design a multi-party genetic data analysis
architecture based on Intel SGX and IBE in edge computing scenarios. This framework relies
on Intel SGX to ensure the confidentiality and integrity of genetic data while leveraging
the IBE to enable the multi-party analysis scenario. To mitigate the threat of access pattern
leakage, we employ SGX to construct an oblivious ORAM tree structure for obfuscating
memory access patterns. Simultaneously, we not only implement plaintext genomic data
analysis within trusted hardware but also provide various analytical methods for genomic
data. Finally, the SEDASGX implements dynamic updates of genomic data to ensure more
accurate analysis in cases of genetic mutations due to environmental and other factors.
Moreover, the experimental results show that SEDASGX is more efficient than non-SGX in
genome data analysis.

Future work includes deploying the scheme in a real-world environment (e.g., a
large-scale hospital) with the aims of evaluating and refining the scheme (if necessary)
to provide additional functionalities without compromising on security and efficiency.

Electronics 2023, 12, 5004 15 of 16

Additionally, we will also consider the situation of a more powerful adversary and pursue
higher analysis efficiency.

Author Contributions: Conceptualization, B.L. and Q.W.; Methodology, B.L. and Q.W.; Software,
B.L.; Formal analysis, Q.W.; Investigation, D.F.; Resources, F.Z.; Data curation, D.F.; Writing—original
draft, B.L.; Writing—review and editing, B.L.; Supervision, F.Z.; Project administration, F.Z. and Q.W.;
Funding acquisition, F.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 62202090, 62173101 and 62072090, by Liaoning Province Natural Science Foundation
Medical-Engineering Cross Joint Fund under Grant 2022-YGJC-24, by Doctoral Scientific Research
Foundation of Liaoning Province under Grant 2022-BS-077, and by the Fundamental Research Funds
for the Central Universities under Grant N2217009.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vellela, S.S.; Reddy, B.V.; Chaitanya, K.K.; Rao, M.V. An Integrated Approach to Improve E-Healthcare System using Dynamic

Cloud Computing Platform. In Proceedings of the 2023 5th International Conference on Smart Systems and Inventive Technology
(ICSSIT), Tirunelveli, India, 23–25 January 2023; IEEE: Pisctaway, NJ, USA, 2023; pp. 776–782.

2. Garrison, E.; Kronenberg, Z.N.; Dawson, E.T.; Pedersen, B.S.; Prins, P. A spectrum of free software tools for processing the VCF
variant call format: Vcflib, bio-vcf, cyvcf2, hts-nim and slivar. PLoS Comput. Biol. 2022, 18, e1009123. [CrossRef]

3. Xu, Y.; Ren, J.; Wang, G.; Zhang, C.; Yang, J.; Zhang, Y. A blockchain-based nonrepudiation network computing service scheme
for industrial IoT. IEEE Trans. Ind. Inform. 2019, 15, 3632–3641. [CrossRef]

4. Gürsoy, G.; Li, T.; Liu, S.; Ni, E.; Brannon, C.M.; Gerstein, M.B. Functional genomics data: Privacy risk assessment and
technological mitigation. Nat. Rev. Genet. 2022, 23, 245–258. [CrossRef] [PubMed]

5. Sero, D.; Zaidi, A.; Li, J.; White, J.D.; Zarzar, T.B.G.; Marazita, M.L.; Weinberg, S.M.; Suetens, P.; Vandermeulen, D.; Wag-
ner, J.K.; et al. Facial recognition from DNA using face-to-DNA classifiers. Nat. Commun. 2019, 10, 2557. [CrossRef]

6. Kim, M.; Lauter, K. Private genome analysis through homomorphic encryption. BMC medical informatics and decision making.
BioMed Cent. 2015, 15, 1–12.

7. Sarkar, E.; Chielle, E.; Gürsoy, G.; Mazonka, O.; Gerstein, M.; Maniatakos, M. Fast and scalable private genotype imputation
using machine learning and partially homomorphic encryption. IEEE Access 2021, 9, 93097–93110. [CrossRef]

8. Wang, S.; Zhang, Y.; Dai, W.; Lauter, K.; Kim, M.; Tang, Y.; Xiong, H.; Jiang, X. HEALER: Homomorphic computation of ExAct
Logistic rEgRession for secure rare disease variants analysis in GWAS. Bioinformatics 2016, 32, 211–218. [CrossRef] [PubMed]

9. Blatt, M.; Gusev, A.; Polyakov, Y.; Goldwasser, S. Secure large-scale genome-wide association studies using homomorphic
encryption. Proc. Natl. Acad. Sci. USA 2020, 117, 11608–11613. [CrossRef] [PubMed]

10. Kamm, L.; Bogdanov, D.; Laur, S.; Vilo, J. A new way to protect privacy in large-scale genome-wide association studies.
Bioinformatics 2013, 29, 886–893. [CrossRef]

11. Dong, C.; Weng, J.; Liu, J.N.; Yang, A.; Liu, Z.; Yang, Y.; Ma, J. Maliciously secure and efficient large-scale genome-wide association
study with multi-party computation. IEEE Trans. Dependable Secur. Comput. 2022, 20, 1243–1257. [CrossRef]

12. Zhu, X.; Ayday, E.; Vitenberg, R. A privacy-preserving framework for conducting genome-wide association studies over
outsourced patient data. IEEE Trans. Dependable Secur. Comput. 2022, 20, 2390–2405. [CrossRef]

13. Chen, F.; Wang, C.; Dai, W.; Jiang, X.; Mohammed, N.; Al Aziz, M.M.; Sadat, M.N.; Sahinalp, C.; Lauter, K.; Wang, S. PRESAGE:
PRivacy-preserving gEnetic testing via SoftwAre guard extension. BMC Med. Genom. 2017, 10, 77–85. [CrossRef]

14. Mandal, A.; Mitchell, J.C.; Montgomery, H.; Roy, A. Data oblivious genome variants search on Intel SGX. In Proceedings of the
International Workshop on Data Privacy Management, Barcelona, Spain, 6–7 September 2018; Springer International Publishing:
Cham, Swizterland, 2018; pp. 296–310.

15. Kockan, C.; Zhu, K.; Dokmai, N.; Karpov, N.; Kulekci, M.O.; Woodruff, D.P.; Sahinalp, S.C. Sketching algorithms for genomic data
analysis and querying in a secure enclave. Nat. Methods 2020, 17, 295–301. [CrossRef]

16. Costan, V.; Devadas, S. Intel SGX explained. Cryptology ePrint Archive. Available online: https://eprint.iacr.org/2016/086
(accessed on 7 August 2022).

17. Zheng, W.; Wu, Y.; Wu, X.; Feng, C.; Sui, Y.; Luo, X.; Zhou, Y. A survey of Intel SGX and its applications. Front. Comput. Sci. 2021,
15, 1–15. [CrossRef]

18. Amjad, G.; Kamara, S.; Moataz, T. Forward and backward private searchable encryption with SGX. In Proceedings of the 12th
European Workshop on Systems Security, Dresden, Germany, 25–28 March 2019; pp. 1–6.

19. Jiang, Q.; Qi, Y.; Qi, S.; Zhao, W.; Lu, Y. Pbsx: A practical private boolean search using Intel SGX. Inf. Sci. 2020, 521, 174–194.
[CrossRef]

20. Will, N.C.; Maziero, C.A. Intel Software Guard Extensions Applications: A Survey. ACM Comput. Surv. 2023, 55, 322. [CrossRef]

http://doi.org/10.1371/journal.pcbi.1009123
http://dx.doi.org/10.1109/TII.2019.2897133
http://dx.doi.org/10.1038/s41576-021-00428-7
http://www.ncbi.nlm.nih.gov/pubmed/34759381
http://dx.doi.org/10.1038/s41467-019-10617-y
http://dx.doi.org/10.1109/ACCESS.2021.3093005
http://dx.doi.org/10.1093/bioinformatics/btv563
http://www.ncbi.nlm.nih.gov/pubmed/26446135
http://dx.doi.org/10.1073/pnas.1918257117
http://www.ncbi.nlm.nih.gov/pubmed/32398369
http://dx.doi.org/10.1093/bioinformatics/btt066
http://dx.doi.org/10.1109/TDSC.2022.3152498
http://dx.doi.org/10.1109/TDSC.2022.3182944
http://dx.doi.org/10.1186/s12920-017-0281-2
http://dx.doi.org/10.1038/s41592-020-0761-8
https://eprint.iacr.org/2016/086
http://dx.doi.org/10.1007/s11704-019-9096-y
http://dx.doi.org/10.1016/j.ins.2020.02.031
http://dx.doi.org/10.1145/3593021

Electronics 2023, 12, 5004 16 of 16

21. Djoko, J.B.; Lange, J.; Lee, A.J. Nexus: Practical and secure access control on untrusted storage platforms using client-side sgx. In
Proceedings of the 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Portland,
OR, USA, 24–27 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 401–413.

22. Johnson, D.; Menezes, A.; Vanstone, S. The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 2001, 1, 36–63.
[CrossRef]

23. Stefanov, E.; Dijk, M.V.; Shi, E.; Chan, T.H.H.; Fletcher, C.; Ren, L.; Yu, X.; Devadas, S. Path ORAM: An extremely simple oblivious
RAM protocol. J. ACM (JACM) 2018, 65, 1–26. [CrossRef]

24. LeMay, C. Privacy-Preserving Chi-Squared Tests Using Homomorphic Encryption. Available online: https://www.cs.utexas.
edu/~dwu4/courses/sp22/static/projects/LeMay.pdf (accessed on 15 August 2023).

25. Zhao, G.; Yang, H.; Yang, J.; Zhang, L.; Yang, X. A data-based adjustment for fisher exact test. Eur. J. Stat. 2021, 1, 74–107.
[CrossRef]

26. Ayers, K.L.; Cordell, H.J. SNP selection in genome-wide and candidate gene studies via penalized logistic regression. Genet.
Epidemiol. 2010, 34, 879–891. [CrossRef]

27. Naccache, D. Secure and practical identity-based encryption. IET Inf. Secur. 2007, 1, 59–64. [CrossRef]
28. McGrew, D.A.; Viega, J. The security and performance of the Galois/Counter Mode (GCM) of operation. In Proceedings of the

International Conference on Cryptology in India, Chennai, India, 20–22 December 2004; Springer: Berlin/Heidelberg, Germany,
2004; pp. 343–355.

29. Bard, G.V. Modes of Encryption Secure against Blockwise-Adaptive Chosen-Plaintext Attack. Cryptology ePrint Archive.
Available online: https://eprint.iacr.org/2006/271, (accessed on 15 August 2023).

30. GeneData Set. Available online: http://hgdownload-euro.soe.ucsc.edu/gbdb/hg19/1000Genomes/phase3/ (accessed on
7 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s102070100002
http://dx.doi.org/10.1145/3177872
https://www.cs.utexas.edu/~dwu4/courses/sp22/static/projects/LeMay.pdf
https://www.cs.utexas.edu/~dwu4/courses/sp22/static/projects/LeMay.pdf
http://dx.doi.org/10.28924/ada/stat.1.74
http://dx.doi.org/10.1002/gepi.20543
http://dx.doi.org/10.1049/iet-ifs:20055097
https://eprint.iacr.org/2006/271
http://hgdownload-euro.soe.ucsc.edu/gbdb/hg19/1000Genomes/phase3/

	Introduction
	Related Work
	Preliminaries
	Intel SGX
	Oblivious RAM
	Genome Analysis Methods
	Identity-Based Encryption (IBE)

	SEDASGX Scheme
	System Model
	Notations and Definitions
	Constructions

	Security Analysis
	Correctness
	Query Unlinkability
	Access Pattern
	CCA Security

	Experiment Analysis
	Implementation
	Function Analysis
	Performance Analysis

	Conclusions
	References

