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Abstract: The system on a programmable chip (SOPC) architecture is better than traditional central
processing unit (CPU) + field-programmable gate array (FPGA) architecture. It forms an efficient
coupling between processor software and programmable logic through an on-chip high-speed bus.
The SOPC architecture is resource-rich and highly customizable. At the same time, it combines
low power consumption and high performance, making it popular in the field of high reliability
and other new industrial fields. The SOPC architecture system is complex and integrates multiple
forms of intellectual property (IP). Because of this, the traditional dynamic test and the static test
cannot meet the requirements for test depth. To solve the problem of verification depth, we should
introduce formal verification. But there are some types of IP forms that formal tools cannot recognize.
These include black box IP, encrypted IP, and netlist IP in the SOPC model. Also, the state space
explosion caused by the huge scale of the SOPC model cannot be formally verified. In this paper,
we propose a modeling method using SOPC architecture. The model solves the problem of formal
tools not recognizing multi-form IPs. To compress the state space, we propose reducing SOPC
variables and branch relationships based on verification properties. Then, we conduct a property
verification experiment on the reduced SOPC model. The experiment result shows that the model
can significantly reduce the verification time.

Keywords: SOPC; state explosion problem; model checking; property verification

1. Introduction

The system on a programmable chip (SOPC) architecture is superior to traditional
devices. Compared with traditional microprocessors or field-programmable gate array
(FPGA) devices, the SOPC model integrates the advantages of both. The microprocessor is
realized using an embedded microcontroller unit (MCU), digital signal processor (DSP),
and arm hardcore or softcore processor intellectual property (IP). In addition, with the
rich IP resources and programmable logic resources in FPGA, it provides a good platform
for software and hardware collaborative development technology. The SOPC system can
comprehensively consider various situations of the whole system, reduce the connection
delay between discrete devices under the same process and technical conditions, and
significantly improve the reliability and performance of the system. For example, in Xilinx
devices, the zynq-7045 is embedded with the advanced reduced instruction set computer
machines (ARM) cortex-a9 hardcore microprocessor [1] and the xq7k325t chip integrated
with a MicroBlaze softcore [2]. The m2s090ts-1fgg484m is embedded with an arm Cortex-
M3 hardcore microprocessor in Microsemi devices [3]. These chips are programmable
logic chips with embedded processor structures. The software and hardware interfaces are
highly coupled, and the connection modes are diversified. For example, they are directly
connected through a standardized bus protocol interface, or in a user-defined way, and
may also contain some adhesive logic. At the same time, there are various ways to share
data, including interrupt mode, memory mapping I/O mode, and special function register
mode. According to different applications, the design scale and the complexity are also
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different. In addition, because the programmable logic and embedded software in SOPC
model design are usually described in different languages, and there are even a large
number of black box IPs, the significant semantic gap between software and hardware
makes verification more challenging. Traditional testing methods face serious challenges in
SOPC model testing quality and efficiency.

The SOPC model combines the characteristics of software and logic, so it also integrates
the verification methods of software and logic. The existing SOPC model dynamic test types
include function test, performance test, interface test, boundary test, margin test, safety
test, strength test, and other test types [4–6], which can cover the function requirements,
performance requirements, safety requirements, and other requirements in the requirements
specification from multiple dimensions, and can give specific data, such as data processing
time, system response time, etc.

With the powerful function and wide application of SOPC architecture, the design
scale of the system is becoming larger and more complex, and its security and reliability
requirements are becoming more and more prominent. It is necessary to fully verify the
SOPC model. Compared with ground software, once this SOPC software runs in orbit (the
SOPC software runs on payload chips in space that will run in space for more than five
years), it is difficult to locate the fault. Even if the fault can be located, a lot of costs would
be required to upload and reconstruct it. Compared with traditional application-specific
integrated circuit (ASIC) chips or FPGA chips, SOPC software usually includes one or more
embedded processors, which can embed and run software programs and even operating
systems on the chip.

The verification of the SOPC model consists of the evaluation of whether it meets the
requirements from multiple dimensions such as functionality, performance, and security
based on requirements. At present, the traditional SOPC model verification technology
includes a simulation test, a static analysis, and a physical test. Static and simulation
tests verify the software and logic, respectively, and cannot cover the area of software and
hardware interaction. As shown in Figure 1, the logic is the yellow box, and the software
(processing system) is the green box. If the software and hardware are tested together,
physical testing needs to be used. Physical testing inputs excitation from the input end of
the chip and observes the output from the output of the chip. The software and hardware
coupling area cannot be observed and cannot achieve 100% coverage because it is inside
the chip.
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The verification of the area of software and hardware interaction in physical tests is
based on limited test scenarios, which can only prove the existence of errors and defects in
some cases. However, for the test scenarios not involved in the test cases, the correctness of
the system design cannot be guaranteed, so there may be some hidden defects that cannot
be found. Therefore, dynamic verification is generally suitable for finding a large number
of obvious design errors in the early stage of verification, but it is difficult to mine the
hidden and subtle errors in complex design, such as system architecture errors, software,
and hardware coordination errors, etc. The differences between traditional testing and
formal testing are shown in Table 1. So when we focus on SOPC model verification, we use
model-checking methods on the basis of traditional testing methods. This helps us find
hidden defects in the code, like defects in software and hardware coupling.

Table 1. The differences between traditional testing and formal testing.

Model Checking Traditional Test

Test principle Traverse all input paths Limited testing case

Advantage Comprehensive verification for a property
Provide information on whether the software meets
the requirements based on the limited testing
case principle

Disadvantage Unable to obtain verification results when the code
is complex

• Test results depend on test cases
• Difficult to find the hidden and subtle errors in

the complex design

SOPC test
• Verify the SOPC software and hardware

interaction area
• Verify the security properties of the SOPC software

• Discovering Problems in Dynamic Testing
Based on Black Box

• Analyzing possible defects in code based on
static methods

The application practice of formal methods began in the 1970s and plays an extremely
important role in the key field of safety. The most important feature of formal verification
is that it is based on mathematical logic reasoning and proves whether the system design
meets the system specification according to mathematical theory. For the existing test types
and test methods of SOPC architecture, formal verification, as a powerful supplementary
verification method, can make up for the shortcomings of the existing verification methods.
By summarizing the key properties to be verified, it provides a good supplement to the
existing dynamic test and static test, and effectively improves the quality of the software
test and software reliability.

The research on model detection [7,8] began in the early 1980s when Clarke, Emerson,
and others proposed CTL logic to describe the properties of concurrent systems, designed
algorithms to detect whether a finite state system satisfies a given formula, and imple-
mented a prototype system. The basic idea of model checking [9] is to express the temporal
properties of a program or circuit using temporal logic formulas and to use finite state ma-
chines to represent the abstract structure of state transitions in a program or circuit [10,11].
The correctness of the temporal logic formulas is verified by traversing finite state machines.
Model checking is an exhaustive search based on the system state space. The number of
states often increases exponentially with the increase in concurrent components. Therefore,
when a system has many concurrent components, it is not feasible to search its state space
directly, which is the so-called state space explosion problem. The scale and complexity
of aerospace SOPC software have doubled in the last ten years. At present, the scale of
single-chip software has reached about 150,000 lines and involves the implementation of
various complex protocols. For such a concurrent system as the SOPC model, the number
of states often increases exponentially with the increase in concurrent components, so it is
actually impossible to search its state space.

Aiming at the state space explosion of the SOPC model, our main contributions in this
paper are listed as follows:
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(1) A modeling method using SOPC architecture is proposed to solve the problem of
multi-form IPs not being recognized by formal tools.

(2) A variable reduction method for the SOPC system is proposed, which can greatly
reduce the number of states.

(3) A branch relation reduction method based on the verification property is proposed
for the SOPC system. Through the reduction in branch relations, the state quantity
and state transition relations of the model state space can be reduced.

(4) The experiment of property verification is carried out for the reduced SOPC model.
The experiment result shows that the reduced model can greatly shorten the verifica-
tion time.

The rest of this paper is organized as follows: The second section introduces the
research achievements and existing problems related to state space compression. The third
section analyzes the internal structure, characteristics, and scale of the SOPC model. The
fourth section analyzes the connotation of state space explosion and the problem of state
space explosion in the SOPC model. The fifth section proposes the method for establishing
SOPC models and the mechanism for attribute verification. The sixth section proposes
a code-level state space compression method. The seventh section validates the relevant
attributes of the SOPC software and hardware interaction area based on the proposed
method, and the feasibility of the method was demonstrated through the experimental
results. The eighth section describes the conclusion.

2. Related Work

In [12], Billington et al. use distributed memory and computation for storing and
exploring the state space of the model of a system. They present and compare different
multi-thread, distributed, and cloud approaches to face the state space explosion problem.
In [13], Partabian et al. propose an approach based on knowledge exploration for state
space management in checking the reachability of complex software systems. The ensemble
machine learning technique uses the Boosting method along with decision trees. This
method generates k predictive models after sampling k times. Finally, it uses a voting
mechanism to predict the labels of the final path. In [14], Kojima et al. propose a method
based on symmetry reduction to reduce state space during model checking on secure
routing protocols. They focus on the shapes of topologies. Loosely speaking, if the shape of
the topology represented by the current state is the same as that of the searched state, the
current state can be regarded as equivalent to the searched state by replacing nodes. In [15],
in order to combat the state space explosion associated with BMC, Zhang et al. propose the
method starts by combining module-level abstraction–refinement with slicing to reduce the
size of the model under verification. In [16], Wu et al. propose a novel supervisor synthesis
framework using automata learning and compositional model checking to generate the
permissive local supervisors in a distributed manner. In [17], Wang et al. investigate the
problems of applying the anti-chain approach to timed refinement checking and proba-
bilistic refinement checking and show that the state space can be reduced considerably
by employing the anti-chain approach. In [18], Shen et al. propose methods to accelerate
hardware security verification and vulnerability detection through state space reduction.
Specifically, we reduce the state space of the model by performing value reduction and
transition relation reduction. The control flow and data-dependent graphs control the
process of value reduction and transition relation reduction. In [19], Han et al. present an
approach for schedulability analysis of Distributed Integrated Modular Avionics (DIMA)
systems that consist of spatially distributed ARINC-653 multicore modules connected by a
unified Avionics Full-Duplex Switched Ethernet (AFDX) network. In [20], to circumvent the
state space explosion, Bortolussi et al. rely on stochastic approximation techniques, which
replace the large model with a simpler one guaranteed to be probabilistically consistent.
In [21], Konnov et al. introduced parametric interval counter abstraction that allowed us
to verify the safety and liveness of threshold-based fault-tolerant distributed algorithms
(FTDAs). In [22], Chai et al. focus on a major improvement in the analysis of reachability
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properties in large-scale dynamical biological models. They introduce a hybrid approach,
ASPReach, which combines static analysis and stochastic search to break the limits of
existing approaches. In [23], Mikeev et al. propose a numerical integration algorithm to
approximate the probability that a process conforms to a specification that belongs to a
subclass of deterministic timed automata (DTA). They combat the state space explosion
problem by using a dynamic state space that contains only the most relevant states. In [24],
Alagar et al. present several techniques to tackle the state explosion problem at some con-
sistent global state of a distributed system. In [25], in order to shrink the state space being
observed during the model-checking process of TV software, a method is proposed that
relies on using previous test logs to generate a partly non-deterministic user agent model.
In [26], Zheng presents a new timing analysis algorithm for efficient state space exploration
during the synthesis of timed circuits or the verification of timed systems. In [27], Xing
et al. propose an analytical method based on sequential binary decision diagrams (SBDDs)
for combinatorial reliability analysis of nonrepairable cold standby systems. Different
from the simulation-based methods, the proposed approach can generate exact system
reliability results.

In the above research methods, distributed computing and cloud computing indirectly
improve the algorithm speed by utilizing the principle of parallel computing. The abstract
method form is based on the original design and abstracted into a model with a smaller
state space through various methods. The prerequisite for the application of these methods
is that model verification tools can recognize the design. The SOPC model has many IP
cores that cannot be recognized using formal tools, so relevant research cannot be applied.

3. Analysis of SOPC Software

SOPC software is the product of the development of FPGA to the system era, from the
early programmable logic gate array to the on-chip system composed of interconnected
IP through an on-chip high-speed bus. In SOPC software based on Advanced eXtensible
Interface (AXI) bus protocol, data exchange is often realized between multiple master
devices and multiple slave devices through a bus interconnection module. As shown
in Figure 2, the master and slave devices can be IP core, programmable logic, and CPU
softcore or hardcore. SOPC software has a large number of multi-form IP cores, such as
netlist IP core, black-box IP core, encryption IP core, CPU IP soft core, CPU IP hardcore,
and traditional register transfer level (RTL) IP core.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 28 
 

 

Avionics (DIMA) systems that consist of spatially distributed ARINC-653 multicore mod-

ules connected by a unified Avionics Full-Duplex Switched Ethernet (AFDX) network. In 

[20], to circumvent the state space explosion, Bortolussi et al. rely on stochastic approxi-

mation techniques, which replace the large model with a simpler one guaranteed to be 

probabilistically consistent. In [21], Konnov et al. introduced parametric interval counter 

abstraction that allowed us to verify the safety and liveness of threshold-based fault-tol-

erant distributed algorithms (FTDAs). In [22], Chai et al. focus on a major improvement 

in the analysis of reachability properties in large-scale dynamical biological models. They 

introduce a hybrid approach, ASPReach, which combines static analysis and stochastic 

search to break the limits of existing approaches. In [23], Mikeev et al. propose a numerical 

integration algorithm to approximate the probability that a process conforms to a specifi-

cation that belongs to a subclass of deterministic timed automata (DTA). They combat the 

state space explosion problem by using a dynamic state space that contains only the most 

relevant states. In [24], Alagar et al. present several techniques to tackle the state explosion 

problem at some consistent global state of a distributed system. In [25], in order to shrink 

the state space being observed during the model-checking process of TV software, a 

method is proposed that relies on using previous test logs to generate a partly non-deter-

ministic user agent model. In [26], Zheng presents a new timing analysis algorithm for 

efficient state space exploration during the synthesis of timed circuits or the verification 

of timed systems. In [27], Xing et al. propose an analytical method based on sequential 

binary decision diagrams (SBDDs) for combinatorial reliability analysis of nonrepairable 

cold standby systems. Different from the simulation-based methods, the proposed ap-

proach can generate exact system reliability results. 

In the above research methods, distributed computing and cloud computing indi-

rectly improve the algorithm speed by utilizing the principle of parallel computing. The 

abstract method form is based on the original design and abstracted into a model with a 

smaller state space through various methods. The prerequisite for the application of these 

methods is that model verification tools can recognize the design. The SOPC model has 

many IP cores that cannot be recognized using formal tools, so relevant research cannot 

be applied. 

3. Analysis of SOPC Software 

SOPC software is the product of the development of FPGA to the system era, from 

the early programmable logic gate array to the on-chip system composed of intercon-

nected IP through an on-chip high-speed bus. In SOPC software based on Advanced eX-

tensible Interface (AXI) bus protocol, data exchange is often realized between multiple 

master devices and multiple slave devices through a bus interconnection module. As 

shown in Figure 2, the master and slave devices can be IP core, programmable logic, and 

CPU softcore or hardcore. SOPC software has a large number of multi-form IP cores, such 

as netlist IP core, black-box IP core, encryption IP core, CPU IP soft core, CPU IP hardcore, 

and traditional register transfer level (RTL) IP core. 

 

Figure 2. Multi-master and multi-slave interconnections. Figure 2. Multi-master and multi-slave interconnections.

When constructing software using SOPC architecture, a high-level language is gener-
ally used to describe the software function. After synthesis, place, and route, the code is
converted into a logic circuit constructed from clock resources, place and route resources,
registers, lookup tables, etc. For example, we use the Xilinx xq7k325t chip integrated
with MicroBlaze softcore to realize the SOPC software, which includes network protocol,
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FC-AE-1553 protocol, peripheral component interconnect express (PCIE) protocol, and
other complex communication protocols, as well as high-speed and large-quantity data
transmission and processing. FPGA’s EDA tool (Vivado from Xilinx, San Jose, CA, USA,
Libero from Microsemi, Irvine, CA, USA and so on) synthesizes RTL code [28] to a syn-
chronous sequential software net. The resources occupied by the software are as follows
(Figure 3):
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Advanced high-performance seven-series FPGA logic is based on real six-input lookup
table technology. It includes a flip flop (FF), a lookup table(LUT), input–output (IO), and
other components. From the synthesis result, we can see that the FPGA software has
115,500 flip flops and 112,099 × 6 logic lookup tables. In the worst case, a complete state
diagram of the FPGA software is a complete graph with 2115500 States and 2115500 × 2672594

transition relationships.
On the one hand, SOPC software faces multiform IPs that cannot be recognized using

formal tools. On the other hand, SOPC software also faces the problem of state space
explosion. Therefore, formal verification technology cannot be well applied to SOPC
software at present.

4. Preliminaries
4.1. Temproal Logic

Temporal logic (temporal logic) identifies the temporal order in which events occur in
a system and categorizes them according to a time model. Linear temporal logic (LTL) and
computational logic (CTL) are commonly used languages for concurrent system specifica-
tion and verification. Different temporal logics have their corresponding operators and their
corresponding semantics. There are many branches of temporal logic, Linear Temporal
Logic (LTL) and Computation Tree Logic (CTL) are classical [29,30]. Temporal logic in the
real-time design industry has evolved from early proprietary property languages such
as Sugar from IBM [31] and Spec from Intel [32]. At the same time, there are a series of
industry standards, including Accellera’s Open Verification Library (OVL) [33], Property
Specification Language (PSL) [34], and most recently the IEEE standard SystemVerilog
Assertion (SVA) [35], which is the property language of a real-time system.

The IEEE standard temporal logic program SystemVerilog Assertion (SVA) is a com-
bination of regular expressions and LTL formulas known as suffix implication formulas.
A suffix implication formula is of the form r ⇒ ϕ , where r is a regular expression and ϕ

is either an LTL formula or another suffix implication formula. Intuitively, this formula
states that whenever a prefix of a given computation path matches the regular expression r,
the suffix of that path must satisfy ϕ. The formal definition of suffix implication is taken
from [36]. Annex F in the SystemVerilog IEEE 1800-2012 language reference manual [34]
gives the syntax and formal semantics of SVA, including the core operators for RE and LTL,
rewriting rules for derivative forms and language sugaring, extensions including clocking,
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and weak/strong semantics, etc. SVA formulas are built up from sequences. The core
sequence syntax is:

R::= b|R ##1 R|R ##0 R|R or R|R intersect R|R [∗0]|R[∗1:$]

where b is a Boolean expression, ## stands for the concatenation operation and intersects
the conjunction operation.

4.2. Basic Definition

Definition 1. A finite state machine: If M is a finite state machine, M = (S, I, O, f, g, s0). While S
is a set of states, I is an input alphabet and O is an output alphabet. The transfer function and the
output function are f, g. The initial state is s0.

Definition 2. Kripke structure: Atomic proposition (AP) is a set of finite atomic propositions. A
Kripke structure K on AP is a 4-tuple k = (S, S0, R, L), where S is a set of finite states; S0∈ s is the
initial state set; R∈ S × S represents all state transition relationships; and L: S → 2AP indicates
acceptable status.

Definition 3. Linear temporal logic (LTL) [36]: The LTL is a linear temporal logic formula.
Formulas of LTL are built from a set of AP (atomic proposition) using the usual Boolean operators
and temporal operators X (“next time”) and ∪ (“until”). Given a set, AP, a formula is defined
as follows:

—true, false, p or ¬ p , for p ∈ AP
—ψ ∨ φ, ψ ∧ φ,Xψ, ψ ∪ φ, ψ

∼
∪ φ , where ψ and φ are an LTL formula.

We denote the length of a formula φ by |φ|. Given a Kripke structure M and an LTL
formula φ, the model-checking aim is to determine whether all the computations of M
satisfy φ. If this is the case, we denoted it by M|= φ, otherwise M|̸= φ.

Definition 4. Deterministic Finite Automaton: The deterministic finite automaton will often be
referred to by its acronym: deterministic finite automata (DFA). It shows that on each input there is
one and only one state to which the automaton can transition from its current state. We often talk
about a DFA in “five-tuple” notation: M =(Q, ∑, δ, q0 , F) , where M is the name of the DFA,
Q is its set of states, ∑ is its input symbols, δ is its transition function, q0 is its start state, and F is
its set of accepting states or final states, which is a subset of Q [37].

Definition 5. Nondeterministic Finite Automaton [37]: M =(Q, ∑, δ, q0 , F) , where M is the
name of the NFA, Q is its set of states, ∑ is its input symbols, δ is its transition function, q0 is its
start state, and F is its set of accepting states or final states, which is a subset of Q. The difference
between the DFA and the NFA is in the type of “δ”. For the NFA, “δ” is a function that takes a state
and input symbol as arguments (like the DFA’s transition function), but returns a set of zero, one,
or more states (rather than returning exactly one state, as the DFA must). For example, a Büchi
automaton is a nondeterministic finite automaton.

Definition 6. The “language” of the DFA [37]: The “language” of the DFA is the set of all strings
that the DFA accepts. We can define the language of a DFA A =(Q, ∑, δ, q0 , F) as L(A).

In temporal logic model checking, we verify the correctness of a finite state system with
respect to a desired behavior by checking whether a labeled state transition graph (system
model) satisfies a temporal logic formula that specifies this behavior. Temporal logic model
checking includes model checking based on automata theory and model checking based
on CTL.

The principle of model checking based on automata theory is described in Section 5.2.
Model checking based on CTL is to check whether the Kripke structure is a model of
CTL for a given CTL formula. When applying model verification tools, the design is
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generally described in VHDL and Verilog languages, while the property language is SVA.
Model checking tools convert the design into a finite state machine first, then convert it
to corresponding forms based on the principles of verification. For example, in model
checking based on automata theory, the design and property are converted into design
automata and property automata, respectively, for verification. In model checking based
on CTL, the design is converted to a Kripke structure and the property is converted to CTL
for verification.

4.3. State Space Explosion Problem

In the term state space, state refers to an ordered set of variables that can determine
the minimum number of system states in a system. State space refers to the collection of all
possible states of the system. The state space can simply be regarded as a space with a state
variable as the coordinate axis, so the state of the system can be represented as a vector in
this space. State space representation is a mathematical model that represents a physical
system as a set of inputs, outputs, and states, and the relationship between inputs, outputs,
and states can be described by many first-order differential equations.

The state variable of a system refers to the smallest subset of system variables that can
represent the complete state of the system at any time. To represent the minimum value
n of the required state variable for a system, it is usually also the order of the system’s
differential equation. If the system is represented by a transfer function, the minimum
number of state variables is equal to the order of the denominator polynomial of the
transfer function. The number of state variables in a circuit is often the number of states in
the circuit.

The problem of state space explosion is that the number of states generated during
model detection increases exponentially, far exceeding the memory storage and search
capabilities of computers, which is one of the challenges faced by model detection as shown
in Figure 4. The upper half of Figure 4 represents a typical SOPC structure, where the
SOPC system connects multiple IPs through the AXI bus, and data exchange between
IPs is achieved through bus interfaces. The lower half of Figure 4 represents the state
transformation diagram of the SOPC model. The S represents a set of finite states, S0 ∈ S is
the initial state set, and R ⊆ S × S represents all state transition relationships.
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Figure 4. The problem of state space explosion.

From the analysis in the previous section, it can be seen that the scale of the SOPC
model is getting larger and larger. Currently, model verification tools require more than
2 h which has exceeded the capacity of ordinary computing. At the same time, the SOPC
model faces multiform IPs that cannot be recognized by formal tools. Therefore, formal
verification technology cannot be well applied to the SOPC model at present.

Aiming at the problem of SOPC state space reduction, the method of this paper is
to establish a system-level formal design SOPC model and propose a variable reduction
method based on RTL code and a branch relationship reduction method based on verifica-
tion properties. Through the above methods, the problem of SOPC state space explosion
can be effectively tackled.

5. Modeling and Verification of the SOPC System
5.1. Modeling of SOPC System

This section will give the method of establishing a formal design model from the
perspective of the SOPC system level as shown in Figure 5. An SOPC model may contain
more than ten or more IPs according to the specific application design. Each IP core has
specific functions. These IP cores are interconnected through the on-chip bus to achieve
efficient data and information exchange.
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Figure 5. Block diagram of the SOPC system.

Suppose that a SOPC model design is expressed in M, and each independent IP in
the SOPC model includes its own functions, interfaces, and interaction with other IPs,
expressed as m1, m2, . . ., mk ∈ M. The on-chip bus interconnection module belonging to M
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is represented as Mconnect, and each IP is connected under the bus interconnection module
with a standard interface unit. As shown in Formula (1):

M = Mconnect ∧ m1 ∧ m2 ∧ . . . ∧ mk (1)

Extract their behavior model n from different forms of IP, and the conversion from m
to n should consider the design details required for verification, such as function items,
internal and external data flow, interface behavior, interface timing relationship, etc. The
conversion relationship from m to n can be expressed by Formula (2). After each IP is
converted, an independent behavior model n is formed, and the behavior model N of the
SOPC model is formed through the interaction between n and the bus. The conversion of
the SOPC model is given by Formula (3).

m t→ n (2)

M t→ N (3)

Formula (4) shows that N is composed of nconnect and multiple IPs. The formula shows
that the behavior of the SOPC model is composed of many independent IP behavior models.
The behavior level model of IP can be coded by using the combination of SystemVerilog
Assertion (SVA) attributes, SystemVerilog (SV), and RTL codes. This paper considers
that behavior modeling can set some configurable parameters, such as time parameters,
instruction parameters, etc. Through the combination of these parameters, the behavior of
each IP can be flexibly configured, which in turn can constrain the external behavior of the
SOPC model.

N = nconnect ∧ n1 ∧ n2 ∧ . . .∧ nk (4)

nconnect describes the specific behavior of the bus. If the bus behavior is modeled, it
can be expressed as:

nconnect = (n, rdata, raddr, wdata, waddr, wack) (5)

where n represents the IP on the bus, raddr represents the read address transaction, rdata
represents the read data transaction, waddr represents the write address transaction, wdata
represents the write data transaction, and wack represents the write response transaction.

The SOPC system-level abstract model is a complex network architecture. Various IPs
are interconnected by different forms of AXI buses. The same IP can connect different AXI
buses. Based on the SOPC system architecture in Figure 2 and Formula (5), we can express
the SOPC system model as the following Formulas (6)~(9):

NAXI = (IP1 ∧ AXIIP1cov ) ∧ ((IP2 ∧ AXIIP2cov ) ∧ AXIconnect) (6)

NAXILite = (IP3 ∧ AXIIP3cov ) ∧ ((IP4 ∧ AXIIP4cov ) ∧ AXIliteconnect ∧ (IP1 ∧ AXIIP1cov )) (7)

NAXIStream = (IP5 ∧ AXIIP5cov ) ∧ (IP6 ∧ AXIIP6cov ) ∧ AXIstreamconnect ∧ (IP1 ∧ AXIIP1cov ) (8)

N = NAXI ∪ NAXILite ∪ NAXIStream (9)

5.2. Property Verification

If both the implementation and specifications of the system are provided by the au-
tomaton, verifying whether the specifications of the system meet the implementation of the
system requires actually checking whether the language contained in the implementation
automaton belongs to a subset of the language contained in the property automaton. Prop-
erty automaton provides all the behaviors allowed by the system, while implementation
automaton provides the actual behavior of the system. If the language set implementing the
automaton is included in the language of the property automaton, it means that any behav-
ior implemented by the system is allowed by the specification. Otherwise, it means that the
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behavior of implementing the automaton does not comply with the behavior defined by the
property automaton. In the formal verification based on automaton theory, assuming that
L(A) and L(P) represent the language accepted by the implementation of automaton A and
property automaton P, respectively, testing L(A) ⊆ L(P) is equivalent to testing whether
L(A)∩ ∼ L(P) is empty. In this way, as shown in the following Equations (10)–(12), the
combined automaton AP includes all the traces of implementation that do not meet the
property. If the AP is a directed graph, detecting whether the AP has a trace that does not
meet the specification is equivalent to detecting whether the AP contains at least one path
from the initial state S0 to the accepted state as shown in Equation (13).

A = (QA, ∑A, δA, q0A , FA) (10)

P = (Qp, ∑p, δp, q0p , Fp) (11)

A||P = C, C = (Q, ∑, δ, q0, F) (12)

While Q = QA × Qp, ∑ = ∑A ∪∑p, q0 = q0A
× q0p

, F = FA × Fp

path = q0
σ1→ sσ1

σ2→ sσ2....... σf→ sσf, sσf ∈ F
(13)

As shown in Figures 6–8, we construct a finite directed graph AP whose nodes are
an ordered pair. The first component of the ordered pair is a state of the implementing
automaton A, and the second component is a subset of the states of the property automaton
P. Because A is deterministic, it has only one initial state, and whenever a character is
read, the implementing automaton A can only reach one next state. The automaton P
is nondeterministic, which may transfer to multiple states after reading the character a.
Additionally, s0 is the initial state of implement automaton A and S0 is a set of initial states.
In concurrent systems, there may be multiple initial states. T0 is the initial state of the
property automaton. If the automaton A can enter a state sj after accepting the input a, the
automaton P can also accept the character a to enter one or more sub-state sets, tj. If tj and
sj are both members of the state set, the “pass" is used to identify the state (sj, tj), otherwise
the “fail” is used. If the automaton AP contains a path from the initial node to the failed
node, it indicates that the language of automaton acceptance is outside the language of
property automaton acceptance.
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SVA is the abbreviation of SystemVerilog Assertions. From a linguistic perspective, it
is a new temporal logic language derived from LTL and RE semantics. Its concise syntax
can describe complex temporal behaviors, which traditional temporal logic languages do
not have. Therefore, it is more suitable for describing the behavior of SOPC systems that
are sensitive to timing. In any property model, a sequence is represented by a combination
of multiple logical events, which can be a simple Boolean expression evaluated at the
same clock edge or an event evaluated over several clock cycles. Many sequences can be
sequentially combined to generate more complex sequences, and SVA provides a keyword
“property” to represent these complex ordered behaviors.
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We implemented model checking using the tool AveMC [38]. AveMC is an industrial-
grade model checker; the designed inputs can be VHDL [39], Verilog [40], or SVA [41]. The
tool automatically converts these inputs into the designed automata, and the input of the
property is generally represented by SVA. The tool converts the property described by
SVA into attribute automata and performs model verification according to the principles
discussed at the beginning of this chapter.

6. Our Approach to State Space Reduction
6.1. State and State Transition Analysis

The state machine is composed of a state register and a combinational logic circuit.
It can transfer the state according to the preset state based on the control signal. It is
the control center that coordinates the action of relevant signals and completes specific
operations. The state machine consists of a calculation model containing a set of states, a
start state, a set of input symbols, a mapping input symbol, and a transition function from
the current state to the next state.

In the actual digital system design, the finite state machine is usually used to establish
the model of a sequential circuit, and in the formal verification, Kripke is generally used
to represent the structure of the system, which is actually a deformation of the state
transition diagram.

From Section 4.1, we can see that the state and state transition relationship of the
system is the key factor in determining the complexity of state space. The state and state
transition relationship of the digital circuit is equivalent or indirectly equivalent to the
formal structure. Therefore, the state space explosion can start by reducing the state and
state transition relationship of digital circuits.
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In the digital circuit composed of the SOPC system, each bit of the register represents
a status bit of the sequential circuit. Each register represents a set of states. For a sequential
circuit with N bit registers and M bit inputs, the maximum number of valid states is 2N, and
there are 2M input excitations for each state. In the worst case, a complete state diagram of
a sequential circuit is a complete graph with 2N States and 2N × 2M transition relationships.
The scale of complex synchronous sequential circuits is increasing day by day, and the state
space is exponentially increasing.

6.2. Variable Reduction Based on RTL Code

In this section, we propose a variables reduction method based on RTL code, which
can indirectly reduce the design state space. Variables in RTL code include the register, the
wire, the input, and the output.

RTL codes are as follows (Table 2), where rec_nstate is a register, and wr_en_in, rstn,
and wr_cmd_data_in are input.

Table 2. RTL codes.

RTL Codes

Reg[4:0] rec_nstate;
typedefenum logic [4:0] {SELFCHECK_TASK, RESET_TASK, DIR_TASK, SYN_TASK,
TIME_TASK, REC_TASK} state_enum;
always @(posedge clk or negedge rstn)
if(!rstn)

rec_nstate = SELFCHECK_TASK;
else if(wr_en_in && (wr_cmd_data_in[31:24] == 8’h01))

rec_nstate = SELFCHECK_TASK;
else if(wr_en_in && (wr_cmd_data_in[31:24] == 8’h02))

rec_nstate = RESET_TASK;
else if(wr_en_in && (wr_cmd_data_in[31:24] == 8’h04))

rec_nstate = DIR_TASK;
else if(wr_en_in && (wr_cmd_data_in[31:24] == 8’h08))

rec_nstate = SYN_TASK;
else if(wr_en_in && (wr_cmd_data_in[31:24] == 8’h10))

rec_nstate = TIME_TASK;
else

rec_nstate = rec_nstate;

The state (register) transition diagram based on RTL code is shown in Figure 9.
From the state transition in Figure 9, we can see that each assignment of the register is

a separate state, and the transition between states is determined by conditional branching.
When we verify the properties of the SOPC system, we usually conduct a model check

for each property. Since a single property does not involve all registers and variables of
the design, if we only retain registers and variables related to the verification property, the
state space of the design is reduced. This section proposes a method to reduce registers
and variables from the perspective of the RTL code.

In state transition, if there is no path from the control variable to the state register, then
this control path is empty. It is shown as Pc(var_ctrl, reg_state) = ϕ. As shown in Figure 9,
Pc(wr_cmd_data_in, rec_nstate) ̸= ϕ.

In state transition, if there is no path from the assignment variable to the state register,
then this assignment path is empty. It is shown as Pa(var_assign, reg_state) = ϕ. As shown
in Figure 9, Pa(state_enum, rec_nstate) ̸= ϕ.
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After analyzing the control path and assigning the path, we will discuss the reduction
in design variables and registers by analyzing the variables of properties. An SVA property
based on the RTL code in Figure 9 is shown below:

Suppose Rver is a verified register in a specification, then the verification variables for
the above property include {rstn, rec_nstate, state_enmum}, where the rstn is the conditional
variable, the state_enum is the assigning variable, and the rec_nstate is the state registers.
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In this property, the variable rstn and state_enum in the design model can be retained,
and other variables can be reduced; for example, the variable wr_en_in and the variable
wr_cmd_data_in. In a real large-scale SOPC design, the complexity of the property and
design would be much greater than in the example in Figure 9. The methods and steps of
reduction are given below.

Definition 7. Design variable minimum set: If Rd is the variable set of the design model, a minimum
variable set Rr∈ Rd is found during the property verification, so that the states of the design model
can be minimized, and the reduced design model should be equally equivalent to the design model
before the reduction.

The steps for variable reduction are shown in Figure 10:
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Rver is a set of verification variables that refer to the property. Rd is a set of model
variables, rd ∈ Rd. Rc is the control variable, and Ra is the assigning variable. These four
types of variables have the following relationships.

As shown in Figure 11, P(rd, Rver) ̸= ϕ indicates that variable rd affects the property
variables; therefore, rd is an irreducible variable.
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As shown in Figure 12, P(rd, Rver) = ϕ indicates that the variable rd does not affect the
property variable; therefore, rd is a reducible variable. Meanwhile, condition variables Rc
and assignment variables Ra of the variable rd are also reducible objects.
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Figure 12. Variable interaction diagram.

As shown in Figure 13, P(rd, Rver) = ϕ, P(Ra, Rver) ̸= ϕ, and P(Rc, Rver) ̸= ϕ in-
dicate that variable rd does not affect the property variable; therefore, rd is a reducible
register. However, the condition variable Rc and the assignment variable Ra, which are
simultaneously or one of the two affected property variables, are irreducible variables.
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As shown in Figure 14, P(rd, Rver) ̸= ϕ, P(Rver, rd) ̸= ϕ, P(Ra, Rver) ̸= ϕ, P(Rc, Rver) ̸= ϕ,
P(Rver, Rc) ̸= ϕ, and P(Rver, Rd) ̸= ϕ indicate that the variable rd affects the property
variable, and the property variable affects the variable rd; therefore, rd is an irreducible
register. At the same time, the condition variable Rc and the assignment variable Ra are
also irreducible variables.
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Figure 14. Variable interaction diagram.

As shown in Figure 15, P(rd, Rver) = ϕ, and P(Rver, rd) ̸= ϕ indicates that register rd
does not affect the property register; therefore, rd is a reducible register. However, the
condition variable Rc and the assignment variable Ra affect the property register; they are
irreducible variables.
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6.3. Transform Relations Reduction Based on Property

In this section, we propose a state transition relation reduction method based on
verification properties. Through the reduction in the transition relation, the model state
space can be further reduced.

Through the analysis of the RTL code variables in the previous chapter, we reduced the
variables of the model based on the analysis of verified property variables. After reduction,
only the variables related to the verified property were left in the model. Based on the
reduction in variables, we can further analyze the transform relations between variables.
For the same number of variables, there can be many kinds of transform relations between
variables. The idea of this section is to further reduce the state space of the model by
reducing the transform relations irrelevant to the verification properties.

The method is shown in Figure 16. Firstly, we select the root node according to the
verification property and then search the control branch and the assigned branch through
the root node to form the complete network state diagram of the model.
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1. Root node variable selection

The root node is based on the variables involved in the verification property. For
example, the property is shown in Table 3.

Table 3. An SVA property based on the RTL code.

An SVA Property Based on the RTL Code

Property reset_check
($fell(rstn)|-> rec_nstate= SELFCHECK_TASK

Endproperty

The root variables include the rstn and the rec_nastate. Because SELFCHECK_TASK is
an enumeration constant, it is not included in the root node. The variable rstn is the input
signal, so it is also not in the root node. Next, we use the root node as the starting point to
find the control branch path and assignment branch path, respectively.

2 Control branch search

If v is the root node, we search the control path that controls the variable transforms.
It is shown as Pc(var_ctrl, reg_state) ̸= ϕ. The var_ctrl includes the condition variables in
the property. For example, if the condition variable of property reset_check is !rstn, then
we start from the root node and find the condition branch !rstn, and then other branches
are discarded.

When the branch variables involved in the property are complex, we start from the
root node and use the Depth First Search (DFS) algorithm to search all the control paths
related to the root node. When searching the first level variable, if the variable is an input
signal or a constant, we stop searching the current node and return to other nodes at the
same level. When the first level variable to be searched is a register, then we search the
second level variable from the current node until the variable is an input or constant. As
shown in Figure 17, we start from the root node and reverse search along one path to the
end (root, variable 1). When we finish the first path, we search for the second path from the
node register variable 2. For the two branches of variable 2, we start the search from the
left branch until we find the input signal or constant node. After the search, we return to
the node of variable 2 to start searching the right branch. We repeat this process until all
control paths related to the root node are searched. The control path vector diagram of the
root node is formed.
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3 Assignment branch search

An assignment transformation graph is a network graph for finding assignment vari-
ables related to verification variables. If v is the root node, we search the assignment
path assigned to register v. It is shown as Pa(var_assign, reg_state) ̸= ϕ. The reg_state
includes the register variables in the property. For example, the register variable of prop-
erty reset_check is rec_nstate. If the property has conditions, for example, the property
reset_check has a condition !rstn, then the assignment network graph only contains the as-
signment branches under property conditions. If there is no condition for the property, the
assignment network diagram contains all assignment branches about the register variable.
The RTL codes are shown in Table 4.

Table 4. The RTL codes.

The RTL Codes

//**********************//
//task_num
//**********************//
always @(posedge clk or negedge rstn) begin

if(!rstn) begin
task_num <= 8’d0; end

else if(inn_rst) begin
task_num <= 8’d0; end

else if((rec_cnt == 32’d1) && wr_en_in) begin
task_num <= wr_cmd_data_in[23:16]; end

else begin
task_num <= task_num; end

end

For example, if the property register variable contains the variable task_num, we
search the task_num assignment network diagram. The task_num has three situations for
assignment: one is constant 0, one is unchanged, and the other is wr_cmd_data_in[23:16],
which is the input value. Therefore, when we search for the task_num assignment graph,
there are only two layers: one layer is root nodes and the other is child nodes.

As shown in Figure 18, the actual assignment network structure diagram is much more
complex than the above. In this network graph, there are many paths between register
variables and assignment variables.
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When constructing the assignment network diagram, we use the combination of the
Depth-First Search (DFS) algorithm and the Breath-First Search (BFS) algorithm. When
traversing the variables at the first level, some variables have high weights, which can
determine the value of the whole assignment statement. Then, we first traverse the variable
using the depth-first search, and then traverse the variables at the same level in the breadth-
first search, until all variables are traversed. The root node of all paths is the property
register variable, and the endpoint of the child node is the input variable or constant of
the module.

Through the construction of the control branch graph in Section 2 and the assignment
branch graph in Section 3, we can build a complete design model for the property.

6.4. SOPC Reduced State Space Algorithm

This paper proposes a state space reduction algorithm for the SOPC software. The
problem of state space explosion of the SOPC software can be solved through the construc-
tion of a system-level model in the SOPC system, the analysis of state and state transition,
variable reduction, and transition relationship reduction. Relevant algorithms are shown in
Algorithm 1. The algorithm is divided into the following three steps.

Algorithm 1: The formal verification framework for the SOPC software

INPUT: Design of an SOPC, A
OUTPUT: SOPC reduced model, D_fomal
/Step 1: SOPC design model construction*/

M = Identify_need_model(A)
FOR m ∈ M do

If m ∈ CPU then
m_formal = m = (s0, s, I, O, f, g);

end
else if m ∈ netlist then

m_formal = m = (C, I, O, fc, g);
end

else if m ∈ black_box then
m_formal = m = (I, O, g);

end
m_formal = m_formal ∪ M_no_need_model;

/Step 2: reduced variable */
Rver = abstract_variables(property)
reduced_ctrl_variable = Pc(reg_ctr, reg_state) = ϕ

reduced_assign_variable = Pa(reg_assign, reg_state) = ϕ

reduce_variable = reduced_ctrl_variable ∪ reduced_assgin_variable

/Step 3: reduce transfer relation */
FOR {i = 1, i < n, i++} begin

Net_ver_i_ctrl = DFS(ver_i)
Net_ver_i_assgin = DFS(Ver_i) + BFS(Ver_i)
Net_ver_i = Net_ver_i_ctrl ∪ Net_ver_i_assgin

End
D_fomal = convert_formal(Net_ver_1 ∪ Net_ver_2 ∪ . . . ∪ Net_ver_i)

The first step is the modeling of the SOPC system. When building the model, if there
is an original RTL code, we use the RTL code as a formal design model, which includes
VHDL and Verilog. If there is no RTL code, we can convert models from other languages,
such as MATLAB and C, into VHDL or Verilog using conversion tools. If there are no
models in other languages, we build behavior-level models based on requirements and
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design documents, which can be used in VHDL, Verilog, or SVA. When building a design
model manually, such as a CPU model, we do not need to describe the behavior of all CPUs.
We only need to build the model for the behavior required, and we verify the consistency
of the model by comparing the output under the same excitation after the construction
is completed.

The purpose of modeling the SOPC system is to establish the minimum design model
for formal verification. First, select all IPs of the SOPC system according to the verification
properties, and discard the IPs irrelevant to the verification properties. Secondly, establish
a model for the reserved IP. If it is an IP that cannot be recognized by the formal tool, the
model of various IPs is given through the polymorphic IP abstract modeling technology.
For example, for the softcore or hardcore of the CPU, it is necessary to establish the working
mode and interaction behavior between the CPU and other IPs, especially the reading
and writing of the public storage area, the reading and writing of the public register, and
the interrupt processing. For netlist IP, this paper mainly establishes a model from the
information flow between sub-modules and sub-modules. A sub-module is regarded as a
node, and the interaction between nodes connects two modules. For black-box IP, this paper
mainly establishes a behavior layer model from the input–output relationship, establishes
a complete input set, and obtains the matching output by combining multiple conditions of
the input set. For the IP that can be recognized by the formal tool, it is believed that the
completed IP code can be retained through analysis. After the completion of the model of
the multi-form IP, this paper can form a complete SOPC system-level model by building
the model of the on-chip bus and the model of the standardized interface between the IP
and the on-chip bus.

The second step is variable reduction. Firstly, we extract the variables from the property
and then reduce the variables of the design model according to the six relationships among
property variables, register variables, assignment variables, and control variables in the
design model. After reduction, we find minimum variables set to meet the requirements of
property verification.

In the third step, based on the variable reduction performed in the second step, we
use the DFS algorithm to search the control branches of property register variables in the
design model according to property conditions and construct the control network diagram.
According to the property register and property conditions, the DFS and BFS algorithms
are used to construct the assignment network diagram of the design model. After the
construction of the control network and assignment network, we can obtain the design
model to verify the property.

7. Experiment

In order to verify the state space reduction method proposed in our paper, we have
conducted verification in the SOPC software. We compare the number of states, running
time, and memory in the original design and the design after state reduction. The experi-
mental results show that the algorithm proposed in this paper can be effectively applied to
state space reduction in the SOPC software, and the algorithm does not require significant
additional costs.

The algorithm proposed in Section 6.4 is verified in the experiment. Firstly, we applied
the method in Section 5.1 to model the SOPC system and selected nine properties to verify
the software and hardware interaction area of the SOPC model. Secondly, we applied the
methods proposed in Sections 6.2 and 6.3 to compress space states. Finally, model checking
was applied to the SOPC model, and we compared the results of the original SOPC model
with the compressed SOPC model.

Our experiment was implemented using the AveMC model checking tool, which
is an industrial-grade model checker. The description language of the design is SVA,
Verilog, Very-High-Speed integrated circuit hardware description language (VHDL), or
SystemVerilog, and the property language is Verilog and SVA.
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7.1. Construction of SOPC System-Level Original Model

As shown in Figure 19, SOPC uses the AXI bus as the on-chip bus to connect two hosts
and five slaves. One host is ARM, and the other host is the network terminal (NT) of the FC-
AE-1553 bus. One slave is dual-port random access memory (RAM), and the other slave is
a programmable logic double data rate synchronous dynamic random access memory (PL-
DDR), a processing system-DDR (PS-DDR), and two serial advanced technology attachment
(SATA) controllers. There are six types of IPs interconnected with the bus. According to the
form of the interconnected IPs, this paper divides them into three types. The first type is
CPU hardcore: ARM core. The second category is RTL code IP: RAM core, SATA_ Contrller
core, PS_ DDR core, PL_ DDR core. The third type is encryption IP: FC-AE-1553 NT core.
We can abstract and formalize the first type of IP core and the third type of IP core.
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Figure 19. Original SOPC system.

The bus selected by the experimental object is AXI4 and AXI4-lite. At the bus level,
AXI4-lite and AXI have their own RTL-level IP cores, so their respective RTL-level IP cores
are directly used as the initial formal design model. At the interface level, the first and third
types of IP without RTL-level source code are summarized. This paper adds the RTL-level
code that summarizes the interface conversion as the behavior of the CPU and FC-AE-1553
NT model interacting with the bus, as shown below (Figure 20):

Based on the above model construction, this paper defines the model of the initial
SOPC system as the input of the state space reduction algorithm and generates the reduced
model of the SOPC system.

7.2. Formal Property Select

SOPC hardware and software cooperation refers to the cooperation between logic
and software to complete transactions. The SOPC system cannot perform hardware and
software co-simulation, so it is impossible to perform white box simulation analysis of the
hardware and software interaction area. The board-level test is a limited scenario test, and
the external input excitation cannot ensure effective coverage of the software and hardware
interaction area, so the SOPC software and hardware interaction area is the risk point
of verification, which brings hidden problems. This paper focuses on the verification of
the SOPC software and hardware interaction part, so the design properties focus on the
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security of the software and hardware interaction part. According to the characteristics of
the experimental object, this paper selects the nine verification properties shown in Table 5.
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Table 5. Formal properties.

Type Property

Software and
hardware

interaction area

(1) Does not read and write the same address of dual-port RAM at the
same time;

(2) Two masters cannot write to the same address at the same time;
(3) Does not read and write the same register at the same time;
(4) The software reads the value of the updated logic register within N ms;
(5) The interrupt status register does not lose an interrupt;
(6) The time interval of the interrupt request shall not be less than 1 s;
(7) The last interrupt ID is cleared before the next interrupt;
(8) One bit of interrupt register cannot be read and written at the

same time;
(9) The interrupt status register does not lose an interrupt.

We can use SVA language to describe the properties to be verified as shown in Table 6.
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Table 6. Formal properties description.

Type Property
Description Property

Read_Write
conflict

Does not read and write the same address
of dual-port RAM at the same time.

!(Read&&write&&(Read_addr==Write_addr))

Two masters cannot write to the same
address of shared storage at the
same time.

!(master1_wr&&master2_wr&&(master1_wraddr==master2_wraddr))

Does not read and write the same register
at the same time.

!(Read&&write &&(rd_regaddr==wr_regaddr))

The software reads the value of the
updated logic register within N ms.

$changed(reg) |=> #[0:100] reg_read

Read_write
interrupt
conflict

The interrupt status register does not lose
an interrupt.

//property
Inter1_in&&no_other_inters |=>inter_status[1];

The time interval of the interrupt request
shall not be less than 1 s.

Always @(posedge clk or posedge rst)
If(!rst) counter<=0;
Else if(int_req||counter ==TIME) counter<=0;
Else counter <=counter +1;
Assign flag = (count !=0)
//property
(int_req & flag)

The last interrupt ID is cleared before the
next interrupt.

Always @(posedge clk or posedge rst)
If(!rst) set_flag <=0;
Else if(interruptid_clear) set_flag <=0;
Else if(interruptid_set) set_flag <=1;
//property
(!set_flag)&&interrupt

One bit of interrupt register cannot be
read and written at the same time.

assign rd_intr0=rd &intr_reg[0];
assign wr_intr0=wr &intr_reg[0];
//property
!(rd_intr0&& wr_intr0)
assign rd_intr1=rd &intr_re [1];
assign wr_intr1=wr &intr_reg[1];
//property
!(rd_intr1&& wr_intr1)

The interrupt status register does not lose
an interrupt.

Inter1_in&&noother_inters |=>inter_status[1];

7.3. Model Checking Result Analysis

This original design was implemented using Xilinx Kintex-7 series FPGA chips, the
language was Verilog, and the number of lines of code was about 70,000 lines. After
the front-end code was synthesized, placed, and routed, a synchronous sequential soft-
ware composed of logic resources, wiring resources, clock resources, storage resources, IP
resources, etc., was obtained. The resources occupied by this design are shown in Figure 21.
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The resource list in the figure above includes flip flop (FF), lookup table (LUT), input–
output (IO), and other components. From the synthesis result, we can see that the FPGA
software has 221,340 flip flops and 182,304 × 6 logic lookup tables. Based on the third
chapter theory analysis of the number of states, if this SOPC software does not perform
state reduction, 2221340 states and 2221340 × 271 transition relationships need to be traversed
in formal verification.

After the model of the CPU was established, we integrated the CPU model and the
SOPC logic code to form a complete formal SOPC design model. In the comparative
experiment, based on the original SOPC formal design model and the formal design model
after variables reduction and transfer relations reduction, we conducted model checking on
the five properties in the previous section, and the test results are shown in Tables 7 and 8.

Table 7. Running Results of the experiment.

Property Pass *
Original Formal Design Model Reduction Formal Design Model

Memory (MB) Running Time (s) Memory (MB) Running Time (s)

P1
√

NA NA 1056 2954
P2 × NA NA 1024 2410
P3

√
NA NA 1114 3202

P4
√

274 810 124 44
P5

√
214 702 122 40

P6 × 680 3450 685 211
P7

√
1036 3228 780 130

P8 × NA NA 1024 3581
P9

√
362 1012 178 68

* “×” means property verification failed; ”
√

” means property verification passed; and NA means no detection.

Table 8. State Reduction Results of the experiment.

Code Line Property Original States Reduced Register (States) Ratio

77,892

P1

221,340

90,882 41%
P2 77,468 35%
P3 97,792 44%
P4 11,079 5%
P5 10,495 4.74%
P6 34,773 15.7%
P7 29,758 13.44%
P8 79,984 36%
P9 17,788 8%

In the experiment process, we first performed the variable reduction method on the
original model. After the reduction, we performed transfer relations reduction.

We compared the states of the original design with the states of the reduced design
and compared the run time with the memory of different properties.

In Table 7, the first two columns, “property” and “pass”, show verified properties and
the result of property verification. The third to sixth columns, respectively, show the total
running time needed to verify each property and the peak memory. In Table 7, the results
of the original formal design model test are shown; property 1 and property 2 have no
results. In the experiment we chose 2 h as the time limit; beyond 2 h, the property cannot
be verified.

From the memory usage and runtime of property verification, we can see that the
runtime is significantly reduced. Moreover, in experiments with property 1 and property 2,
we set their timeout as two hours. While the properties cannot be verified in the original
design, they can be verified after state reduction.

For different properties, if the design state space involved in property A is larger than
the design state space involved in property B, then the time to detect property A is longer
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than the time to detect property B. For example, in Table 7, since property 4 involves more
design states than property 3, the detection time is also longer than that of property 3.

In Table 8, the first two columns, “code line” and “property”, show the original design
lines and verified properties. The third column gives the states of the original design, the
fourth column gives reduced states, and the fifth column gives the ratio of state reduction.
Because the two state reduction algorithms proposed in this paper are based on properties,
the number of design states based on different properties is also different.

The model reduction method proposed in this paper is a lossless abstract method,
which is mainly based on a search of design variables related to properties and a search
of transfer relationships to reconstruct the model of the design. Therefore, it is more
comprehensive in accuracy than general abstract models at the signal level.

8. Conclusions

Aiming at the formal verification problem encountered in the SOPC software widely
used in the high-reliability field, this paper proposes a modeling method of the SOPC
system and a state space reduction method for SOPC software. We provide a variable
reduction method for the SOPC system and a branch relation reduction method based on
verification properties. Through the reduction in branch relations, the state quantity and
state transition relations of the model state space can be reduced. The proposed methods
are evaluated in the actual project. The experimental results have demonstrated that our
proposed methods can significantly reduce the complexity of the model and thus the formal
verification time for SOPC software. The method proposed in this paper can improve the
coverage of SOPC testing in areas where traditional testing coverage is insufficient; it is a
supplement to testing.

When reducing state space, this paper focuses on VHDL and Verilog, which can
be synthesized. In fact, high-level languages such as SystemVerilog and SystemC can
also be used when constructing models. For this high-level language, although similar
methods can be used for variable and state transition relationship reduction at the code
level, there are still more details to consider at the practical reduction level. For example,
the transformation from high-level language to state transition graph, the definition and
reduction scope of high-level language variables, and the reduction method of high-level
language for loops, etc. We hope that further research can be applied to a wider range of
model language expressions.
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