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Abstract: Regulating LED current and voltage is critical to maintaining a constant luminous flux
in AC- or DC-powered LED lighting circuits. Today, users require constant current drivers that
can provide a wide range of output voltages to drive different numbers of series-connected LED
arrays. This work proposes an LED driver by combining an isolated SEPIC converter operating in
the continuous conduction mode (CCM) and a modified Vienna rectifier. The proposed LED driver
offers a single-switch control structure by adding a Vienna rectifier to the integrated SEPIC-FLYBACK
converter. This driver structure provides many advantages over traditional bridge rectifier structures.
The prototype circuit was tested in an 18 W continuous current mode (CCM) to verify its feasibility.
As a result of the values obtained from both simulation and prototype circuit models, it has been
shown to provide many of the following advantages: 95% high efficiency, high reliability, 4% low
total harmonic distortion, 97% high power factor, and 70 V low switching voltage. This work meets
class C 3-2 and IEC 61000 standards.

Keywords: LED driver; isolated SEPIC; Vienna converter; switching stress; total harmonic distortion
(THD)

1. Introduction

With the rapid advancement of technology, energy consumption is increasing, and
energy-saving plans are the main agenda of the countries [1]. Since a significant part of
the energy consumption in the world is used for lighting, countries are creating energy-
saving plans in this direction [2,3]. LEDs have started to be used instead of traditional
lighting devices with many advantages such as long life, low energy consumption, and
developing technology. Studies on rectifier circuits to develop new LED driver topologies
have attracted the attention of researchers [4]. Since LED driver circuits use high-frequency
switching elements, it causes harmonic distortion in the input current. The high-distortion
current on the input side of the LED driver circuits also negatively affects the overall
compatibility of the network. For this reason, a two-part structure between the output side
and the input side of the circuit has been proposed in many LED topologies. In the first
stage, a DC–DC converter is used to operate under different load conditions on the output
side, while a PFC circuit is used in the second stage to prevent the current drawn from
causing harmonic distortion on the input side. Due to these two-stage structures in the
driver circuits, more power switches are needed. This causes the control of the circuit to
become more complex [5,6]. Topologies that control the DC–DC converter and PFC circuit
with a single switch are widely used to minimize the number of switches. Thus, the control
of the circuit is simplified, and its size and cost are reduced [7,8].

Due to their simple structures and ease of control, Boost, Buck–Boost, SEPIC, and
CUK converters are mostly used in LED drivers. These converters are preferred in LED
applications because the PFC structure is easy and highly efficient. However, since the
output voltage is lower than the peak value of the input, it causes high voltage in the power
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switches [9]. To address this shortcoming, many converters have been designed using the
soft switching methods of power switches. One of these converters is the SEPIC converter,
which reduces the voltage stress on the switches with the effect of the storage capacitor
in its structure [10,11]. However, SEPIC converters have more components, resulting in
higher costs and lower efficiency. Another converter is the Buck–Boost converter, which is
the most widely used converter due to its many advantages such as simple circuit structure
and high power factor [12,13].

LLC, Class E, FLYBACK, and FORWARD converters are used in applications where
constant output current and electrical isolation are required in LED drivers [14,15]. In
particular, LLC converters have high efficiency due to their soft switching feature, but
the high number of elements in the circuit causes control complexities and high costs [16].
Although Class E resonant converters have high conversion efficiency due to their soft
switching feature, they are not preferred due to the large number of components in the
circuit structure and control difficulties. FLYBACK and FORWARD converters are widely
used in low-power applications due to their simple circuit structures, ease of control, and
low cost [17]. However, it causes voltage increases on the switches due to the leakage
inductance of the transformer in the circuit. Also, the energy stored in the inductor when
the switch is in the open state limits the use of the magnetic core [18].

Lee et al. designed a new converter by adding a lossless suppression circuit to the
Boost–FLYBACK converter. With their proposed converter, DC-BUS capacitor voltage is
reduced, and recycling efficiency is increased [19]. Yadav et al. proposed a new converter
that provides a high output efficiency by combining Viana, CUK, and FLYBACK converters
with a single switch [20]. In another study, they designed a new converter with a low THD
value by combining SEPIC and FLYBACK converters with a single switch [21]. A new
driver with a high PFC value was designed by combining a Buck–Boost converter and a
reverse-coupled inductor with a single switch by Cheng et al. [22]. Regulating the LED
current is critical to maintaining a constant luminous flux in LED lighting circuits powered
by AC or DC sources. Effective LED drivers improve power quality and efficiency while
keeping low THD values, which is very important.

In this study, a single-stage-isolated SEPIC–FLYBACK AC–DC LED driver circuit is
designed. The proposed LED driver circuit consists of two main parts. The first part is the
AC-DC converter structure consisting of a single-phase modified Vienna converter. The
second part is the SEPIC–FLYBACK converter combination, which provides an isolated
voltage structure. The article is organized as follows: The main circuit of the proposed
LED driver is introduced in Section 2. In Section 3, the operating modes of the proposed
circuit are presented in detail. The model design is given in Section 4 with its mathematical
calculations. In Section 5, simulation and experimental studies of the proposed circuit are
given. Finally, the conclusions are presented in Section 6.

2. Proposed Led Driver Circuit

Figure 1 shows the topology of a two-stage Vienna rectifier and a high-power factor
LED driver.

When the circuit given in Figure 1 is examined, it is seen that the switch stress is
reduced with a modified Vienna rectifier, but the control of the circuit becomes complicated
due to the non-isolated structure of the circuit and the use of two switches.

In this study, a new single-stage LED driver circuit is proposed by arranging a two-
stage Vienna rectifier circuit and adding an isolated SEPIC converter with an output that
is combined with a single switch. A simplified switched circuit topology of the proposed
circuit is given in Figure 2.

When the structure of the circuit is examined, the DC output voltage is kept at the
appropriate level by choosing the desired value of the DC output voltage, Cp, and Cn
capacitor values by using a filtering inductance L to the AC input and a modified Vienna
rectifier. L1 and C1 elements perform both the energy storage function and the power factor
correction (PFC) function. Circuit isolation is provided by the isolation transformer used in
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the circuit. The Co output capacitor minimizes the fluctuations in the output voltage and
also extends the life of the circuit since it is a non-electrolyte capacitor.
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Vienna Rectifier Analysis and Design

A single-phase conventional Vienna rectifier is shown in Figure 3a. The Sw switch
in the classical Vienna rectifier was removed, and the Vienna rectifier shown in Figure 3b
was used. Here, Dp and Dn diodes are source side diodes operating for one phase of AC
sinusoidal source. L represents the source filter inductor and the capacitors Cp, and Cn
represents the rectifier output [23].

The modified Vienna rectifier operating modes are presented in Figure 4a,b.
As seen in Figure 4, the main circuit consists of two diodes, two series capacitors,

and an inductor. Diode connections allow capacitors to be charged at equal voltage and
opposite polarity. The capacitor voltages in the circuit are given in Figure 5.
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Figure 5. Capacitor coltages Cp, Cn.

Depending on the state of switch Sw, the single-phase Vienna rectifier circuit (Figure 3a)
is characterized by three voltage states between the anode point of diode Dp and the
common point of the two capacitors Cp and Cn. There are various control algorithms for
switch S proposed to achieve specific characteristics such as harmonic composition, THD,
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etc. However, the proposed modified Vienna rectifier produces DC voltage without the
need for any switch by using the difference voltages in the Cp and Cn capacitors. Figure 5
shows the output voltage of capacitors Cp and Cn. As seen in the figure, since the capacitor
voltages are of the same polarity in the t1-t2 interval, the total voltage will not be zero.
Therefore, the sum of the capacitor voltages will be greater than zero at all intervals. Hence,
DC output voltage is provided without the need for any switch.

The total output voltage is taken from the ends of the capacitors connected in series,
and the voltage waveform is shown in Figure 6.
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3. Operating Modes of The Recommended Circuit

The LED driver suggested in Figure 2 works in three main modes. These operating
modes are described below, respectively.

3.1. Mod I [t0 ≤ t < t1]

The first mode of operation of the designed circuit, Mode I, is given in Figure 7.
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Figure 7. Mode I operating mode.

As seen in Figure 7, the Mode I operation starts with the closing of switch S1. The
current from the DC source is stored on the inductor L1, and the energy in the capacitor C1
is discharged through the magnetizing inductor Lm and the leakage inductance Lk. The
current through switch S1 is equal to the sum of the capacitor current IC1 and the inductor
current L1. The current flowing through the switch S1 is calculated by Equation (1).

IS1(t) = IL1(t) + IC1(t) (1)
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In Mode I, there is no current flow because the Do output diode is reverse-biased.
Therefore, the LED load is energized through the Co output capacitor.

3.2. Mod II [t1 ≤ t < t2]

The second operating mode of the designed circuit, Mode II, is given in Figure 8.
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As seen in Figure 8, Mode II operating mode starts when the S1 switch is opened at
t = t1 instant. The energy in the L1 inductor begins to be transferred to the load through
C1. With the magnetizing inductor Lm, the current through the leakage inductance Lk
resists the sudden change. Thus, sudden voltage spikes are limited. In this mode, since
the polarities of the transformer are changed, the diode Do is forward biased, and the
voltage in the primary winding of the transformer is transferred to the secondary winding.
Subsequently, both the Co capacitor is charged and the LED feeds the load.

In a steady state, assuming the transformer leakage inductance is small enough to be
neglected, the switch voltage S1 is expressed as VS1, and Equation (2) is calculated by the
given equation.

VS1 = Vrec +
N1

N2
Vo (2)

If N1/N2 = 1 is taken in Figure 7, the L1 current is continuous since the IL1 current does
not fall to zero. The direct current from the Vienna rectifier is transmitted to the primary
winding of the transformer through the inductor L1 and the capacitor C1. The magnetizing
inductance Lm resists the sudden polarity change as it is the polar opposite at the first
moment; then, it stores energy in the same polarity until the end of the operating mode.

3.3. Mod III [t2 ≤ t < t3]

The Mode III operating mode of the designed circuit is given in Figure 9.
As seen in Figure 9, capacitor C1 terminates the current flowing through it when it

reaches full charge. The energy stored on the magnetizing inductor Lm is transferred to the
transformer’s primary windings. In this case, since the polarity at the transformer winding
ends will change, the Do output diode is forced to cut. When the Do diode is turned off, the
load is fed through the Co capacitor again.

In Figure 2, the L1 input inductor voltage–current plot and S1 Switch voltage–current
plot in all operating modes of the proposed LED driver are given in Figure 10a, C1 Storage
capacitor voltage–current plot and Lm magnetization inductor voltage-current plot are
given in Figure 10b. In the graph given in Figure 10, the operating modes of the circuit
show the behavior of the switch during the ON–OFF time. The time-dependent behavior
of the circuit elements is presented in detail.
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The output diode Do voltage-current graph and output capacitor Co voltage–current
graph in the proposed LED driver are given in Figure 11. Circuit operating in continuous
conduction mode (CCM) operates in multiple modes within one switching period. As can
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be seen from the operating modes, the switch voltage does not increase while providing a
constant output current at the reference load. In this way, excessive voltage spikes on the
switch are limited.
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4. Design of the Recommended Led Drive
4.1. Calculation of Input Inductor L1

The circuit proposed in Figure 2 is designed to provide constant output current at
variable loads, and the most ideal circuit elements have been optimized and selected. The
circuit is operated at a constant reference load at the switching frequency and duty cycle
of switch S1. In the first approach, the transformer used in the isolated SEPIC converter is
assumed to be ideal. Since the IL1 current does not drop to zero, the LED driver is designed
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to operate in continuous conduction mode. If the input power of the circuit (Pin) is assumed
to be equal to the output power (Po), it is calculated by the equation given in (3).

Pin = Po

Vrec. IL1 = (V0)
2

R
(3)

Vrec represents the output voltage of the modified Vienna rectifier, and the average
current value of the inductor L1 is expressed as IL1. The output voltage of the LED driver is
represented as Vo, and R is considered as the equivalent static resistance of the modeled
LEDs. The average output voltage of the Vienna rectifier is calculated by the equation given
in Equation (4).

Vrec =
Vm

2π
(4)

The maximum value of the AC input voltage is represented as Vm, and the average
value of the input inductor current IL1 is calculated by the equation given in Equation (5).

IL1 =
1
T

[
t1∫

t0

IL1,max.t
D1.T

dt +
t3∫

t2

(
−IL1,max.t

D2.T
+ IL1,pk

)
.dt

]

=
1
T

[
IL1,max

D1.T
t2

2

∣∣∣∣t1

t0

+
−IL1,max

D2.T
t2

2

∣∣∣∣t3

t2

+ IL1.t|t3
t2

]
,

=
IL1,pk

T

[
(D1.T)
2D1T

2
− (D2.T)2

2D2T
+ D2T

]
,

IL1 =
∆IL1

2
(D1 + D2),

(5)

D1, D2, and D3 are Mode I, II, and III times. (Mode III time is negligible.) T is the time
in the transition interval. The change in input inductor current as ∆IL1 is calculated by
Equation (6).

∆iL1 =

(
N1
N2

)
V0D2T

L1
(6)

IL1 inductor average current from Equation (6) is calculated with the equation given
(7) when it is substituted in Equation (5).

∆iL1 =

(
N1

N2

)
V0D2T(D1 + D2)

2L1
(7)

Using the input and output power equation, the input inductor L1 value is calculated
with the equation given in Equation (8).

(
2Vm

π

)
.

(
N1

N2

)
V0D2T(D1 + D2)

2L1
=

Vo

R

2

L1 =
Vm.D2.T.R.(D1 + D2)(

N2

N1

)
.V0.π

(8)

During boundary transmission mode, D1 = (1 − D2) is calculated with the given equation.

4.2. Calculation of Magnetization Inductor Lm

The output current ripple ∆Io is proportional to the current ripple present in the
magnetizing inductor of the transformer. Therefore, the transformer is designed to operate
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in continuous mode and low magnetizing inductor current ripple to provide a smaller
output current ripple and a smaller output capacitor. When the switch S1 is closed, the
magnetizing inductor current is calculated by Equation (9).

ILm = IC1 −
N2

N1
ID0 (9)

On the secondary side, diode current IDo is calculated by the equation given in
Equation (10).

ID0 = ICo + I0 (10)

In a steady state, the average currents of capacitors C1 and Co are zero. Therefore, the
average value of the magnetizing inductor current is calculated by the equation given in
Equation (11).

ILm = iC1 −
N2

N1
(iCo + Io) (11)

ILm =

∣∣∣∣N2

N1
Io

∣∣∣∣ (12)

The operation of the circuit in continuous conduction mode works in the CCM when
the minimum magnetizing inductor current ILm min > 0.

∆ILm
2
− ILm = 0 (13)

When switch S1 is ON state

VC1 + VLm = 0 (14)

Since the average voltage of the capacitor C1 is equal to Vrec, the magnetizing inductor
current (15) is calculated by the given equation

VLm = −Vm

2π
(15)

The time-dependent current change ∆ILm over the magnetization inductor is calculated
by Equation (16).

∆iLm = −VmD1T
2πLm

(16)

If Equations (12) and (16) are substituted in Equation (17).

VmD1T
πLm

− N2

N1
Io = 0 (17)

In order for the circuit to work in the CCM, the magnetizing inductance value must be
selected greater than the inductor value calculated in (17). The magnetizing inductance Lm
value is calculated by the equation given in Equation (18).

Lm >
VmD1TN1

πN2 Io
(18)

4.3. Calculation of Storage Capacitor C1

When the switch S1 is opened, the change in the charge of C1 is calculated by the
equation given in Equation (19).

|∆θC1| =
1
2
(iLm,min + iLm,max)D1T (19)
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The values of the minimum current value ILm,min and maximum current value ILm,max
of the magnetizing inductor are calculated by the equation given in Equations (20) and (21).

iLm,min =
N2

N1
Io +

VmD1T
πLm

(20)

iLm,max =
N2

N1
Io −

VmD1T
πLm

(21)

Equations (18) and (19) are written in (17), and the C1 capacitor value is calculated
with the equation given in Equation (22).

∆θC1 =
N2

N1
IoD1T (22)

The charge change value on the storage capacitor C1 is calculated by the given
Equation (23).

C1 =
∆θC1

∆VC1
(23)

If Equation (22) is written instead of (23), the value of C1 is calculated with the equation
given in Equation (24).

C1 =
IoD1TN2

∆VC1N1
(24)

The average output current Io = Vo/R. Therefore, the C1 storage capacitor is calculated
by the given Equation (25).

C1 =
D1TN2

RN1

(
∆VC1

Vo

) (25)

When switch S1 is opened,

Vrec = VL1 + VC1 + (VIk + VLm) (26)

Since the average voltage across the inductors is zero, the average voltage of the
storage capacitor C1 is calculated by the given Equation (27).

VC1 =
Vm

2π
(27)

The change in average voltage across C1 is calculated by Equation (28) given.

VC1,rip =
∆VC1

VC1
(28)

If we substitute Equations (27) and (28) in Equation (25), the value of the C1 capacitor
is calculated with the equation given in Equation (29).

C1 =
D1TN2

RN1

(VmVC1,rip

2πVo

) (29)

4.4. Output Capacitor Co Calculation

When the switch S1 is opened, the voltage on the output capacitor Co and the output
voltage Vo are equal to each other. Equation (30) expressing the charge change on the Co
capacitor is calculated with the given equation.

|∆θC1| = Co∆VCo =
Vo

R
D1T (30)
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T is twice the line period of 10 ms. If the equation numbered (30) of the Co output
capacitor is rearranged, Equation (31) is calculated with the given equation.

Co =
VoD1T
∆VoR

(31)

4.5. Control Loop Design

In the control loop design, the LED current is under constant surveillance using
a series-connected resistor (Rs) within the LED array circuit. The measured current is
then juxtaposed with a predetermined reference value. The control system used a simple
proportional–integral (PI) controller, as shown in Figure 12.
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Figure 12. Control loop of proposed LED driver.

The PI controller processes the error signal obtained from the comparison between the
detected LED current and the reference value. The controller’s output is then compared
to the fixed-frequency sawtooth waveform. In response to changes in output current, the
controller dynamically regulates the duty cycle of the system. This adaptation ensures a
constant output current even in the presence of variable loads. Dynamic regulation keeps
the LED current at a consistent level across the entire operating voltage spectrum.

5. Result and Discussion
5.1. Simulation Results

The proposed LED driver circuit was modeled in MATLAB-Simulink®, and a circuit
diagram was created, as shown in Figure 13.

The proposed LED driver consists of the integration of a modified Vienna rectifier
and an isolated SEPIC–FLYBACK converter circuit. When the LED driver is connected to
a 310 Vpp, 50 Hz AC source, the Vienna rectifier converts the AC voltage to a half-wave
DC voltage. It maintains the constant output current with a PI controller that changes the
voltage level by keeping the output current constant in variable loads to be connected to
the circuit.

The circuit parameters of the recommended LED driver are given in Table 1.
In traditional converters, important parameters such as THD and PF cannot meet

the mandatory standard values since the current drawn from the network is irregular in
case of variable load. It is seen in Figure 14 that the proposed LED driver circuit provides
these parameters.
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Table 1. Circuit parameters of recommended LED driver.

Component Symbol Value

Input voltage (V) Vin AC-310 Vpp
Filter capacitor Cp, Cn 10 (µF) 450 V AC
Filter inductor L 500 µH
İnput inductor L1 2 mH

Storage capacitor C1 100 (µF)
Output capacitor (µF) Co 2200 (µF)

Transformer T1 N2/N1 = 1
Output current (A) Io 0.6 A
Output voltage (V) Vo 30 V
Output power (W) W 18 W

Resistor R 50 Ω
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An LED array of 18 watts and 0.6-ampere load is connected to the output of the
proposed LED driver circuit. Figure 15 shows the total voltage level across switch S1. When
the 220 Vrms voltage is applied to the circuit, and the output power is 18 W, the S1 switch
closing voltage is around 70 V. Compared to other LED drivers, the switch stress is minimal.
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To measure the harmonic level of the proposed LED driver, an FFT analysis program
in Simulink® is used to measure the change in input current. The THD of the recommended
LED driver is given in Figure 16.
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5.2. Experimental Results

To test the feasibility of the proposed LED driver circuit, a converter prototype was
created, as shown in Figure 17.

When a 50 Hz, 220 RSM AC voltage is supplied to the input of the proposed LED
driver, it provides a constant current of 30 V 0.6 A when a representative 50 ohm load is
connected to the output of the circuit. A digital signal processor is used to drive the power
switch of the prototype circuit. The designed driver maintains a constant output current of
0.6 Amps by adjusting the switch triggering signal to maintain a constant output current
at variable loads. The models and values of the circuit elements used in the LED driver
prototype are given in Table 2.
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Table 2. Model and ratings of the recommended LED driver.

Component Symbol Model Part Rating

Input İnductor L 22 × 14 × 8 1.0 diameter 10 A 500 (µH)
Input Capacitor Cp, Cn P220M186JN 10 uF 450VAC Capacitor CF505U37LL
Diode rectifier Dp, Dn, 2x1N5408 Repetitive Peak reverse voltage, VRRM = 1 kV

Storage İnductor L1 22 × 14 × 8 1.0 diameter 10 A 2 mH
Switch S1 IRF740 N-CHANNEL 400 V-0.48 ohm-10 A

Storage Capacitor C1 F611DU335M40 DC Voltage = 160 V
Output Diode Do 1N5408 Repetitive Peak reverse voltage, VRRM = 1 kV

Transformation T - 1:1
Output Capacitor Co R60DR522A40 2200 µH DC Voltage = 50 V

The proposed LED driver circuit has been experimentally realized, and the obtained
results are presented in Figure 18. AC input current and voltage waveform of the circuit
are given in Figure 18a, L1 inductor current and voltage waveform in Figure 18b, S1 switch
voltage waveform in Figure 18d, diode current waveform in Figure 18e and output current
and voltage waveform in Figure 18f.

As seen in Figure 18a, the current drawn and the voltage are in the same phase. As can
be seen in Figure 18d, it is seen that the voltage of the S1 switch is at the level of 70 Volts
at a power of 18 watts versus the input voltage of 220 Vrms. According to this result, the
proposed LED driver circuit reduces the switch stress without using a snubber. It is seen
that the simulation and experimental results overlap with each other.

The measured power factor of the proposed LED driver is given in Figure 19. Since
the current and voltage are in the same phase in the driver circuit, the power factor of the
circuit is measured as 0.97.

The power factor of the recommended LED driver is greater than 0.97, which complies
with the Energy Star guideline.

The measured harmonic current level comparison of the IEC-61000-3-2 Class C stan-
dard and the proposed circuit is given in Figure 20.

As a result of the changes in the current drawn from the AC network, the total
harmonic value of the circuit is measured. The THD value was measured using the
Tektronix DPO4034 350 MHz Digital oscilloscope analyzer function. The measured THD
of the recommended LED driver is below 4%. The measured value is lower than the
IEC-61000-3-2 Class C limits.
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A comparison of the simulation and experimental results is given in Table 3. As can be
seen from the table, it has been observed that the simulation results and the experimental
results overlap.
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Figure 18. The experimental waveform of the implemented prototype. (a) AC input current
and voltage waveform; (b) L1 inductor current and voltage waveform (c) zoomed-in of L1 wave-
forms; (d) voltage waveform of switch S1; (e) diode current waveform; (f) output current and
voltage waveform.
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Table 3. Comparison of simulation and experimental results 220 Vrms and 18 W nominal
operating condition.

Simulation Experiment

Peak Input Current (A) 0.1 0.112
Power Factor 0.975 0.972

Odd Harmonics Value
3rd 0.11 0.12
5 0.054 0.06
7 0.044 0.04
9 0.026 0.029
11 0.021 0.022

Average Output Current (A) 0.612 0.601
Average Output Voltage (V) 30.125 30.20

Peak Switch Voltage (V) 70 70.6

The oscilloscope image of the experimental result output current and voltage of the
proposed LED driver circuit is shown in Figure 21.

The proposed LED driver gives an average output voltage of 30 V and a constant
output current of 0.6 A at 18 W power and 50 ohm reference load. Table 3 compares the
experimental and simulation results of the proposed circuit. As can be seen in Table 3, it
was observed that the simulation and experimental results were close to each other.

A comparison of the proposed LED driver circuit with similar studies in the literature
is presented in Table 4.

Table 4 shows that the 34 W LED driver has a high power factor of 0.99. In addition,
while the efficiency is 82.3%, the output current fluctuation is very low at 18%. However,
the switch overvoltage is more than twice the steady state voltage [24].

The 21 W–30 V output LED driver suggested by Poorali et al. has a high power factor
of 0.99. Total harmonics meet IEC 61000-3-2 Class C standard, and fluctuation is 25%. High
efficiency (with a value of 95%) is achieved using non-electrolytic capacitors in the driver
circuit. However, since the switch-off voltage is three times the input voltage, the voltage
stress on the switch is relatively high [25].

Ahmad et al. a suppressor circuit is designed to prevent switching stress and fluctua-
tion in the input current in the AC–DC converter. The 18 W driver has a high power factor
and an efficiency of more than 90%. However, the efficiency of the circuit is low due to the
suppression circuit used in the circuit [26].



Electronics 2023, 12, 4946 18 of 20

The switch voltage of the proposed circuits is about twice the input voltage. Switch
stress can be reduced by using active inhibitors. However, since the use of these inhibitors
will increase the number of elements in the circuit, circuit control will be difficult, and the
cost will increase. This reduces the reliability of the recommended LED drivers.
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Table 4. Comparison of the proposed LED driver with other research-isolated SEPIC converters
designed using a snubber circuit.

Component 24 25 26 Proposed LED Driver

Input Voltage (V) 22–32 Vac 185–220 Vac 90–240 310 Vpp
Output Voltage (V) 25.5 30 30 30
Output Power (W) 34 21 18 18

Switching Frequency (kHz) - 50 60 50
Output Capacitor (µF) - 10 88 2200

Peak Efficiency 82.3% at 34 W 95% at 16.8 W 93.56% at 18 W 95% at 18 W
Power Factor 0.98–0.99 0.99 0.93–0.975 0.97

Overvoltage (V) 150 No overvoltage at turn-off,
However, peak voltage is high 82 30

Steady-state Voltage (V) 70 at 32 V input voltage 600 at 220 v input voltage 286 at 150 V input voltage 310 Vpp input voltage
Snubber Type Passive Passive Passive Passive

Snubber Component Count 1 Capacitor
1 Diode

1 Inductor
2 Capacitor

2 Diode

1 Inductor
2 Capacitor

2 Diode
-

Flicker (%) 18 18 - -

6. Conclusions

The LED driver reduces the switching overvoltage caused by the parasitic leakage
inductance of the high-frequency transformer in the isolated SEPIC converter without using
a suppression circuit. In addition, with the controller designed in the circuit, it provides
constant output current at different loads while maintaining important parameters such as
4% low THD and 0.97 high power factor. Thanks to the single-phase Vienna converter used
in the circuit, the switching overvoltage has been reduced to as low as 70 volts compared to
conventional rectifiers. Since the isolated SEPIC structure of the circuit provides isolation,
its reliability is increased. Since the input current drawn from the network is in phase
with the input voltage, the power factor is close to one. The use of a non-electrolytic
output capacitor (CO), which reduces the fluctuation in the output voltage, contributes
to the prolongation of the life of the designed LED driver. It has been observed that the
efficiency of the circuit at variable loads is 97%. In simulation and experimental studies, the
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overvoltage on the switch was kept at a low voltage level of 70 volts. The proposed LED
driver, compared to the isolated SEPIC with snubber, has an increased efficiency circuit
since there is no switch stress-reducing element.
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