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Abstract: Modern machine degradation trend evaluation relies on the unsupervised model-based
estimation of a health index (HI) from asset measurement data. This minimizes the need for timely
human evaluation and avoids assumptions on the degradation shape. However, the comparability of
multiple HI curves over time generated by unsupervised methods suffers from a scaling mismatch
(non-coherent HIs) caused by the slightly different asset initial conditions and distinct HI model
training. In this paper, we propose a novel self-supervised approach to obtain HI curves without
suffering from the scale mismatch. Our approach uses an unsupervised autoencoder based on a
convolutional neural network (CNN) to detect initial faults and autonomously label measurement
samples. The resulting self-labeled data is used to train a 1D-CNN health predictor, effectively
eliminating the scaling mismatch problem. On the basis of a bearing test-to-failure experiment, we
show that our self-supervised scheme offers a promising solution for the non-coherent HI problem.
In addition, we observed that our method indicates the gradual wear affecting the bearing prior to
the independent analysis of a human expert.

Keywords: predictive maintenance; neural networks; bearing fault diagnosis

1. Introduction

The accurate monitoring of a machine’s degradation plays a pivotal role in condition-
based predictive maintenance, facilitating timely maintenance actions and maximizing
the lifespan of critical assets [1]. Contemporary assets are monitored by several sensors
in order to detect potential defects at an early stage and estimate the remaining useful life
(RUL) of the asset. Typically, the machine deterioration is assessed by evaluating a so-called
health index (HI). A HI is a numerical value derived from the raw data samples for each
measurement of the monitored asset. It is intended to reflect the health status of the system.

If evaluated over time, this so-called HI curve develops either an increasing or decreas-
ing slope. The direction of the trend is depending on the HI definition. In conventional
condition monitoring, this definition is based on the assessment of a device maintenance
expert [2]. Hence, the HI is constructed by evaluating relevant trending parameters from
a range of possible features [3] to monitor the device’s health. Typically, RUL is then
assessed by comparing HI curves of multiple devices [4]. However, the approach depends
on prior knowledge about the potential faults in the monitored device to select the correct
parameters, as individual features may only be relevant to certain types of faults. This
time-consuming, expert-guided selection may therefore suffer from a human-induced bias
that limits their general applicability to a wider range of potential problems.

To counteract the human selection bias, more extensive HI estimation approaches
have emerged. These either construct the HI based on autonomous evaluation of multiple
traditional features [5] or use data-driven supervised learning methods to extract expert-
independent features from the raw data [6]. Supervised machine learning methods have
been heavily used in predictive maintenance [7–10].
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Nonetheless, these methods necessitate a certain degree of human domain expertise.
For instance, supervised methods require sets of labeled data, which are initially generated
through time-consuming expert assessment. Thus, the extensive data volumes required
to effectively train these supervised models present operational challenges. In addition,
these methods make assumptions about the degradation shape [11], which do not hold
in real-world scenarios, emphasizing the necessity for more efficient domain knowledge-
independent approaches. In the remainder of this paper, we introduce a novel methodology
that eliminates the need for human labeling in the context of HI generation and operates
without making any assumptions regarding degradation shape.

2. Related Literature, Problem Statement and Contribution

In recent advancements, unsupervised learning-based HI methods based on autoen-
coders are proposed in order to minimize time-consuming human evaluation of the indi-
vidual measurements and eliminate assumptions about the degradation of the asset [12].
Autoencoder are trained to reconstruct given input through an architecture bottleneck, the
so-called latent vector. By training a reconstruction task, these models are expected to learn
valuable features of the process of generating the data without requiring label information.
Autoencoders are related to transformer networks [13], which are state-of-the-art models in
many sequence-related tasks such as language translation or time-series forecasting. How-
ever, transformers require unsupervised training on large datasets, which is not available
in many predictive maintenance scenarios. For this reason, recent studies mostly leverage
unsupervised autoencoder approaches based on long short-term memory (LSTM) [14] or
convolutional neural network (CNN) [15].

In the context of unsupervised HI curve generation, the autoencoder is trained ex-
clusively on healthy unlabeled measurements of a monitored functional device, which is
usually present at the beginning of a test-to-failure experiment. As depicted in Figure 1,
the HI curve generation is centered around the idea that any autoencoder output, trained
solely on healthy data, achieves worse reconstruction results as the wear-induced signal
changes, which were not present in the training data, emerge over time. Therefore, the
autoencoder HI is supposed to increase as the device is affected by wear over time.

Figure 1. Schematic of the traditional unsupervised HI generation workflow in the literature.

Previous work provided evidence that unsupervised HI curves based on autoencoders
can be used to achieve state-of-the-art RUL estimation performances [16]. In this work, the
RUL is determined by matching HI curves from devices under test (DUT) with pre-recorded
curves derived from historical data of a similar asset by minimizing their Euclidean distance
between the individual curves [17]. However, deriving the RUL of a device based on HI
curves that are generated by unsupervised methods suffers from various limitations that
we aim to address. Firstly, the initial value of the functional device is different for each
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individual machine. As stated above, any subsequent RUL estimation typically requires
the comparison of multiple HI curves. Therefore, RUL estimation based on unsupervised
HI evaluation is affected by a scaling discrepancy between individual curves, even when
monitoring similar assets. An illustration of the scaling mismatch and the traditional
matching-based RUL estimation is depicted in Figure 2.
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Figure 2. Illustration of the HI scaling mismatch induced by unsupervised learning (left) and con-
ventional RUL estimation methods based on curve fitting (middle). The introduction of a time shift
in the estimation of RUL is intended to reflect the initial wear of the device caused by manufacturing
tolerances. However, the true initial asset condition is unknown. In addition, a schematic of our
proposed time-shift independent HI is shown (right).

This non-coherent behavior of unsupervised HI curves is typically explained by the
influence of slightly different device initial conditions [12,18]. For this reason, recent RUL
methods introduce a time shift variable, the so-called “time lag”. However, the real initial
conditions of the DUT are unknown in practical application, compromising the accuracy
and reliability of the RUL estimates of the method.

Secondly, to make the HI definition more intuitive, it is desirable for any HI curve
to start with an initial health of 1 and to decrease over time, tending towards 0 as the
device becomes worn out. This is indicated in Figure 2(right). Without additional time-
lag estimation-based post-processing, this has not been implemented in autonomous HI
generation [5,12,19].

To address these limitations, we propose a novel approach to HI generation based
on self-supervised learning. Self-supervised learning has shown superior performance
in data-heavy domains such as medical imaging [20] and general pattern recognition
tasks [21]. Recently, self-supervised learning has been introduced to the field of condition
monitoring and failure diagnosis to detect specific faults in electric powertrain data by using
unsupervised support vector machines [22]. Unlike conventional supervised approaches,
self-supervised methods do not require human-labeled data to train meaningful models.
Instead, these methods aim to generate their own so-called ’weak labels’ by evaluating
unlabeled training data [23,24]. Note that in the literature, any label generated by a non-
human expert is referred to as a weak label.

As illustrated in Figure 3, our method is based on a three-step appraoch: First, an
autoencoder is going to learn an unsupervised representation of a data-generating process.
Second, the trained model is used to detect the initial fault in the test-to-failure dataset. The
initial fault, which is described in detail in Section 3.1.4, is used to provide weak preliminary
labels for each measurement in a test-to-failure dataset by assigning individual measure-
ments to either the ‘functional’ or ‘faulty’ class. Third, the weakly labeled data is used to
train a subsequent two-class classifier generating the HI in a binary classification setting.
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Figure 3. Overview of the three steps in our proposed self-self supervised HI curve workflow.

To the best of our knowledge, self-supervised learning remains unexplored in the
context of HI curve generation and it provides a valuable contribution to the current
literature on HI generation. This paper shows:

• The capability of self-supervised learning to estimate coherent HI curves of a device.
• The enhanced self-supervised HI performance of CNN- over LSTM autoencoder.
• That self-supervised HI curves indicate wear in the device prior to human experts.
• The effects of imperfect weak labels on our proposed self-supervised HI method.

The rest of the paper is organized as follows: The proposed method is explained in
Section 3. The experimental setup used for verification is introduced in Section 4 and the
main results are presented in Section 5. Section 6 concludes this article.

3. Methods
3.1. Generating Unsupervised Weak Labels Applying Autoencoder
3.1.1. Data Preprocessing

Our autoencoder is trained on a set of unlabeled measurements of a functional de-
vice recorded in a test-to-failure experiment. Each experimental run contains multiple
unlabeled measurements X = {x(1), x(2), . . . , x(i), . . . , x(L)} of the device. Each of these
measurements is a time-series of length of L and each point x(i) is a regular sensor reading
at time-instant i of the recording. For training, we only use measurements taken after an
initial run-in period of 15 min to bypass any short-term transient behavior. In addition, we
solely rely on the first hour of the remaining available test-to-failure data. This ensures that
the autoencoder is trained only on healthy data. Every individual measurement X is then
split into multiple smaller sample windows of vector size ws. Every x(i) in this vector is
re-scaled in the interval [0, 1] in advance, to speed up the training process. These scaled
input data vectors (sample windows) are shuffled and fed sequentially into the input layer
of the autoencoder.

3.1.2. Autoencoder Topologies

Autoencoder topologies consist of an encoder and a decoder. Both are connected by
the so-called latent vector. While the encoder is supposed to compress the information into
the latent, the decoder uses the latent to reconstruct the output. To prevent a trivial result
and learn an unsupervised model of the monitored device, compression on the encoder side
is achieved by reducing the size between the consecutive layers in the encoder. Therefore,
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the connecting latent represents an information bottleneck, which is supposed to contain
essential information about the data-generating process. Our proposed CNN autoencoder
architecture is depicted in Figure 4.

Figure 4. An illustration of the topology of our studied CNN autoencoder. In the encoder, the given
input training sample of size ws is narrowed by a factor of two between layers using max-pooling.
The process is repeated until a compression factor cs is achieved. The bottleneck vector is called the
latent. An opposing decoder network is trained simultaneously to unravel the encoder compression
in order to reconstruct the input.

The CNN performs a discrete convolution of the input signal with a so-called kernel
to extract related features from the data. We decided to utilize this network type due
to its computational power, simple implementation, and success in similar predictive
maintenance problems. The encoder topology of our network is based on six layers
of 1D convolutions (Conv). This total amount of layers in the encoder is denoted by l.
Convolutional layers are typically made of multiple kernels, the so-called feature maps.
They contain the neural network weights θk. The kernel size ks is typically smaller than
ws in order to enable step-wise sliding of the kernel. Moreover, the sample windows are
padded, using zero values at the start and end of each window.

In every convolutional layer, a kernel of size ks = 3 continuously slides over the sample
window with a stride of zero and calculates the dot product between the input vectors win-
dow and the kernel weights θk. Subsequently, a trainable bias bo|{o = 0, 1, 2, . . . , l} is added,
and the result, processed by a nonlinear activation function (ReLU), is stored in the activa-
tion map. In the six similarly structured deconvolution layers (deconv) of the decoder, this
process is reversed by performing transposed convolutions. The outputs given by the last
decoder layer are called the reconstruction R = {r(1, θk), r(2, θk), . . . , r(i, θk), . . . , r(ws, θk)}.
Each conv or deconv layer is followed by a max-pooling/upsampling layer to halve/redouble
the data dimensionality and adjust data resolution. Therefore, the information in the input
vector of size ws is compressed with a loss based on the number of layers l until reaching
the bottleneck at the latent of the autoencoder. To enhance the comparability of different
architectures the number of feature maps fn trained within a single network layer is set to
fn = 2l · cs. The compression ratio cs is calculated between the latent vector of size sla and
the input window size ws by cs =

sla
ws

. Adopting the number of feature maps fn ensures the
size of the flattened latent vector sla to be sla = ws · cs. Therefore, a desired compression
ratio between the input and the latent is reached for a fixed number of layers so that the
learning task is always at the same level of difficulty.

As previously stated, the encoder and decoder can be constructed using various neural
network structures such as CNN or LSTM. Therefore, we compare our CNN autoencoder
architecture to the LSTM-based work of Malhotra et al. [14] for the weak labeling task. This
model is a state-of-the-art anomaly detection algorithm used in many time series-related
applications. However, we do not provide any additional implementation details of this
LSTM network, since it is covered in detail within the comprehensive work of the authors.
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3.1.3. Autoencoder Optimization Details

To learn from the given data samples, our 1D-CNN approach optimizes the error
between the input value x(i) and its individual reconstruction r(i) after passing the network.
This error is summed for ws timepoints within the sample window. We received the
reconstruction error

E(θk) =
ws

∑
i=0
‖x(i)− r(i, θk)‖2 (1)

for each window. To obtain a trained model, we optimize each network parameter θk n
order to derive the set of best weights characterized by

θ̃k = arg min
θk

Eme(θk) (2)

that minimizes Eme, which is the averaged sum of individual sample window errors E(θk).
The optimization was performed using ADAM, which computes an adaptive learning rate
for each individual weight of the network. The initial learning rate λ was set to λ = 0.002
at the start of the optimization. After successful training, the autoencoder is expected to
achieve a suitable reconstruction performance on the data of the functional device.

3.1.4. Reconstruction Error-Based Generation of Weak Labels

As depicted in Figure 5, the initial fault is the first indication of wear in the device. It
is estimated by sequentially feeding the remaining unlabeled data, which is not used to
train the autoencoder, into the trained model. Then, Eme is evaluated for each measurement
of the test-to-failure experiment. If Eme succeeds a given threshold for the first time an
initial fault is present in the data. All remaining measurements after the initial fault are
labeled as ‘faulty’, while the previous data samples are labeled ‘functional’. The decision
threshold required to estimate the initial fault can be determined by various change-point
detection-based methods [25], their individual evaluation is out of the scope of this work.

Figure 5. Schematic of the wear-induced deterioration trend monitored by the autoencoder recon-
struction error over time. The initial fault is used to weakly label the unlabeled measurement data.

3.2. Self-Supervised HI Generation Using Weakly Labeled Data

In order to obtain our proposed self-supervised HI, the weakly labeled data are
used to train a binary classification model to decide whether the bearing is still working
(‘functional’) or is affected by severe wear (‘faulty’) over time that prohibits further use of
the machine. Note that, as explained in Section 3.1.1, we trained the autoencoder on data
measurements of a functional device after a period of 15 min since we desire to bypass
any transient run-in behavior. Any run-in and autoencoder training data are not used
to train the HI classifier. Additionally, we do not train the self-supervised HI model on
data of the final failure. These data originate from a machine that is completely worn out,
thus no longer depicting a gradual deterioration of the system but rather reflecting the
consequences of a specific complex fault type. The behavior in the final failure state is often
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very different from the behavior exhibited as the machine progresses towards it. Thus, we
exclude these data from the trainset. The architecture of the classifier is shown in Figure 6.

Figure 6. Simple 1D-CNN and fully connected (MLP) layer-based classifier architecture used to estimate
the HI based on the weakly labeled data. Note that other supervised architectures are adoptable.

The feature extraction of the model is based on a 1D-CNN with three convolution and
pooling layers. The outputs are fed into a single 100-neuron perceptron layer followed by
a softmax decision layer to perform the binary classification task. The parameters of the
model are trained by minimizing the cross-entropy Ji:

arg min
θg

Ji(ti,j, yi,j) = arg min
θg

(
−

Ncl−1

∑
j=0

ti,j log(yi,j)
)

(3)

between the prediction of the classifier yi,j and the generated preliminary labels ti,j. Here,
j corresponds to the j-th class, Ncl to the number of classes and i to the time point. By
definition, Ncl equals 2 in the case of binary classification. Analog to the unsupervised
autoencoder, we use the Adam optimizer to obtain the parameters of the classifier. The
self-supervised HI is then determined by evaluating the results of the trained classifier.
In this process, the class probability that each measurement originates from a functional
device is calculated. Due to the design of this binary classification, the predicted bearing
state of the HI is numerically bounded between zero (faulty) and one (functional).

4. Experimental Setup and Evaluation Metrics
4.1. Dataset Description

In our work, we assess the proposed self-supervised scheme through a comparative
data analysis of two identical roller bearings subjected to test-to-failure experiments. To
validate the effectiveness of our method, we utilized the test rig depicted in Figure 7.

Figure 7. Sensor positions (left) and test rig structure (right) in our test-to-failure bearing monitoring
scenario: (1) motor clutch, (2) back gear,(3) load clutch, (4) coupling gear, (5) tested bearing.
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The test rig was equipped with four ‘SONOTEC T10’ broadband ultrasound (US)
sensors. To capture sensor data, the signals were analog-to-digital (A/D) converted using a
24-bit A/D converter with a maximum sampling rate of 204 kHz. To expedite the dataset
generation process, we imposed a relatively short bearing lifetime by subjecting the test
bearing and the gear connecting the shafts to a constant load of 1000 Nm. To ensure
consistency, the rotational speed was maintained at 2000 RPM throughout all experiments.
In each test-to-failure experiment, we recorded a 10-s measurement every 10 min (for
bearing 1) and 5 min (for bearing 2) until the device failure was evident to the expert. A
total of 3188 individual measurements were conducted, with each measurement evaluated
by a human expert to provide the ground truth labels used in our experiments. The ground
truth analysis involved examining the commonly used spectral envelope feature of the
measured signal.

4.2. Comparison of Different Weak Labeling Architectures

As explained in Section 3.1.4, initial faults can be identified using different change-
point detection methods. The accuracy of the initial fault detection depends on the quality
of the deterioration trend. However, in this work, we aim to evaluate the suitability of
the proposed general self-supervised HI framework and an exhaustive analysis of specific
threshold algorithms is out of the scope. Therefore, the deterioration trends generated
by different autoencoder models are compared, assessing their general suitability for the
binary HI classification task. Figure 8 illustrates our approach.

Figure 8. Illustration on the evaluation of different weak labeling architectures based on their AUC.
The required ROC is determined by continuously selecting thresholds in the deterioration curve (left)
and calculating its TPR/FPR with respect to an expert ground truth (right).

The autoencoder performance is assessed by varying a discrimination threshold and
analyzing the Area Under the Receiver Operating Characteristic Curve (AUC) of the
method. The required Receiver Operator Characteristic (ROC) curve is given by calculating
the true-positive ratio (TPR) and false-positive ratio (FPR) of every possible threshold
compared to a ground truth label given by an expert manually looking through the data. A
higher AUC value corresponds to a more suitable deterioration curve since a subsidiary
initial fault threshold algorithm can achieve a result close to the ground truth determined
by a human expert.

5. Results and Discussion
5.1. Unsupervised Generation of Preliminary Labels

In this section, we carefully evaluate the quality of our proposed CNN autoencoder
model trained using the functional data. In addition, we compare our method with the
LSTM-based autoencoder of Malhotra et al. [14] in terms of its suitability in the context
of generating weakly labeled data. Our proposed self-supervised architecture relies on
successful weak labeling of the unlabeled test-to-failure experiment data. It is therefore
necessary that our model trained on functional device data achieves sufficient reconstruc-
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tion performance on unseen data of this type. In addition, significantly worse performance
should be evident on measurements affected by wear.

5.1.1. Evaluation of the Autoencoder Training Quality

Figure 9 shows normalized example reconstructions generated by our 1D-autoencoder
for functional and faulty test signals.

Figure 9. Examples of normalized input signals and their corresponding reconstructed signal of the
1D-CNN autoencoders for a damaged and an undamaged bearing measurement.

Visually, the trained model achieves a suitable reconstruction performance for un-
damaged samples. However, it encounters challenges when reconstructing damaged data.
As a result, the autoencoder appears to have learned an accurate model of the machine
under normal operating conditions, which, as anticipated, proves less effective for data
stemming from a degraded machine. In accordance with Section 3.1.4, we calculate the
average autoencoder reconstruction error per measurement, denoted as Eme, over the entire
operational life to estimate the initial faulty measurement within the deterioration curve of
our test-to-failure experiments. Figure 10 illustrates the best deterioration curve achieved
by the CNN and LSTM autoencoder on bearing 1. Additionally, the plot shows how the
suitability of the deterioration curves is assessed with respect to Section 4.2.

Figure 10. Initial fault estimation comparison of our 1D-CNN autoencoder (left) for ws = 128,
cs = 50% and the LSTM model (right) from Malhotra et al. [26], for bearing 1 from our dataset.

Typically, early transient fluctuations usually do not reflect any real change in the
health state of a time-worn machine under constant load. Thus, the dashed green line
corresponds to an FPR of zero and marks the earliest possible correct initial fault estimate,
not triggered early by random variations. In comparison, the dashed red line marks the
ground truth threshold given by the human expert. The smaller the distance between
both lines, the higher the AUC. Hence, a high AUC value indicates that the autoencoder
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model provides an initial fault estimation close to the human expert. Figure 11 presents the
AUC-based comparison for both architectural models applied to bearing 1.

Figure 11. AUC analysis for the deterioration curve of the CNN (left) and LSTM (right) based
autoencoder from Figure 10.

Despite skipping the first 15 measurements of the experiment, the results of both
models seem affected by additional run-in effects, lasting until the 3-h mark of testing.
The device transitions into a normal operational condition, maintaining it until the 12-h
mark when it finally starts producing faulty data. As indicated by the green line, the
optimal threshold of our CNN method lags behind the independent human expert’s initial
fault baseline by approximately 15 min. In contrast, the best possible threshold for the
LSTM-based curve lags by over 2 h. This distinction is also reflected in their respective
AUC scores. While the CNN achieves an AUC of 0.98, the LSTM only attains an AUC of
0.78 with the best hyperparameter setting described in the original work. Consequently,
our proposed CNN architecture significantly outperforms the LSTM reference from the
literature. Comparable results were obtained for other test-to-failure runs on bearing 5.
However, these results are omitted here for brevity.

5.1.2. Influence of the Input Vector Window Size ws and Compression cs

The presented results of our CNN autoencoder are based on the choice of its hyperpa-
rameters, and for brevity, we only depicted the best performing so far. Nevertheless, we
studied the impact of different input vector window sizes ws fed into our autoencoder and
the influence of different data compression rates cs on the model performance. The results
for both bearings within the dataset can be seen in Table 1.

Table 1. AUC evaluation results of our 1D-CNN autoencoder for different ws and cs.

Bearing 1 Bearing 2

Window Size ws
Compression

cs
128 256 512 1024 2048 4096 6144 128 256 512 1024 2048 4096 6144

50% 0.98 0.92 0.91 0.82 0.87 0.70 0.67 0.97 0.83 0.64 0.72 0.75 0.80 0.77
25% 0.94 0.87 0.91 0.93 0.82 0.84 0.71 0.82 0.59 0.47 0.57 0.62 0.75 0.73

12.5% 0.91 0.96 0.72 0.88 0.93 0.84 0.73 0.57 0.51 0.47 0.50 0.03 0.67 0.64

LSTM [26] 0.78 (best) 0.74 (best)

In our study, we achieve the best performance on both bearing test-to-failure runs
using an input window size ws = 128 and a compression ratio cs = 50%. Note that
a window size of 6144 samples corresponds to a full rotation of the bearing. All other
tested window sizes are derived from the power of two. They were chosen due to their
frequent usage in the machine learning literature on CNN to support model comparability.
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We decided to only study sizes below a complete rotation, as this would lead to overlap
between the individual windows, which would enhance the memory effect during training.
The compression rates are determined to study the effect of a very strong (50%), medium
(25%), and low (12%) compression level. Given that the best-performing model based on
Malhotra et al. [14] using LSTM achieved inferior results compared to our best CNN model,
all further evaluations are conducted exclusively with the CNN approach.

5.1.3. Visualization of the Trained Features Encoded in the Latent Vector

Related contributions on unsupervised HI estimation like [27] or [16] use visual
evaluation methods like t-SNE [28] or PCA [29] to map the learned representations of
the high dimensional latent vector onto a 2D plot and to compare the quality of different
autoencoder models. Here, it is assumed that the most important information extracted
by the trained autoencoder is present in its latent vector. By applying t-SNE and PCA, it
is possible to explore emerging structures in this vector and to gain a deeper insight into
results learned by a network.

Figure 12 depicts such a t-SNE and PCA-based comparison of our CNN-autoencoder,
using different window sizes and a fixed compression rate of 50%.

Figure 12. Latent space visualization based on PCA (top) t-SNE (bottom) for the lifecycle of bearing 1.

In the illustration, every individual point corresponds to a single measurement of the
test-to-failure experiment for bearing 1. To achieve the plot, first, each measurement was
fed sequentially into the trained autoencoder and the corresponding latent values were
concatenated. Second, t-SNE and PCA were applied to the constructed high dimensional
latent value matrix to map it to the depicted 2D plot. The recording period of each measure-
ment is encoded by a colored gradient to visualize the chronological order of the recorded
bearing life-cycle. Notably, both visualization methods yield toroidal representations that
analyze the data of the rotating machinery. The results show that the t-SNE algorithm seems
superior in visualizing the rotating data’s repeating character since it succeeds even for
small window sizes. However, t-SNE is not suited to visualizing the deterioration process
since no clear trend is observable. Here, PCA has an advantage since lifetime progression is
observable from outside inwards. Unfortunately, given the best-performing configuration
from Section 5.1.2 (ws = 128, cs = 50%), PCA plots succumb to a crowding issue that is
only resolved for inferior models which yield lower AUC values. Likewise, PCA seems
to be an insufficient evaluation approach. The similar results achieved for bearing 2 are
not shown. These findings suggest that evaluating the autoencoder performance solely
on PCA or t-SNE visualizations of the latent vector may not be sufficient to fully judge
the performance of the trained model. Hence, different performance metrics have to be
evaluated in the future.
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5.2. Self-Supervised HI Generation

In this section, we evaluate the proposed self-supervised HI generation. This model
estimates the device’s health over time while relying on weak labeled data to optimize the
network parameters. However, as discussed in Section 5.1.1, suitable initial fault methods
are supposed to achieve a similar weak labeling capability as an expert-based evaluation.
Therefore, the self-supervised HI generation is first analyzed using data labeled by human
experts. Note that using expert-based labels in this context suffers from partly subjective
human judgment, as the results of different experts may vary slightly. Therefore, in the
second part of this section, we investigate how variations in the detection time of the initial
fault affect the HI classification task.

5.2.1. Results Using Expert-Based Initial Fault Detection

In this part of our research, we delve into the outcomes of our model, operating under
the assumption that the quality of the weakly labeled data equals that of a human expert.
The trained model, illustrated in Figure 6, proceeds to classify the current health status of
the bearing into two categories: ‘functional’ and ‘faulty’. Subsequently, we evaluate the
classification probability of the functional class over time, yielding our proposed health
index (HI) curve for our device. The results of this approach, as applied to both bearing 1
and bearing 2, are presented in Figure 13.

Figure 13. The proposed self-supervised device HI curve depicted for bearing 1 (left) and bearing 2
(right). The provided RSD curve represents the model’s uncertainty that the provided measurement
belongs to the ‘functional’ class.

The HI curves produced by our self-supervised method exhibit the desired coherent
trend behavior in both of our bearing test-to-failure experiments. The model predicts both
bearings to be in a healthy condition initially and faulty, mirroring the expert ground
truth, after 12 h of run-time. To produce this ground truth, the expert reviewed the data
by conducting an envelope spectrum analysis, a standard method for bearing evaluation.
To us, this comparison to a human baseline seems conclusive since human evaluation is
still one of the most common practices in the industry. In comparison to the results of
the unsupervised learning methods depicted in Figure 10, the model does not suffer from
transient run-in-related effects due to our self-supervised setting. In addition, the model
appears to experience increasing uncertainty over time, as reflected in the classification
probability beginning to progressively fluctuate. To quantify this loss of conviction, we
calculate the running standard deviation (RSD) of the network decision probabilities for
the available M test-to-failure measurements in the dataset over time:

σm =

√√√√√√√
1

m− 1

m

∑
d=0

(
yd −

1
m

m

∑
a=0

ya︸ ︷︷ ︸
running mean

)2

. (4)
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hence for a given time instant m ∈ {0, 1, . . . , M} all classification probability outputs yd of
the network are considered for the calculation of the running standard deviation. The RSD
steadily increases over time, indicating a continuous reduction in the model’s confidence
that the provided measurements belong to the ‘functional’ class. This observation suggests
that our model can successfully capture gradual wear-induced changes in the device
prior to the initial fault reported by a human expert envelope spectrum analysis. This
capability was not achievable with previous unsupervised methods. Nevertheless, similar
to unsupervised approaches, the RSD curve yields an increased slope after approximately
12 h of run-time, which corresponds to the time the initial fault was determined by the
human expert.The initial fault is indicated by the red horizontal line in Figure 13.

Similar to the classification probability evaluation, the RSD curves of the self-supervised
classifier produced coherent trends for both of our test-to-failure runs. Hence, it might be
reasonable to study the use of this model uncertainty measure in terms of self-supervised
HI-based RUL prediction in future work.

5.2.2. Impact of Non-Ideal Initial Fault Detection

In the preceding analysis, we operated under the assumption that the quality of the
weakly labeled data equaled that of a human expert. However, in real-world scenarios, our
unsupervised initial fault detection may not produce labeling results closely aligned with
human evaluations. Furthermore, subjective human judgment can lead to slightly different
baselines. Hence, it is important to investigate the impact of varying the initial fault times
on classifier performance.

To examine this effect, we manually adjusted the labeling threshold for the data,
shifting it by up to 15 measurements in either direction around the expert-based decision
at shift 0. Subsequently, we employed each newly labeled dataset to train the classifier,
following a procedure similar to the previous experiment. Additionally, for each shift, we
repeated the training 20 times with different initialization seeds. Considering that our
data are recorded at intervals of 10 min (for bearing 1) or 5 min (for bearing 2), the results
encompass a time range of 150 to 300 min around the initial fault point determined by
the expert, respectively. The results presented in Figure 14 suggest that the classifier’s
performance reaches its peak for positive shifts in comparison to the human expert baseline
(shift 0). This indicates the positive effect of a later initial fault choice in improving the
quality of weak labels. Consequently, the labels provided by the human expert can be
considered as a rather conservative estimation of failure.

However, it is noteworthy that all examined shift values yield average classifica-
tion results exceeding 97% (bearing 1) and 93% (bearing 2). Hence, a slightly earlier
or delayed initial fault timing appears to have minimal impact on the self-supervised
classifier’s performance.

Figure 14. Overall accuracy of the HI classifier for bearing 1 (left) and bearing 2 (right) as the initial
fault detection timing is shifted. Each individual shift corresponds to a delayed (negative shift) or
early (positive shift) initial fault estimation compared to the expert initial fault decision at shift zero.
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5.3. Implications, Limitations, and Outlook

In our previous investigations above, we demonstrated several important findings:
Firstly, self-supervised learning is capable of generating coherent health index (HI) trends.
Secondly, CNN-autoencoders surpass LSTM-autoencoders in creating the weakly labeled
data necessary for this process. Finally, we showed that the self-supervised HI can detect
wear in the device earlier than human expert analysis and examined how imperfect labeling
affects the performance of the self-supervised HI in a bearing test-to-failure scenario. In
our study, a shift of up to 300 min had only a minimal effect on the model performance.

Our method, as currently understood, has the potential for application in a variety
of scenarios where devices undergo gradual wear, not just in mechanical transmissions.
This opens up possibilities for more precise wear monitoring and Remaining Useful Life
(RUL) prediction in numerous predictive maintenance situations. However, our testing to
date has been limited to a bearing test-to-failure scenario within a controlled environment.
The effects of sudden environmental changes on the algorithm’s performance, such as
noise interference from nearby machines in sound-based sensor systems, are yet to be
explored. Furthermore, the influence of different operational conditions, like varying
rotational speeds, on the method’s effectiveness remains to be determined. Consequently,
there is a need for further research to extend our findings to different types of bearings,
sizes, and devices, enabling the practical application of our method.

6. Conclusions

In this study, we evaluated a novel self-supervised approach to obtain health index
(HI) curves for bearing measurements to overcome the challenge of scaling mismatch
between curves from different devices. To achieve that, we explored an unsupervised initial
fault-based approach to generate weak labels and train a classifier for predicting bearing
health over time. Our research shows a notable advancement over previous unsupervised
methods: self-supervised approaches yield coherent health index (HI) curves that accurately
track the device’s health over time, detecting gradual wear on the bearing earlier than
human experts. Additionally, we observed that a CNN autoencoder-based self-supervised
learning outperforms the LSTM-based approach. Importantly, our findings indicate that the
presence of imperfect weak labels only marginally affects the performance of our proposed
self-supervised HI framework.
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