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Abstract: Online learning platforms provide diverse course resources, but this often results in the
issue of information overload. Learners always want to learn courses that are appropriate for their
knowledge level and preferences quickly and accurately. Effective course recommendation plays a
key role in helping learners select appropriate courses and improving the efficiency of online learning.
However, when a user is enrolled in multiple courses, existing course recommendation methods
face the challenge of accurately recommending the target course that is most relevant to the user
because of the noise courses. In this paper, we propose a novel reinforcement learning model named
Actor-Critic Hierarchical Reinforcement Learning (ACHRL). The model incorporates the actor-critic
method to construct the profile reviser. This can remove noise courses and make personalized course
recommendations effectively. Furthermore, we propose a policy gradient based on the temporal
difference error to reduce the variance in the training process, to speed up the convergence of the
model, and to improve the accuracy of the recommendation. We evaluate the proposed model
using two real datasets, and the experimental results show that the proposed model significantly
outperforms the existing recommendation models (improving 3.77% to 13.66% in terms of HR@5).

Keywords: course recommendation; actor-critic method; hierarchical reinforcement learning method;
policy gradient method

1. Introduction

Online course education has been developing rapidly, and massive open online courses
(MOOCs) have become the most important platform for online education [1]. Worldwide,
various MOOC platforms such as Coursera and edX have emerged, extending access to
courses from prestigious universities to millions of students. In China, XuetangX has risen
as one of the largest MOOC platforms, offering thousands of courses and attracting a
substantial user base [2]. Nevertheless, this proliferation of online courses and the constant
evolution of knowledge pose a new challenge in the form of information overload for
MOOC platforms [3–5]. Course recommendation [6–10] is an effective approach to tackling
this challenge [11].

The formalized definition of course recommendation is: When presented with a set of
historical courses that users enrolled in before time t, our goal is to recommend the most
relevant courses that the user will enroll in at time t + 1 [12]. Clearly, it is particularly
important to describe and model the user profile accurately for the recommendation
model. To this end, the factor item similarity model (FISM) [13] can be used to extract
implicit feedback from the learning behaviors of users, or the neural attentive item similarity
(NAIS) [14] can be used to distinguish the importance of different historical courses to target
courses by assigning different weight coefficients to historical courses. However, different
from many other recommendation domains [15–19], as users’ improvement in cognition
level and interests change, they will enroll in diversified courses. Under these circumstances,
the recommendation effect of courses with high contribution will be weakened by other
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courses with low contribution, which may result in recommending a course that does not
align with the user’s preferences. These low-contribution courses are called noise courses.

In order to solve the problem of noise courses, a hierarchical reinforcement learning
(HRL) algorithm [12] can be used, acting on the user profile to remove noise courses in the
historical course sequence using a two-level sequential decision process. The profile reviser
model in the algorithm is then trained jointly with the recommendation model (NAIS).

While substantial advancements have been achieved in course recommendation using
the HRL model, there are still some issues with the model. Specifically, the profile reviser of
the model contains a high-level task and a low-level task; when the high-level task decides
not to revise the user profile, even if there are some noise courses at this time, the model
cannot remove them.

Inappropriate decisions will diminish the overall performance of the model and may
converge to a local optimum state. For the low-level task, because the sampling of the
policy function and the state transition function are both random probability values in
the reinforcement learning (RL) method [20], removing some noise courses randomly will
lead to instability of model prediction. When recommending target courses to users, some
of the more relevant courses may be ignored. As shown in Figure 1, the HRL model
recommended the target course “Monetary Finance” due to the noise course “Principles
of Economics”. But according to the historical courses, the user has studied “C++” and
“Principles of Databases”, so he or she should prefer the computer programming courses.
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In the above case, the user profile reviser does not guarantee the accuracy of decisions.
In this work, we aim to reconstruct the profile reviser to improve the accuracy of course
recommendation. To this end, we propose a new course recommendation model: the
actor-critic hierarchical reinforcement learning (ACHRL) model. The actor-critic method
(AC) embedded in the model can improve the accuracy of decision making efficiently
in the process of revising the user profile. In particular, we adopt the policy gradient
method [21] based on the temporal difference error [22]. This can reduce variance and
improves robustness. The profile reviser can be updated in a timely manner, improving
the accuracy of decisions adaptively. In summary, the contributions of our research are
as follows:
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• We propose an actor-critic hierarchical reinforcement learning model (ACHRL) to
optimize the user profile reviser of the HRL model and improve the accuracy of
course recommendations.

• We propose a policy gradient method based on the temporal difference error, which
updates the policy adopted by the agent of the reinforcement learning model with
rewards at the current moment and states of the moments before and after. This can
speed up model convergence and improve the accuracy of the recommendation model.

• We performed experiments using two MOOC datasets, with the majority of users
enrolled in courses from various categories, and our proposed model demonstrated a
significant improvement over the baseline model on different evaluation metrics.

2. Related Work
2.1. Course Recommendation

The rapid development of Massive Open Online Course (MOOC) platforms has led to
increased research and application of course recommendation systems. In general, course rec-
ommendations can be classified into four primary categories according to different methods:

Course Recommendation Based on Collaborative Filtering. Collaborative filtering
methods encompass user-based and item-based collaborative filtering. These methods typi-
cally recommend courses to users based on the preferences of users with similar interests
or the characteristics of courses. For example, Li et al. [23] designed a personalized online
education platform based on collaborative filtering, resulting in more accurate and efficient
course recommendations aligned with users’ interests. Course Recommendation Based
on Content. Content-based recommendation methods leverage information about the fea-
tures of the courses to make recommendations. These methods are suitable for addressing
cold-start problems as they do not rely on user interaction data. Ghauth et al. [24] proposed
an e-learning recommendation system based on content-based filtering, which enhanced
users’ course outcomes by increasing the accuracy of the learning system. Course Rec-
ommendation Based on Knowledge Graph. Knowledge-graph-based recommendation
methods utilize graph structures to represent the relationships between courses. They
leverage domain knowledge and semantic relationships within the knowledge graph to
model connections between a user’s interests and courses, resulting in personalized rec-
ommendations. Xu et al. [25] applied knowledge-graph representation learning to embed
semantic information of items into a low-dimensional semantic space and calculated the
semantic similarity between recommended items. This approach enhanced recommen-
dation performance at the semantic level. Course Recommendations Based on a Hybrid
Approach. Hybrid recommendation methods combine multiple recommendation tech-
niques, leveraging the strengths of each to provide a combined set of recommendations
that aim to enhance accuracy and diversity. Hybrid approaches have become a popu-
lar solution for addressing various recommendation challenges simultaneously, offering
greater adaptability compared to single-method approaches. Emon et al. [26] used a hybrid
approach that combined association rule mining and user-based collaborative filtering to
develop a recommendation system that identified the unique interests of different students
in learning materials more effectively, resulting in more personalized recommendations.
Gao et al. [27] proposed a personalized course recommendation model based on a con-
volutional neural network combined with negative sequence pattern mining. The model
models the course-learning sequence as a negative sequence pattern according to the user’s
course registration, degree of completion, and final grades, and then via a convolutional
sequence-embedding model. Each user can be recommended a course list. The model has
achieved a good recommendation effect.

With the development of deep learning, the latest course recommendation model
mainly adopts deep learning technology. Wang et al. [28] have developed a hyperedge-
based graph neural network. The authors innovatively treat learners as the sets of courses
in a hypergraph. The hyperedge-based graph attention network is proposed. The model
provides accurate recommendation results. Ren et al. [29] have proposed a deep course
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recommendation model with multimodal feature extraction based on the long- and short-
term memory network (LSTM) and attention mechanism. The paper makes use of the
multimodal technique for building a complete learner portrait to recommend the courses
that fit the user’s preference.

2.2. RL-Based Course Recommendation

In recent years, there have been significant breakthroughs in reinforcement learning
(RL) within the field of recommendation systems [30]. RL has achieved remarkable success
in various domains, including e-commerce, video, and gaming [31–33]. These advance-
ments have also opened up new opportunities in the realm of course recommendations
within the education sector. As an interactive recommendation approach, RL-based recom-
mendation models can continuously update their recommendation policies by receiving
real-time feedback from users. This dynamic approach aligns more closely with real-world
recommendation scenarios compared to traditional static methods. Particularly, deep re-
inforcement learning (DRL) [34–37] stands out for its capacity to process large-scale data,
extract underlying features, and accurately achieve specific goals via end-to-end learning.
One of the challenges in traditional reinforcement learning methods [38–40] is the issue
of the “dimensional disaster”. When the environment is complex or the task is intricate,
the state space of the agent becomes too extensive. This results in a rapid increase in
the number of parameters to be learned and the memory space required. Consequently,
achieving the desired results becomes difficult. To address the dimensional disaster prob-
lem, researchers have introduced hierarchical reinforcement learning (HRL) [41–43]. The
objective is to break down complex problems into smaller, more manageable subproblems
and solve the original task by addressing these subproblems individually. In complex
recommendation tasks, optimizing the policy directly according to the final goal can be
inefficient. Hierarchical methods offer an effective means of enhancing recommendation
efficiency by breaking down complex tasks into more manageable components.

HRL has made great progress in MOOC course recommendation. The accurate con-
struction of the user profile model is the foundation of a recommendation system. Zhang
et al. [12] applied HRL technology to course recommendation for the first time. The au-
thors believed that the noise courses in the sequence of historical courses would affect the
weight of the courses with real contributions. The noise courses are removed using the
reinforcement learning method. Utilizing the revised data can indeed enhance the accuracy
of course recommendations. On the basis of the above work, Lin et al. [44] proposed a
hierarchical reinforcement learning model with dynamic recurrent mechanism for course
recommendation, and it employed a recurrent scheme by context-aware learning to exploit
the current knowledge. Lin et al. [45] focused on improving the performance of the profile
reviser, making the agent obtain the cumulative rewards of the context and adopt better
policies. Lin et al. [46] used a recommendation model that could capture user preferences
by historical courses and improve the accuracy of course recommendations. Inspired by
the above methods, we propose the ACHRL model to optimize the profile reviser, which
ensures more accurate decisions on whether to delete noise courses. Finally, the accuracy
of the recommendation results is improved.

3. Preliminaries

Reinforcement learning is a sequential decision-making process, and reinforcement
learning models need to find an optimal policy to optimize the target. In this section,
we mainly introduce the methods for obtaining the optimal policy using reinforcement
learning, the policy gradient method, and the actor-critic method.

3.1. Policy Gradient Method

We need to learn a target policy explicitly to define the policy-based method [47] in
reinforcement learning. The policy gradient is the basis of the policy-based method. It can
parameterize the policy. Our objective is to discover an optimal policy that maximizes the
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expected return in the given environment. Therefore, the update of the objective function
approximates the gradient ascent in J(θ) as follows:

θt+1 = θt + α
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where θt is the policy parameter at time t, α is the learning rate which controls the step size of
parameter updates, J(θt) is a random estimate, and its expected value can be approximated
as the gradient of J(θt) according to its parameter θt. The method that follows Equation (1)
is referred to as the policy gradient method.

3.2. Actor-Critic Method

In reinforcement learning, the policy-based method needs to learn a policy function,
and the value-based method needs to learn a value function explicitly. The actor-critic (AC)
method [48] combines both aspects, enabling the simultaneous learning of both the policy
function and the value function. This combination allows the value function to assist in the
more effective learning of the policy function. In the context of policy gradients, we can
express the gradient formula in a more generalized form as follows:

g = E
[

T

∑
t=0

ψt∇θlog πθ(at | st)

]
ψt = rt + γ Vω(st+1)−Vω (st)

(2)

where E represents the expected value of a random variable based on the policy function π.
In this paper, ψt is the temporal difference error to guide the learning of the policy function.
πθ(at | st) represents the policy function; we could call it “Actor”.

In this paper, we employ the actor-critic method, as illustrated in Figure 2. The value
function in this method plays a crucial role in guiding the learning of the policy function and
optimizing the agent’s action selection. We update the value function using the temporal
difference error (TD error). Notably, the actor-critic method is essentially a policy-based
approach, because its goal is also to optimize a policy with parameters. In summary, we
utilize a policy gradient method based on the temporal difference error to enhance the
objective function.
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4. Methodologies
4.1. Definitions and Problem Formalization

We first define some concepts as the basis of later discussion.

Definition 1. The sequence of historical courses is denoted as εu, and the elements in the sequence
represent one course per user u enrolment εu =

(
eu

1 eu
2 eu

3 . . . eu
t
)
.

Definition 2. A course embedding vector is denoted as pu
t and aggregates the embeddings of all the

historical courses: pu
1 . . . pu

t .

Definition 3. The recommendation probability is denoted as ρu,i. It is the result of an operation
on the course embedding vector ρu,i = P(y = 1 | ε̂u, ci), where ci denotes the target courses
recommended to users. ε̂u represents a modified εu sequence.

The problem to be solved in this paper is formulated as follows. Given the user’s
historical enrolled course sequence εu of the online platform, we build a profile reviser
under the framework of hierarchical reinforcement learning from which we can obtain the
course embedding vectors pu

1 . . . pu
t in the modified course sequence ε̂u, and then calculate

a recommendation probability value ρu,i(0, 1) of these vectors in the attention mechanism-
based recommendation network. We measure the validity of the data recommendation
in the current course list by comparing the probability value with a set threshold value,
and then guide the operation of the profile reviser. The recommendation module and the
profile reviser module will form a joint training.

Next, we provide an analysis and presentation of the methodology of the proposed model.
We conduct qualitative research using MOOCCourse and MOOCCube datasets. Be-

cause the two datasets are publicly available online datasets and contain rich information,
such as the time the user registered for the course, the type of course, the name of the course,
and the index of the course, we can conveniently convert the data into implicit feedback
represented by 0 or 1 when conducting the experiments. We collected data from XuetangX,
one of the largest MOOC platforms in China. It is all real-user data with most users enrolled
in multiple courses. We mainly analyzed the impact of the number of courses registered by
users on the recommendation results in the data. Our method is the most common general
method in the field of recommendation. We take the historical data as the training set and
verify the experimental results using the experimental set. We take the last course in the
user registration course as the recommended target course to verify the recommendation
effect of the model. Of course, the method has some limitations; because the method we
adopt requires a longer sequence of historical data to have better recommendation results,
it is more friendly to long-sequence datasets.

4.2. Framework

Overview. The ACHRL model is depicted in Figure 3. It consists of two parts: a
profile reviser module optimized using the AC method and a recommendation module
based on attention mechanism. The profile reviser is a hierarchical reinforcement learning
framework consisting of a two-layer Markov decision process (MDP). In this framework,
the high-level task is responsible for determining whether to revise the user profile, while
the low-level task is tasked with deciding which noise course should be removed. When the
high-level task determines to revise the user profile, the delay reward can be obtained after
removing the last noise course in the low-level task. Two temporal difference errors from
the AC method, TD-ERROR_H and TD-ERROR_L, can guide the updating of high-level
policy and low-level policy, respectively. After completing the task of the profile reviser,
the embedding vector of the courses is fed into the recommendation module generating the
recommended probability value. In the ACHRL model, we optimize the two-layer tasks of
the profile reviser so that the agent (ah, al) can take more accurate actions. This can provide
more accurate data for recommendation modules (the variables involved in the figure are
explained in the introduction to the two modules of the model).
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4.2.1. Profile Reviser Module

In the profile reviser, the agent selects the high-level action decision according to the
high-level policy and removes the noise course according to the low-level policy. The key
challenge is how the two-level task can revise the user profile more accurately. We use the
AC method to optimize the HRL model to revise the user profile. Next, we will introduce
the specific composition of the profile reviser based on HRL and its optimization using the
AC method in detail.

HRL for the profile reviser module. The modification task of the user profile can be
divided into a two-layer Markov decision process (MDP) [49]. The first layer is a high-level
task that decides whether to revise the user profile, and the second layer is a low-level task
responsible for determining which historical course to remove. They can be transformed
into a 5-tuple Markov decision process (MDP) denoted as 〈S ,A,P ,R, β〉.S represents a
set of states, and A represents a set of actions. P is the state transition function. S×A×S
converts to a probability value of [0, 1] by mapping. R is a function used to represent
rewards. β ∈ {0, 1} signifies the discount factor applied to the reward at each moment. The
following paragraph describes the content from [12].

State. In the high-level task, we define the state features sh, which is characterized as
the average cosine similarity and the average element-wise product between the embedding
vectors [50] of each historical course eu

t and the target course ci. In the low-level task, we
define the state feature sl

t, which is characterized as the cosine similarity [51], the element-
wise product, and the average of the two previous features between the embedding vector
of the current historical course eu

t and the target course ci.
Action. Action is a discrete variable. The action ah ∈ {0, 1} in the high-level task

determines whether to revise the profile of a user or not, and the action al ∈ {0, 1} in the
low-level task represents whether to remove the historical course eu

t or not.
Reward. Reward is used to indicate whether the performed actions are reasonable

or not. When deciding to revise the user profile, the reward can be obtained after the last
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action is executed in the low-level task. Before that, the reward is zero. Here, Rh

(
sh

t , ah
t

)
is

defined as the difference between the log-likelihood after and before the profile is revised.
The reward for the high-level task is defined as follows:

Rh

(
sh

t , ah
t

)
= log P(ε̂u, ci)

−log P(εu, ci) i f t = tu

Rh

(
sh

t , ah
t

)
= 0 i f t 6= tu

(3)

where sh
t denotes the state of the high-level task at time t, ah

t denotes the action of the high-
level task at time t, and ε̂u is the revised profile, which is a subset of εu. The εu is the original
profile. ci denotes a target course, and P(ε̂u, ci) is an abbreviation of P(y = 1 | ε̂u, ci). The
logarithmic function is used in the formula for better convergence for the training of
the model.

For the reward Rl

(
sl

t, al
t

)
in the lower-level task, aside from the common component

shared with the high-level task reward, there is an internal reward in the low-level task,
which is defined as the difference of the average cosine similarity between each historical
course eu

t after and before the user profile is revised and the target course ci. Internal reward
is used to optimize the efficiency of the policy execution of the agent in the low-level task.
The reward of the low-level task is defined as follows:

Rl

(
sl

t, al
t

)
= (log P(ε̂u, ci)− log P(εu, ci))

+

(
∑t̂u

t=1 (euT
t ci)

t̂u
− ∑tu

t=1 (euT
t ci)

tu

) i f t = tu

Rl

(
sl

t, al
t

)
= 0 i f t 6= tu

(4)

where sl
t represents the state of the low-level task at time t, al

t represents the action of the
low-level task at time t, and euT

t ci represents the cosine similarity between the historical
courses eu

t and the target course ci.
Policy. The policy function of the high-level task is:

πθ
(
sh

t , ah
t
)
= softmax

(
ah

t σ
(

Wh
2 zh

t

)
+
(
1− ah

t
)(

1− σ
(

Wh
2 zh

t

)))
zh

t = ReLU
(

Wh
1 sh

t + bh
) (5)

where Wh
1 ∈ Rdh

1×dh
2 , Wh

2 ∈ Rdh
2×1 and bias vector bh ∈ Rdl

2 are the parameters to be learned
in the neural network, d1 is the size of the hidden layer,d2 is the number of state features,
zh

t is the size of the hidden layer of the neural network at time t in the high-level task, and
σ is the non-linear activation function used to transform the state into a probability value.
ReLU is an activation function. Therefore, the policy parameter of the high-level task can be
defined as follows θh =

{
Wh

1 , Wh
2 , bh

}
. Similarly, we can obtain the low-level task policy

parameter as θl =
{

Wl
1, Wl

2, bl
}

.
The AC method optimizes the profile reviser. Different from the decision made by

the agent relying on the policy function, the action selection of the agent in the AC method
has higher accuracy. Based on this, we use the AC method in the hierarchical task of the
profile reviser. In this case, instead of relying on the cumulative rewards obtained in each
training round for policy updates, the agent performs policy updates via the temporal
differential error δ(t). The δ(t) is estimated using the critic network of the AC method. In
the calculation process of δ(t), we use the rewards of the current moment and the states of
the moments before and after. It is more instructive for the policy update. The formula is
as follows:

δ(t) = rt + γVω(st+1)−Vω(st) (6)
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where Vω represents the state value network in reinforcement learning, ω is the parameter
of the value network, st and st+1 represent the state of the current moment and the next
moment, respectively, and rt is the reward of the current moment. γ ∈ (0, 1) is a discount
factor for cumulative rewards of the agent.

4.2.2. Policy Gradient Based on Temporal Differential Error

The previous section Algorithm 1 illustrates that the value function in the AC method
can guide the policy function to enable the agent to make more accurate decisions. We use
the temporal difference error in the gradient update process, and the gradient formula is
as follows:

∇J(θ) ∝ ∑
s

µ(s)∑
a
∇θπ(a | s, θ)(rt

+γVω(st+1)−Vω(st))
(7)

The ∝ in the formula represents that the two sides of the formula are proportional,
µ(s) represents a policy distribution in the policy function, and rt + γVω(st+1)−Vω(st) is
the temporal differential error (δ(t) ).

Algorithm 1 Actor-Critic Method

Input: a derivable policy parameterization πθ(s, a), a derivable actor-value, a derivable
parameterization Qπθ (st, at), a state-value parameterization Vω(st)
Initialize: parameters θ = θ0, W = W0

1: for sequence e = 1 to E do :
2: Generate a sampling sequence {s1,a1,r1,s2,a2,r2. . .} following πθ

3: for data at each step do
4: δt = rt + γVω(st+1)−Vω(st)
5: w = w + αω∑

t
δt∇ωVω(st)

6: θ = θ + αθ∑
t

δt∇θ log πθ(st, at)

7: end for

4.2.3. Objective Function

The ACHRL model improves the accuracy of course recommendations. For the
hierarchical tasks, the temporal difference error is used in the policy gradient method to
optimize policy function. It is calculated using the value of rewards and states. For our
model, the objective function is to maximize the expectation of expected rewards:

θ∗ = argmax
θ

∑
τ

Pθ(τ)T(τ) (8)

The θ represents the policy parameter: θh or t θl . τ represents the sampling sequence
of the actions and transition states. For the high-level task, it can be represented as {sh, ah },
and for the low-level task, it can be represented as {sl

1, al
1 . . . sl

t, al
t }. Pθ(τ) is the probability

of the state transition in the high-level task or the low-level task, and T(τ) is the temporal
differential error δ(t).

The policy function for the high-level task is as follows:

∇θ = 1
n

N

∑
n=1

tu

∑
t=1
∇θlog πθ(sn, an)rh

t

+γVh
ω(st+1)−Vh

ω(st)

(9)

where tu represents the quantity of historical courses. rh
t is the real reward obtained

by the high-level task at time t. Vh
ω is the representation of the state value network

Vω in the high-level task, and ω is the updated parameter in the state value network
V· rt + γVω(st+1)−Vω(st) is the temporal difference error.
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In the low-level task, the delayed reward can be obtained after removing the last noise
course. The temporal difference error can be obtained via the calculation of the rewards
and states. The policy function of the low-level task is as follows:

∇θ = 1
n

N

∑
n=1

tu

∑
t=1
∇θlog πθ(sn

t , an
t )r

l
t

+γV l
ω(st+1)−V l

ω(st)

(10)

where rl
t is the real reward obtained at time t of the low-level task. V l

ω is the representation
of the state value network Vω in the low-level task. The meanings of other terms in the
formula can be analogous to the relevant definitions in the above high-level policy network.

4.3. Attention-Based Recommendation Module

In our model, the recommendation module is the NAIS model [14]. It is a recommenda-
tion model that relies on an attention mechanism, and it excels at efficiently converting the
course embedding vectors obtained from the profile reviser into recommended probability
values. Besides this, it can provide a fair and reasonable verification for our ACHRL model
and the HRL model. The following is a basic introduction of the NAIS model.

qu =
tu

∑
t=1

au
itp

u
t , au

it = f (pu
t , pi) (11)

where qu represents the embedding vector of the profile, and pu
t is an embedding vector

of the historical courses eu
t . pi is an embedding vector of the target course ci, and au

it is an
attention weight coefficient of the historical course eu

t during the recommendation process.
f (pu

t , pi) is an attention function. Its essence is one multi-layer perceptron (MLP) [52].

f (pu
t , pi) = h>ReLU

(
Wat(pu

t � pi) + bat
)

(12)

where h> is the attention weight vector mapped by the hidden layer of the neural network,
Wat is the weight matrix, and bat is a bias vector. ReLU is an activation function.

According to qu and pi, the attention-based recommendation module generates a
recommendation probability ρu,i.

ρu,i = P(y = 1 | ε̂u, ci) = σ
(

pT
i qu

)
(13)

If the value of y is 1, the recommendation is successful, and σ is an activation function
used to convert the input embedding to the probability value in the recommendation model.

4.4. Separable Two Components of ACHRL

The model proposed in this paper is called ACHRL to indicate that we optimize
the two-layer structure of the profile reviser by using the AC method. We use the term
ACHRL_H to represent the optimization of the high-level task. The term ACHRL_L
represents the optimization of the low-level task. Next, we will provide a comprehensive
description of both of them. In the ablation experiment, we will compare both model
methods with HRL and ACHRL.

4.4.1. High-Level Task Optimization: ACHRL_H

As has been introduced above, a major problem of the HRL model is that the action
of the agent is random. The high-level task cannot decide whether to revise the user
profile accurately. The ACHRL_H model enhances the precision of decision-making for
the high-level task. To ensure a fair performance comparison with the HRL model, we
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employ the REINFORCE algorithm [53] to calculate the gradient of the low-level task policy
function too:

∇θ

= 1
n

N

∑
n=1

tu

∑
t=1
∇θlog πθ(sn

t , an
t )Rl(sn

t , an
t )

(14)

where Rl(sn
t , an

t ) represents the cumulative delay reward of the low-level task obtained by
each sampling sequence τ.

4.4.2. Low-Level Task Optimization: ACHRL_L

In the HRL model, the key to the low-level task is how to identify the noise course
and remove it accurately. Due to the limitation of the policy function itself, the low-level
task removes noise courses with randomness, which makes the execution of the policy less
accurate, and may even remove the valid course mistakenly, affecting the recommendation
performance. To solve this problem, we use ACHRL_L to assist the low-level task in
removing noise courses for improving the accuracy of low-level action selection. While
removing noise courses, we reserve the target course for each user as far as possible.
We still use the REINFORCE algorithm to calculate the gradient of the high-level task
policy function:

∇θ

= 1
n

N

∑
n=1

tu

∑
t=1
∇θlog πθ(sn, an)Rh(sn

t , an
t )

(15)

where Rh(sn
t , an

t ) represents the cumulative delay reward for each sampling sequence in the
high-level task. Note here: Some element representations in Formulas (9), (10), (14), and (15)
are simplified, and we omit h and l representing high and low levels.

4.5. Model Training

The previous section outlines that the entire model can be split into two components.
The training process involves three key steps: initially, pre-training the recommendation
module [54], followed by pre-training the profiler reviser module, and finally, jointly
training the two models together.

Next, we illustrate the details of its interaction by combining Figure 4 and Algorithm
2. First, we pre-train our recommendation module (i.e., ∅0 = {h>, Wat, bat }) using the
original dataset (εu). Then, we conduct the pre-training of the profile reviser module
(i.e., θ0 = {w1, w2, b}). In this process, the update of the high-level policy and the low-level
policy depend on the optimization of the temporal difference error (TD-ERROR_H and
TD-ERROR_L) calculated using the AC method. Finally, we conduct the joint training of
the two models. If the output P(y = 1 | ε̂u, ci) of the recommendation model is greater than
the threshold set in the experiment (e.g., 0.6), the recommendation model has obtained a
reasonable recommendation result. At this time, the high-level task makes the decision
corresponding to “0” in Figure 4, which means that the user’s profile is not modified.
No reward will be given in this case and the δh is zero (corresponding to the fifth line
in Algorithm 2). The course embedding vector of the unrevised profile is input into the
recommendation model directly. On the contrary, the high-level task takes the decision
corresponding to “1” in Figure 4, which means that revision of the user’s profile is required.
At this time, noise courses need to be removed. In the low-level task, “0” means remove
the course and “1” means keep the course. When the low-level task is completed, both the
high-level task and the low-level task obtain the reward. The corresponding values are
also obtained for both δh and δl

t . Under the optimization of them, the removing work of all
noise courses is completed, and the user profile is revised (lines 7–9 of Algorithm 2). The
revised profile is input into the recommendation model as an embedding vector. The next
round of joint training begins until the end of the training. The parameters are updated
during the training process (lines 12–13 of Algorithm 2).
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Algorithm 2 Actor-Critic-Based Hierarchical Reinforcement Learning

Input: training data: εu; pre-train recommendation model parameterized by:
∅0 = {h>, Wat, bat }; pre-train profile reviser parameterized by: θ0 = {w1,w2,b}; derivable state
value functions: vh(s,w), vl(s,w)
Initialize: ∅ = ∅0, θ = θ0, δh(r,s) = 0, δl(r,s) = 0;
1: for sequence k = 1 to k do
2: for each εu: = (eu

1, . . . eu
tu

) and ci do
3: Sample a high-level action ah with θh, in the high-level task;
4: if P(y = 1 | ε̂u, ci) > 0.6 then
5: δk

h

(
rh

t , sh
t

)
= 0

6: else
7: Sample a sequence of states and actions with θl , in the low-level task;

8: Calculate:
(

rh
t , sh

t

)
, δk

l

(
rh

t , sh
t

)
;

9: Calculate the gradients using Equations (9) and (10) according to Algorithm 1;
10: end if
11: end for
12: Update parameters θh, θl , wh, wl by the gradients;
13: Update parameter ∅ by the recommendation module;
14: Output the recommendation probability P(y = 1 | ε̂u, ci) using Equation (13)
15: end for
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5. Experiments

In this section, we will begin by introducing two datasets and explaining the experi-
mental setup. Subsequently, we will delve into the results and findings of the experiment.

5.1. Dataset

We conduct the experiment using the real-world datasets MOOCCourse (http://
moocdata.cn/data/course-recommendation (accessed on 8 May 2023)) and MOOCCube.
Both of these datasets are from the domestic MOOC platform “XuetangX” (http://www.
xuetangx.com (accessed on 5 February 2023)). Table 1 shows the details of the two datasets.

http://moocdata.cn/data/course-recommendation
http://moocdata.cn/data/course-recommendation
http://www.xuetangx.com
http://www.xuetangx.com
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Each user registered for at least three courses in the MOOCCourse dataset, and each user
registered for at least two courses in the MOOCCube dataset. To ensure the fairness of
the experiment, we adopted the same data preprocessing method as the HRL mode [12].
We structured the user enrollment behavior in such a way that the actions in the training
phase were taken in the training set before the test set. Each entry in both training and test
sets includes a series of previous courses alongside the user’s target courses. For training,
we identified the final course in each sequence as the target course, with all the previous
courses treated as historical. In the testing phase, every historical course in the test set was
regarded as the target course, and the corresponding course from the training set for the
same user was considered the historical course.

Table 1. The experimental datasets.

Dataset Courses Users Interactions Average Interactions

MOOCCourse 1302 82,535 458,453 5.55
MOOCCube 706 55,203 190,049 3.44

5.2. Experimental Setup
5.2.1. Compared Method

To evaluate model performance, we compared the ACHRL model with some baseline
models as follows:

• MLP [52]: A powerful recommendation system model that leverages deep learning tech-
niques to provide personalized recommendations based on complex user–item interactions.

• FISM [13]: An important model in the field of recommendation systems, particularly
suitable for collaborative filtering recommendation problems where user historical
behavior data is the primary input.

• NeuMF [55]: A model that combines matrix decomposition techniques and MLP meth-
ods to mine the potential information of user courses for modelling and recommends
relevant courses to users.

• NARM [56]: An optimized gated recursive model that evaluates the attention factor
based on the behavior and primary purpose of users.

• NAIS [14]: The model built using an item-based collaborative filtering method com-
bined with an attention mechanism neural network that can distinguish between
different historical course weights for course recommendation.

• HRRL [45]: An HRL-based method using time-context rewards can optimize strategy
learning in reinforcement learning for course recommendation.

• DARL [46]: A novel course recommendation framework that can capture user prefer-
ences using historical data for improving the effectiveness of course recommendations.

We investigate the recommendation performance of the HRL model and two variants
of the ACHRL model (ACHRL_H and ACHRL_L).

• HRL [12]: Recommendation model and profile reviser joint training.
• ACHRL_H: A simplified version of the ACHRL model and profile reviser joint training

that only adopts the optimization of the AC method in the high-level task of the
profile reviser.

• ACHRL_L: A simplified version of the ACHRL model and profile reviser joint training
that only adopts the optimization of the AC method in the low-level task of the
profile reviser.

5.2.2. Evaluation Metrics

We employ the most authoritative evaluation metrics used in the recommended
field [57]:
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• HR@K (Hit Ratio at K): A measure of how many of the relevant items were successfully
included in the top K recommendations. The following formula represents a successful
recommendation to the user

HR@K =
∑U

u=1 Hitsu@K

|GT| (16)

where GT represents the total number of items corresponding to users in all test sets,
and Hitsu@K represents the count of items that users interact with or find relevant in
the previous K recommendations.

• NDCG@K (Normalized Discounted Cumulative Gain): An accumulative performance
measure that takes into account both the relevance and position of ranked items. It
can be defined as follows:

NDCG@K = 1
U

U

∑
u=1

DCGu@K
IDCGu@K

DCGu@K =
K

∑
i=1

2reli −1
log2(i+1)

(17)

where IDCGu@K represents the discount cumulative gain of the optimal TOP-K
recommendation list, and “reli ” represents a measure of the correlation between the
recommended result and the target.

5.2.3. Parameters and Environment

Experimental Environment: We implement the model using Tensorflow2 and deploy
it using a Linux server equipped with an NVIDIA RTX 3090 GPU featuring 20 GB of
video memory.

Parameter Settings: Recommendation module: The size of both the course embedding
vector De and the hidden layer Dh are configured as 16. The batch size is 256. The learning
rate is 0.02. Profile reviser: The sampling time N is set to 3, and the learning rate for the
pre-training model and the joint training model is set to 0.001 and 0.0005. For the policy
network, the hidden layer (dh

1,dh
2) is configured as 8, the state size (dh

2) of the high-level
layer is 18, and the state size (dl

2) of the low-level layer is 34. The discount factor of reward
β is 0.5. ACHRL model parameter: The sampling time N is also 3, and the hiding layer
size of the recommendation module is configured as 16. For the value network, the hidden
layer size (dh

1,dh
2) is 20. The state (dh

2) size of the high-level layer is 18. The state (dl
2) size

of the low-level layer is configured as 34.

5.3. Results and Analysis
5.3.1. Comparison of Experimental Results

Table 2 demonstrates that our three proposed models achieve better results in terms of
recommendation performance compared to the baseline models. For the MOOCCourse
dataset, the HR was improved from 0.13% to 6.35% and the NDCG was improved from
0.59% to 5.34%. For the MOOCCube dataset, the HR was improved from 5.58% to 6.35%
and the NDCG was improved from 1.48% to 2.12%. In summary, the above results provide
a proof of the effectiveness of the ACHRL model. This means that our model can provide
effective guidance for users in course selection. For online platforms, the accuracy of the
model recommendation can bring a better experience to users and further strengthen the
popularity of online platforms.

In Table 2, of all the baseline models, namely NeuMF, FISM, and MLP, they exhibit the
worst performance. This is primarily due to their inability to account for the contribution
of various historical courses when making recommendations for target courses. NARM
and NAIS underperform in comparison to all HRL-based models. This performance gap
arises from their limited ability to differentiate the impact of historical courses when
users are enrolled in a larger variety of courses. All models based on HRL surpassed the
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performance of other baseline models. This is because the HRL-based models optimize the
user profile. It makes the updated data represent the preferences of users more accurately
and improves the accuracy of the recommendation. This means that, in scenarios like
course recommendations, our model accurately reflects user preferences and may be more
generalizing. It should be noted that platforms similar to online courses, such as music
platforms and broadcasting platforms, have strong consistency in the recommended data
objects, which is a factor that must be considered in determining the promotional scope of
our model.

Table 2. Recommendation performance (%).

MOOCCourse MOOCCube

HR@5 HR@10 NDCG@5 NDCG@10 HR@5 HR@10 NDCG@5 NDCG@10
MLP 52.53 66.74 40.61 40.96 51.62 66.55 40.00 43.58
FISM 53.12 65.89 40.63 45.13 52.85 65.80 40.50 45.52
NeuMF 54.20 67.25 42.06 46.05 54.25 67.50 41.72 46.00
NARM 54.23 69.37 42.54 47.24 54.12 69.50 41.85 47.20
NAIS 56.05 68.98 43.58 47.69 56.02 69.53 43.50 47.23
HRL 59.84 75.00 44.50 50.95 58.45 72.05 44.87 49.28
HRRL 61.36 78.29 45.82 51.70 - - - -
DARL 63.12 77.63 48.53 53.25 - - - -
ACHRL_H 63.61 77.21 46.07 51.18 61.95 76.98 45.42 50.67
ACHRL_L 64.96 78.04 48.58 52.86 62.91 77.13 46.33 51.07
ACHRL 66.19 78.42 49.84 53.84 64.03 78.40 46.35 51.40

In particular, we construct a MOOCCourse_N dataset based on the MOOCCourse
dataset, which has 82,535 users and 1302 courses, with each user enrolled in at least
5 courses, and an average of 9.25 courses per user. Comparing the performance of the
ACHRL model on the different datasets in Figure 5, it is clear that the ACHRL model
performs better on the MOOCCourse dataset and MOOCCourse_N dataset, respectively.
This confirms that the ACHRL model has a good recommendation effect to those users
who are interested in multiple courses. More courses help the model to train adequately
and to remove noise courses accurately. This can recommend target courses to users
more accurately.
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In addition, to further verify the effectiveness of the ACHRL model, we compare it
with the two newest models: HRRL and DARL in the past two years, and the ACHRL
model exhibits the highest performance. Since the MOOCCube dataset of this thesis is
slightly different from the MOOCCube dataset used by the two models mentioned above,
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the experimental data of the comparison is not given in the corresponding position in
Table 2. In Table 3, we describe the key parameters used for the existing two newest
models to ensure a fair comparison, and what we mention above in “Parameter Settings” is
consistent with the data in the table.

Table 3. Model parameters of HRRL and DARL.

Recommendation
Module

Course
Embedding Size

Course Hidden
Layer Size Batch Size Learning Rate

HRRL 16 16 256 0.02

DARL 16 16 256 0.02

profile reviser module: sampling time N discount coefficient hidden layer size
learning rate

(pre-training and
joint-training)

HRRL 4 0.5 8 0.001/0.005

DARL 3 0.5 8 0.001/0.005

5.3.2. Ablation Experiment

Figures 6 and 7 illustrate the performance of HRL-based models concerning different
top N values on two datasets. Within the category of HRL-based models, the ACHRL,
ACHRL_H, and ACHRL_L models demonstrated superior performance in HR on two
datasets. This confirms the effectiveness of our proposed model.

Electronics 2023, 12, x FOR PEER REVIEW 17 of 24 
 

 

Table 3. Model parameters of HRRL and DARL. 

Recommendation 
Module 

Course Embedding Size Course Hidden Layer 
Size 

Batch Size Learning Rate 

HRRL 16 16 256 0.02 
DARL 16 16 256 0.02 

profile reviser mod-
ule: 

sampling time N discount coefficient hidden layer size 
learning rate (pre-
training and joint-

training) 
HRRL 4 0.5 8 0.001/0.005 
DARL 3 0.5 8 0.001/0.005 

5.3.2. Ablation Experiment 
Figures 6 and 7 illustrate the performance of HRL-based models concerning different 

top N values on two datasets. Within the category of HRL-based models, the ACHRL, 
ACHRL_H, and ACHRL_L models demonstrated superior performance in HR on two da-
tasets. This confirms the effectiveness of our proposed model. 

The ACHRL_H model outperforms the HRL model. This was because the high-level 
task modified the user profile more accurately after being optimized by the AC method. 
The ACHRL_L model also outperforms the HRL model because the noise courses in the 
course sequence are removed more accurately in the lower-level task. To sum up, the AC 
method optimizes two layers of tasks well. 

As can be seen from the two figures, the ACHRL model attains the highest level of 
performance. This superiority is observed when compared to the other two variations of 
the method. Clearly, the combination of ACHRL_H and ACHRL_L maximize the accu-
racy of decision making for high-level and low-level tasks. The ACHRL model, which op-
timizes the two layers of tasks of the model, improves the accuracy of the decision task 
and achieves a more accurate course recommendation task. 

Figures 8 and 9 show the variation in reward values of the ACHRL, ACHRL_H, and 
ACHRL_L models during the course of the experiment. It can be seen from the change in 
reward value in the figures that the ACHRL model performs best, which further confirms 
the effectiveness of the model for course recommendation. 

 
Figure 6. The performance of HRL-based models, assessed in terms of HR (%) at different top N HR 
values, on MOOCCourse. 

Figure 6. The performance of HRL-based models, assessed in terms of HR (%) at different top N HR
values, on MOOCCourse.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 24 
 

 

 
Figure 7. The performance of HRL-based models, assessed in terms of HR (%) at different top N HR 
values, on MOOCCube. 

 
Figure 8. Variation in reward value with epoch of ACHRL, ACHRL_H, and ACHRL_L models on 
MOOCCourse. 

 
Figure 9. Variation in reward value with epoch of ACHRL, ACHRL_H, and ACHRL_L models on 
MOOCCube. 

5.3.3. Influence of Hyper-Parameters 
We examine the impact of two crucial hyperparameters (the size of the hidden layer 

of the attention mechanism network and the course embedding layer) on the model per-
formance. 

Figure 7. The performance of HRL-based models, assessed in terms of HR (%) at different top N HR
values, on MOOCCube.



Electronics 2023, 12, 4939 17 of 22

The ACHRL_H model outperforms the HRL model. This was because the high-level
task modified the user profile more accurately after being optimized by the AC method.
The ACHRL_L model also outperforms the HRL model because the noise courses in the
course sequence are removed more accurately in the lower-level task. To sum up, the AC
method optimizes two layers of tasks well.

As can be seen from the two figures, the ACHRL model attains the highest level of
performance. This superiority is observed when compared to the other two variations of
the method. Clearly, the combination of ACHRL_H and ACHRL_L maximize the accuracy
of decision making for high-level and low-level tasks. The ACHRL model, which optimizes
the two layers of tasks of the model, improves the accuracy of the decision task and achieves
a more accurate course recommendation task.

Figures 8 and 9 show the variation in reward values of the ACHRL, ACHRL_H, and
ACHRL_L models during the course of the experiment. It can be seen from the change in
reward value in the figures that the ACHRL model performs best, which further confirms
the effectiveness of the model for course recommendation.
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5.3.3. Influence of Hyper-Parameters

We examine the impact of two crucial hyperparameters (the size of the hidden layer of the
attention mechanism network and the course embedding layer) on the model performance.

Figures 10 and 11 show the performance of the five models at various embedding
layer sizes. In practice, the embedding layer size is specified as 8, 16, 32, 64, and 128. First
of all, it can be seen from the two figures that the HRL-based model notably outperforms
the NAIS model in HR. The ACHRL model achieves the best results on two datasets. The
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ACHRL model handles historical courses more accurately and improves recommendation
performance. In addition, our conclusion is that the recommendation performance of the
five models in the experiment improves as the embedding layer size increases. This is
because, with an increase in the dimension of the embedding layer, the attention mecha-
nism’s capacity for representation is enhanced, and the model can provide more useful
information for recommendation learning.
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Figures 12 and 13 display the performance of the five models across various hidden
layer sizes. In our experiment, we empirically chose 4, 8, 16, 32, and 64 as the hidden layer
sizes, respectively. As shown in the two figures, the ACHRL model performed best relative
to the other models on two datasets. It can be seen from the figures that our model is robust.

5.3.4. Performance Analysis

To visually illustrate the effectiveness of the HRL model, we provide specific instances
of course recommendations for qualitative analysis. Table 4 displays the performances of
the ACHRL and HRL models. (

√
and × in the table indicate whether the recommended

result is true or false ) In the first case, the ACHRL model removes the noise course
“Economics” accurately and recommends the target course correctly. In the second case,
the ACHRL model removes the noise course “Operating Systems” and recommends the
target course correctly while the HRL model did not accurately remove the noise course.
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Table 4. Two cases of the recommendation performance of ACHRL and HRL.

Model Performance Recommended Result

(1)

ACHRL Data Structure, Java, Assembly Language,
Software Engineering Software Engineering (

√
)

HRL Data Structure, Java, Economics, Data Structure,
Software Engineering Organic Chemistry (×)

(2)

ACHRL Monetary and Financial Studies, Investment
Studies, Corporate Finance Principles of Economics (

√
)

HRL Operating Systems, Monetary and Financial
Studies, Investment Studies Software Engineering (×)

This indicates the ACHRL model’s capacity to effectively filter out irrelevant courses
and offer recommendations that align better with the user’s preferences.

6. Conclusions

In this paper, we introduce the ACHRL model for course recommendation. We
are the first to apply the AC method to the hierarchical reinforcement learning model,
reconstructing the user profile effectively. We applied the AC method to hierarchical tasks
of the profile reviser, improving the accuracy of action selection at each layer, respectively.
In addition, the use of the policy gradient method, which relies on the temporal difference
error, leads to an enhancement in the recommendation performance. This gradient method
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can be applied not just for episodic scenarios but also in continuing situations. This allows
the model to be used in more scenarios. The proposed ACHRL is compared with three
latest state-of-the-art models, such as HRL, HRRL, and DARL, on two open datasets, and
experimental results on the metrics validate the advantages of ACHRL. The model has good
expansibility. For example, it can be applied to music, film, radio, and other fields. The
historical data formed by the historical information of user interactions can be modelled
well using the model method in this paper. Through the construction of a user profile, users
can be recommended their favorite items.

We identify the limitation of our work. The metric used in this model to evaluate user
satisfaction is relatively simple. While the ACHRL model aligns with the primary objectives
of many existing recommendation models, which prioritize recommendation accuracy,
the field of recommendation embraces a multitude of user satisfaction metrics. Users
often appreciate diverse offerings, for example, ranging from popular courses at different
universities to those from various majors. Consequently, a recommendation model that
strikes a balance between precision and variety can significantly enhance user satisfaction.

Potential future work may investigate the following aspects. First, we plan to explore
the ACHRL model’s performance across multiple evaluation metrics, particularly focusing
on recommendation accuracy and diversity. To achieve this, we intend to employ a multi-
objective evolutionary approach for optimizing the evaluation process [58]. Moreover, in
terms of methods, we have learned that the Advantage Actor-Critic (A2C) method [59]
is an improvement of the Actor-Critic method designed to improve training efficiency
and stability, and we will consider embedding the A2C method into our model to further
improve the accuracy of model recommendations.
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