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Abstract: Low probability of intercept (LPI) radar signals are widely used in electronic countermea-
sures due to their low power and large bandwidth. However, they are susceptible to interference from
noise, posing challenges for accurate identification. To address this issue, we propose an LPI radar
signal recognition method based on feature enhancement with deep metric learning. Specifically,
time-domain LPI signals are first transformed into time–frequency images via the Choi–Williams
distribution. Then, we propose a feature enhancement network with attention-based dynamic feature
extraction blocks to fully extract the fine-grained features in time–frequency images. Meanwhile, we
introduce deep metric learning to reduce noise interference and enhance the time–frequency features.
Finally, we construct an end-to-end classification network to achieve the signal recognition task.
Experimental results demonstrate that our method obtains significantly higher recognition accuracy
under a low signal-to-noise ratio compared with other baseline methods. When the signal-to-noise
ratio is −10 dB, the successful recognition rate for twelve typical LPI signals reaches 94.38%.

Keywords: automatic modulation classification; Choi–Williams distribution; deep metric learning;
feature enhancement

1. Introduction

Low probability of interception (LPI) radar has been widely used in modern electronic
warfare due to its low interception probability, strong detection ability, and excellent
anti-jamming ability [1–3]. LPI radar signal recognition focuses on the classification and
identification of radar signals characterized by a low probability of interception, which
helps to distinguish between friendly and potentially threatening signals, as well as to
identify specific targets. Therefore, how to effectively and efficiently recognize LPI radar
signals in complex electromagnetic environments is still a challenging task for electronic
warfare systems [4–6]. Moreover, the utilization of low power, enhanced time-width
products, frequency agility, composite modulation, and other associated technologies in
LPI radar presents much more difficulties for signal recognition [7].

Early work on radar signal recognition heavily relied on expert knowledge and manual
feature extraction [8]. For most feature extraction methods, features are typically obtained in
different transformation domains, such as instantaneous features, higher-order cumulants,
integrated second-order phase functions, and time–frequency features [9,10]. However, the
extraction of signal features traditionally relies on specialized expertise, which restricts
its broader applicability. Recently, machine learning has been widely applied due to its
excellent performance in pattern recognition, and various machine learning-based methods
have been developed for radar signal recognition. These methods focus on integrating
traditional feature extraction approaches with machine learning models such as artificial
neural networks [11], decision trees [12], and support vector machines (SVM) [13–15].
Zhu et al. [16] extracted Legendre matrix characteristics from time–frequency images (TFIs)
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of radar signals and utilized the SVM classifier to distinguish eight types of radar signals.
Zhang et al. [17] employed five distinct ensemble learning classifiers to classify nine
modulation signals by combining the characteristics of signal information entropy with
feature selection algorithms. Huang et al. [18] proposed a feature extraction methodology
based on Manhattan distance, and a K-nearest neighbor classifier was used to detect
the modulation modes of radar signals. Abdelmutalab et al. [19] extracted high-order
cumulants from the received signals as features and then used hierarchical polynomial
classifiers to identify different signal modulation types. While machine learning requires
less prior knowledge, classic feature extraction methods still depend on domain-specific
knowledge and may also be affected by dimensionality issues.

Recently, deep learning (DL)-based LPI radar signal recognition methods have at-
tracted increasing attention due to the powerful feature extraction capability of deep neural
networks [20–22]. In particular, these methods achieve excellent performance for recogni-
tion in an end-to-end manner [23]. Zhang et al. [24] proposed a radar signal recognition
method based on a convolutional neural network (CNN) to extract features from TFIs of
radar signals by Choi–Williams distribution (CWD) transform and achieve the modula-
tion recognition of eight different radar signals. Wan et al. [25] proposed a radar signal
recognition method based on CNN and the tree structure-based process optimization tool
(TPOT) to recognize twelve types of radar signals, where TPOT is a tool that utilizes genetic
programming models to automatically design and optimize machine learning processes.
Kong et al. [26] improved TFIs by using an oversampling technique and used CNN to ex-
tract features, which increased the recognition accuracy at a low signal-to-noise ratio (SNR).
Huynh-The et al. [27] proposed a lightweight convolutional network (LPI-net) for radar
signal recognition, which fuses multiple feature representations through skip connections
between different layers to recognize thirteen types of radar signals. Qu et al. [28] pro-
posed a convolutional denoising autoencoder (CDAE) for radar signal recognition, which
improves the time–frequency representation at low SNRs and achieves the recognition of
twelve different radar signals. Jiang et al. [29] proposed a dense convolutional network
(LDC-Unet) to enhance the TFI features and used a self-normalizing loss to improve the
recognition performance at low SNRs.

The above methods achieve automatic recognition of LPI radar signals at a high SNR.
However, due to the characteristics of low power and large bandwidth, LPI radar signals
are susceptible to noise interference, which poses great challenges to the signal recognition
task. It is difficult for the above methods to obtain satisfactory recognition performance at
low SNR conditions. It is worth noting that current work, including CDAE-DCNN [28] and
LDC-Unet [29], improved the recognition performance under low SNRs by introducing a
denoising module. However, under low SNR conditions, signals of different modulation
types usually intertwine with each other, especially the polyphase modulation signals. It is
difficult to extract discriminative signal features only by modifying the network structure.
Therefore, how to improve the performance of LPI radar signal recognition at low SNRs
remains an open issue.

In this paper, we propose a novel framework for LPI radar signal recognition, which
aims to improve the recognition performance of LPI radar signals under low SNR condi-
tions. In this framework, we have designed a dynamic feature enhancement module to
address the limited receptive field under the original fixed grid kernel by introducing de-
formable convolution. In the dynamic feature enhancement module, the kernel is dynamic
and flexible, allowing it to extract unique time–frequency features of LPI radar signals
with noise interference. This represents a key distinction from existing LPI radar signal
recognition methods. In addition, inspired by [30], we introduce deep metric learning
to reduce noise interference and enhance the time–frequency features under low SNR
conditions. Finally, the center loss is used to further reduce the characteristic distance of
the same type of LPI radar signals to achieve better recognition performance. The main
contributions of this paper are as follows:
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• We propose a novel method for LPI radar signal recognition based on feature enhance-
ment and deep metric learning. It can effectively improve the recognition performance
of LPI radar signals under low SNR conditions by optimizing the feature distinctive-
ness in the feature space.

• In the feature enhancement network, we design an attentional dynamic feature ex-
traction block to capture fine-grained features of TFIs under low SNR conditions. It
tackles the challenge of extracting complex TFI features while dealing with low feature
distinctiveness affected by noise interference by introducing deep metric learning.

• We conduct an extensive experimental study to demonstrate the superiority of the pro-
posed method compared to other state-of-the-art methods under low SNR conditions.

The paper is organized as follows: Section 2 introduces the proposed LPI radar waveform
recognition framework and its components. In Section 3, we conduct extensive experiments
to verify the effectiveness of the proposed method. Section 4 gives the conclusions.

2. The Proposed Method

In this section, we present the proposed LPI radar waveform recognition method for
improving recognition performance at low SNR conditions. The overall architecture of the
proposed method is shown in Figure 1. It contains three components: the pre-processing
module, the feature enhancement network, and the classification network. In the pre-
processing stage, the LPI radar signals intercepted by the receiver are transformed into
TFIs by CWD and normalized. In the feature enhancement network, the pre-processed
TFIs are fed into an autoencoder network architecture based on attentional dynamic feature
extraction blocks to capture the fine-grained details of TFI features. In addition, we further
improve the TFI feature representation at low SNR conditions by introducing deep metric
learning in the training phase within the feature space. In the recognition network, the
enhanced TFI features will be fed into a fully connected layer jointly optimized by the
center loss and softmax loss for LPI radar signal recognition. Next, we provide a detailed
introduction to the implementation details of each component of the method.

Figure 1. The overall architecture of the proposed method.

2.1. Pre-Processing Module

The pre-processing operation is a crucial step in the LPI radar signal recognition
framework presented in this paper. The pre-processing module transforms the 1D radar
signals intercepted by the receiver from the electromagnetic space into 2D TFIs using a
time–frequency transformation. The time–frequency transformation process can not only
obtain the instantaneous frequency characteristics of LPI radar signals but also effectively
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suppress noise interference [31]. In this paper, we choose the CWD as the time–frequency
transformation method, which can better suppress the cross terms and also has good
time–frequency resolution. The CWD can be formulated as [32]:

CWD(t, f ) =
∫∫ √

σ

4πτ2 exp
(
−σ(t − u)2

4τ2

)
s
(

u +
τ

2

)
s∗
(

u − τ

2

)
e−j2π f τdudτ (1)

where f is the frequency variable, τ is the time delay, u is the time variable, and σ is the
attenuation factor. The σ is a positive value, which is proportional to the amplitude of
the cross term. The value of σ is larger, and the resolution of CWD TFIs is better, but it
also results in a more pronounced cross term. Figure 2 shows the TFIs of twelve LPI radar
signal waveforms. All signals are generated under the conditions of an SNR of 10 dB with
a sampling rate of 100 MHz. It can be seen that different signal time–frequency images
exhibit different time–frequency distribution characteristics.

Figure 2. The CWD transformation images of twelve kinds of LPI radar signals.

2.2. Feature Enhancement Network

To fully extract the fine-grained features in TFIs for signal recognition, we propose
a feature enhancement network with attention-based dynamic feature extraction blocks.
Meanwhile, we introduce deep metric learning to further reduce noise interference and
enhance the time–frequency features. Previous studies [33] typically used traditional im-
age processing techniques such as cropping, binarization, and filtering to minimize noise
interference in signal detection. However, while these approaches may be effective for
suppressing noise, they can also inadvertently remove valuable characteristics, leading to
information loss. To solve this issue, we propose an encoder–decoder structured feature en-
hancement network that suppresses noise while enhancing time–frequency characteristics.

The proposed feature enhancement network consists of three pairs of encoder–decoder
blocks and several attention-based dynamic feature extraction blocks, as illustrated in the
middle of Figure 2, incorporating skip links to facilitate information flow and feature
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reuse. To acquire low-dimensional feature representations, the three encoders perform
4× downsampling. These representations are subsequently input to the dynamic feature
extraction blocks for further learning. Finally, an operation involving 2D convolutions
and a corresponding 4× upsampling is applied to generate the enhanced TFIs. The main
parameters of the feature enhancement network are detailed in Table 1.

Table 1. Detailed parameters of feature enhancement network.

Layer Name Type Output Size Channel Stride Kernel Size

Encoder #1 Conv2d 256 × 256 × 64 64 1 7 × 7Relu

Encoder #2 Conv2d 128 × 128 × 128 128 2 × 2 3 × 3Relu

Encoder #3 Conv2d 64 × 64 × 256 256 2 × 2 3 × 3Relu
ADFE Block #1–#6 - 64 × 64 × 256 256 - -

Decoder #1 ConvTranspose2d 128 × 128 × 128 128 2 × 2 3 × 3Relu

Decoder #2 ConvTranspose2d 256 × 256 × 64 64 2 × 2 3 × 3Relu

Decoder #3 Conv2d 256 × 256 × 1 1 1 7 × 7Tanh

2.2.1. Attention-Based Dynamic Feature Extraction Block

To address the challenge of extracting effective features from TFIs under low SNR
conditions, this paper proposes an attention-based dynamic feature extraction (ADFE)
block. This module is used to adaptively extract effective features from TFIs under low
SNR conditions, as shown in Figure 3A. The ADFE block specifically consists of four
convolutional layers, one feature attention block, and one deformable convolutional layer.
Local residual learning is introduced at different network layers. Local residual learning
can learn high-level features more efficiently by extracting and exploiting diverse features
from multiple levels. Furthermore, with the addition of residual connections, the network
can better capture feature dependencies, skipping less relevant information such as noise
or low-frequency regions.
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Figure 3. The proposed ADFE block structure. (A) The overall structure of the ADFE block. (B) Chan-
nel attention structure. (C) Spatial attention structure.

In the ADFE block, we present a feature attention block, which comprises a channel at-
tention layer and a spatial attention layer. It can aid the model in simultaneously taking into
account information from various regions and channels of the image, thereby enhancing
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its ability to capture the image features and their relationships more effectively. Figure 3C
depicts the structure of the spatial attention layer. To calculate the weights at different pixel
locations, the input features are processed by two convolutional layers with a 1 × 1 kernel
size. This process ultimately assigns varying weights to different pixel positions in the
input features, thus enhancing the response in critical regions. The operation of the spatial
attention layer can be formulated as follows:

F
′
s = F ⊗ γ( f 1×1(σ( f 1×1(F)))) (2)

where F represents the input features, f 1×1 represents the convolutional layer with a 1 × 1
kernel size, σ is the ReLU activation function, and γ is the sigmoid activation function.

Unlike the spatial attention layer, the channel attention layer (as depicted in Figure 3B)
captures the overall feature of each channel using global average pooling. Subsequently, it
calculates and assigns weights to individual channels. The channel attention layer can be
represented as follows:

F
′
c = F ⊗ γ( f 1×1(σ( f 1×1(Avgpool(F))))) (3)

where Avgpool represents the global average pooling.
Following the feature attention block, we introduce a deformable convolution layer

to capture vital information by employing a dynamic and adaptable variable convolution
kernel. Different from grid convolution kernels with spatially fixed features (as illustrated in
the center of Figure 4), the deformable convolution layer extends the receptive field through
accommodating adaptive shape changes, as demonstrated on the right side of Figure 4.
Therefore, by prioritizing the extraction of effective features from TFIs in the presence of
noise interference, the model’s performance can be improved. Detailed parameters for the
ADFE block are presented in Table 2.

Figure 4. Comparison of the sampling locations of standard CNN and deformable CNN. The dots
represent the structure of the standard convolution kernel. The stars represent the structure of the
deformable convolution kernel.
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Table 2. Detailed parameters of ADFE block.

Layer Name Type Filter Size

Conv2D #1–#2 Conv2D 64 3 × 3
Relu - -

Channel Attention #3

Avgpool - -
Conv2D 8 1 × 1

Relu - -
Conv2D 64 1 × 1
Sigmod - -

Spatial Attention #4

Conv2D 8 1 × 1
Relu - -

Conv2D 64 1 × 1
Sigmod - -

Conv2D #5 Conv2D 64 3 × 3

DCN Block #6 deformable
convolution 64 3 × 3

Conv2D #7 Conv2D 64 3 × 3

2.2.2. Metric Learning with Triplet Loss

In order to enhance the discriminability of the fine-grained features learned by the
ADFE blocks for various types of radar signals, we take additional steps to refine the TFI
feature representations under low SNR conditions. This is achieved by introducing deep
metric learning during the training phase within the feature space. Existing LPI radar
signal recognition methods based on deep learning generally utilize deep neural network
architectures to extract features from TFIs [34–36]. However, under low SNR conditions,
deep neural networks often face challenges in extracting discriminate features for various
signals. Some recent work that combines deep learning with metric learning has gained
much attention [37–39]. Deep metric learning involves training a model using a metric loss
function that encourages the model to map similar samples close together in feature space
and distant from dissimilar samples [40]. Furthermore, deep metric learning can leverage
the utilization of extensive labeled data, enabling the model to learn robust and distinctive
distance measures [41].

In this paper, we incorporate a triplet loss to further enhance the representation of TFI
features in low SNR conditions with the feature space. Typically, the triplet loss is defined
by using three samples: positive, negative, and anchor. It aims to encourage the distance
between the anchor and the positive sample to be smaller than the distance between the
anchor and the negative sample by a certain margin. In the feature enhancement network,
we represent the enhanced TFI (ϕ) as the anchor sample, the clean and noise-free TFI (J)
as the positive sample, and the TFI obtained from the receiver (I) as the negative sample.
During the training phase, we utilize triplet loss to impose constraints that minimize the
distance between ϕ and J while simultaneously maximizing the distance between ϕ and I.
We can enhance the ability of the feature enhancement network to express TFI features in
low SNR conditions. We use the pre-trained VGG-11 model, where fully connected layers
(G) are removed to obtain shared features. The VGG-11 model is pre-trained on ImageNet.
Pre-trained weights provide a strong initialization to the feature extractor, allowing it
to extract meaningful features immediately instead of learning them from scratch. The
objective function of the triplet loss can be represented as [42]:

Ltriplet = max

(
m

∑
i
∥G(ϕ(I))a

i − G(J)p
i ∥

2
2 − ∥G(ϕ(I))a

i − G(I)n
i ∥2

2 + margin, 0

)
(4)

where G(•)a
i is the feature of anchor sample, G(•)p

i is the feature of positive sample, and
G(•)n

i is the feature of negative sample.
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Moreover, we use L1-loss as the reconstruction loss to directly measure the pixel-level
difference between I and J. The L1-loss can make the output of the feature enhancement
network closer to J. The expression of L1-loss is:

Ll1 = min ∥J − ϕ(I)∥1 (5)

Finally, we incorporate the triplet loss and L1-loss into the metric learning framework
for model training. The overall objective function of the feature enhancement network is
formulated as:

L∗ = Ll1 + λLtriplet (6)

where λ is the weight factor. In experiments, we use the grid search parameter method to
search the value of λ to obtain the best recognition performance. When λ = 0.12, better
results can be obtained. During model training, the triplet loss further provides additional
constraints on the extracted features within the feature space, effectively mitigating the issue
of L1-loss sensitivity to outliers. By this metric learning process, we obtain discriminative
and stable TFI features, which help to improve the recognition performance for subsequent
classification networks.

2.3. Classification Network

To achieve efficient recognition of a variety of LPI radar signals, we develop a straight-
forward and efficient classification network based on the feature representations learned
through the feature enhancement network, depicted on the right side of Figure 1. The clas-
sification network consists of two fully connected layers with different sizes. The first fully
connected layer is used to transform high-dimensional image features into low-dimensional
ones. On one hand, it reduces the subsequent computational cost. On the other hand,
during training, we enforce a margin between the same category by using the center loss
function. This method allows for tighter integration of TFI features of LPI radar signals of
the same modulation types. The formulation of the center loss (Lc) function is:

Lc =
1
2

m

∑
i=1

∥∥xi − cyi
∥∥2

2 (7)

where xi is the ith feature after the full connection layers and cyi denotes the feature center
of yith class.

The second fully connected layer can be used to map the features to the dimensions
matching the number of LPI radar signals. Actually, we have utilized the softmax loss (Ls),
which is the most widely used in the recognition task to complete the recognition of the
final LPI radar signal, and its expression is [43]:

Ls = −
m

∑
i=1

log
eWT

yixi+byi

∑n
j=1 eWT

j xi+bj
(8)

where xi is the ith input feature defined by the label yi (i ∈ (1, m), m is the number of
classes), b is the bias parameter, and Wj is the weight parameter of the jth column in the
fully connected layer (j is the number of min-batch size).

Finally, we merge the aforementioned two loss functions in order to optimize the
closeness of intra-class distances and the discernibility of inter-class distances, ensuring
that TFI features are both distinguishable and stable. The joint loss formula is as follows:

L = Ls + βLc (9)

where Ls is the SoftMax loss function and β is the weight factor.
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3. Experiments
3.1. Experimental Settings and Baselines

To evaluate the recognition performance of the proposed signal identification approach,
we use twelve typical LPI radar signals in our experiments. The specific signal parameters
and their descriptions are shown in Table 3. We generate 200 samples for each signal type
under each SNR and form a training set, where the SNR ranges from −14 dB to 10 dB
with a step size of 2 dB, and the total number of training set samples is 31,200. In addition,
we generate 80 samples for each type of signal to form a validation set, where the SNR
ranges from −16 dB to 10 dB, with a step size of 2 dB, and the total number of validation
set samples is 13,440. All experiments are implemented on a computer with an AMD EPYC
7F52 16-core @ 3.90 GHz CPU, an NVIDIA GeForce RTX3090 GPU, and an operating system
of Ubuntu 18.04 server version.

Table 3. LPI waveform parameters.

Radar Waveform Simulation Parameter Ranges

Sampling frequency fs 100 MHz

LFM Initial frequency f0 U(1/6, 1/5) 1 fs
Bandwidth B U(1/20, 1/16) fs

BPSK Code length Nc {7,11,13}
Center frequency fc U(1/6, 1/5) fs

Costas Fundamental frequency U(1/30, 1/24) fs
Hopping frequency fh {3,4,5,6} 2

Frank and P1–P4 Carrier frequency fc U(1/6, 1/5) fs
Cycles per phase code Ncc {3,4,5}

T1–T4 Number of segments k {4,5,6}
1 U(•) means that the parameters are sampled from a continuous uniform distribution over a range. 2 {•} means
that the parameters are selected from a discrete set.

Furthermore, we compare the proposed method to various advanced techniques. The
baselines include LPI-net [27], which achieves accurate recognition of radar signals with
multiple cascaded CNN modules, CDAE-DCNN [28], which achieves LPI radar signal
recognition at low SNR conditions by de-noising the TFIs, and LDC-Unet [29], which passes
through a locally densely connected network to extract and enhance the TFI features to
achieve the recognition task. All algorithms were executed 10 times, and the reported
results represent the average performance.

3.2. Performance Comparison

In this section, we evaluate the recognition performance of the proposed method in
comparison to LDC-Unet, LPI-Net, and CDAE-DCNN. Figure 5 illustrates the recogni-
tion accuracy of different methods under different SNR conditions. It can be seen that
the recognition performance of all methods declines as the SNR decreases. However, the
proposed method achieves higher recognition accuracy than the other three advanced meth-
ods. When the SNR ≤ −6 dB, the recognition performance of LPI-Net and CDAE-DCNN
severely decreases, mainly because their simple network structures make it challenging
to extract effective features under low SNR conditions. The proposed method, as well as
LDC-Unet, enhances feature extraction by adding additional network modules. Even when
SNR = −10 dB, the recognition accuracy of the two methods still exceeds 90%. Furthermore,
the proposed method obtains a higher recognition accuracy compared to LDC-Unet when
SNR is less than −5 dB.

In order to further reveal the recognition accuracy of the method proposed for different
modulation types of radar signals, we examine the recognition accuracy of twelve different
modulation types of LPI radar signals under various SNR conditions, as shown in Figure 6.
For SNR = −10 dB, the recognition accuracy of LFM, Costas, T1 code, and T2 code remains
above 95%. The above signals still maintain a high recognition accuracy as the SNR
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decreases. In comparison, at SNR = −10 dB, the recognition accuracy of P1, P4, and
Frank is less than 90% and shows a serious downward trend as the SNR decreases. It
is worthy of noting that the identification accuracy of LPI radar signals based on the
polyphase modulation type is significantly lower compared with other modulation types.
This difference is mainly attributed to the low immunity of polyphase modulation to noise.

Figure 5. Effect of feature enhancement network and center loss on classification performance.

Figure 6. Visualization of feature distribution.

3.3. Computational Cost

In this section, we utilize three metrics, namely FLOPs (floating point operations),
network parameters, and inference time, to assess the computational cost of the proposed
method. Table 4 shows the computational costs of the proposed method and three other
methods. The inference time is calculated on the CPU under the same hardware conditions.
From the table, it can be concluded that the computational cost of LPI-Net and CDAE-
DCNN is lower than that of LDC-Unet and the proposed method. This is mainly because the
structure of their feature extraction components is simple. Therefore, this also leads to the
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difficulty of achieving satisfactory recognition performance for both the LPI-Net and CDAE-
DCNN in low SNR conditions. The proposed method has a lower computational cost
compared to LDC-Unet, mainly due to the use of parameter reuse technology. Parameter
reuse technology refers to reusing calculated parameters during model training to reduce
the amount of calculation and improve training speed. In the manuscript, our multiple
ADFE blocks are calculated with the same parameters, reducing the number of parameters.

Table 4. Complexity of four methods.

Method FLOPs [G] 1 Params [M] 2 Inference Time [ms]

LPI-Net 1.409 0.232 83.172
CDAE-DCNN 1.803 0.768 120.662

LDC-Unet 21.348 9.85 273.405
This Paper 18.839 3.719 160.188

1 [G] represents one billion floating-point operations per second. 2 [M] represents the unit of millions of parameters.

3.4. Ablation Experiment
3.4.1. Effect of Feature Enhancement Network

To evaluate the effect of the proposed feature enhancement network on recognition
performance under low SNR conditions, we define a variant of the proposed method,
which removes the feature enhancement network. As shown in Figure 7, when the SNR
is less than −4 dB, the recognition performance of the variant without using the feature
enhancement network rapidly declines. The main reason for this phenomenon is that it is
difficult to extract effective TFI features with a simple feature extraction structure under low
SNR conditions. In contrast, our proposed method achieves an overall recognition accuracy
of over 94% in the range of −10 dB to −4 dB for SNR. This ablation experiment suggests
that the feature enhancement network greatly improves the recognition performance under
low SNR conditions.

Figure 7. Effect of feature enhancement network on recognition performance.

We employ a confusion matrix to analyze the reasons for the mutual influence between
different modulation types of LPI radar signals under low SNR conditions, as shown in
Figure 8. Figure 8a shows the confusion matrix of the variant without the feature enhance-
ment network at SNR = −10 dB. Obviously, LPI radar signals with similar time–frequency
features are prone to confusion with each other, such as P1, P3, P4, and Frank codes. For the
P1 code, 35% is misidentified as the P4 code, and for the P4 code, 23% is misidentified as the
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P1 code. In addition, 33% of Frank codes are identified as P3 codes. The reason is that under
low SNR conditions, the effective features are blurred, reducing the recognition accuracy. On
the contrary, the proposed method addresses the challenge of feature extraction under low
SNR conditions by utilizing the feature enhancement network, as shown in Figure 8b. This
reduces the likelihood of mutual confusion between different signals.

Figure 8. The confusion matrix for (a) the variant without feature enhancement network; (b) our
proposed method.

3.4.2. Effect of ADFE Blocks

To assess the impact of the proposed ADFE blocks on recognition performance in
low SNR conditions, Figure 9 illustrates the recognition accuracy at various SNRs for
different numbers of ADFE blocks. For SNR ≤ −5 dB, the recognition performance of
the feature enhancement network without the ADFE block sharply declines. The main
reason is that under low SNR conditions, the TFI features are missing or blurry, and simple
encoders and decoders cannot extract effective features, as shown in Figure 10. However, by
incorporating the ADFE block with deformable convolution and an attention mechanism,
the feature enhancement network’s capability of extracting effective features under low
SNR conditions is greatly improved.

Figure 9. Effect of ADFE blocks on recognition performance.
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Figure 10. T3 time–frequency image at (a) −10 dB SNR; (b) 10 dB SNR.

With the increase in the number of ADFE blocks, we observed an overall improvement
in recognition performance. However, after increasing the number of ADFE blocks to a certain
level, the overall recognition performance starts to decline. The experiment shows that when
the number of ADFE blocks increases to eight, the overall recognition performance is compa-
rable to using four ADFE blocks. In fact, Ref. [44] has proven that the performance of a neural
network architecture does not necessarily improve with increased depth. On the one hand,
training becomes challenging due to optimization costs. On the other hand, the ADFE module
designed in this paper uses parameter sharing to reduce parameter storage costs, which limits
the diversity of feature representation to some extent. In order to balance the performance
and the computational costs, we utilize six ADFE blocks in the feature enhancement network
to improve the capability of feature extraction under low SNR conditions.

3.4.3. Effect of Metric Learning

To assess the influence of deep metric learning on recognition performance, we indi-
vidually removed the center loss and triplet loss components employed in the proposed
methods, as depicted in Figure 11. It can be seen that for SNR ≤ −5 dB, the incorporation
of deep metric learning in the proposed methods enhances the recognition accuracy by
around 5% compared to when it is not used. This suggests that introducing metric learning
to optimize the distance between samples in the feature space effectively improves the
recognition accuracy of the proposed methods under low SNR conditions. Moreover, when
compared to triplet loss, center loss achieves a slightly higher recognition accuracy by
directly optimizing the compactness of intra-class features.

3.5. Robustness Experiment

The above experiment demonstrates that the proposed method has excellent recogni-
tion performance. However, in practical situations, the parameters of the signals intercepted
by the receiver may deviate from the training dataset used in our experiments. In order to
study the robustness of the proposed method, we test the method on a new dataset with
different parameters from the training set. Table 5 shows the parameter settings used for
the new dataset. As shown in Figure 12, when the test parameters are different from the
training parameters, the recognition performance also decreases slightly but still maintains
a high recognition accuracy when SNR ≥ 0 dB. However, the recognition accuracy of the
proposed method has significantly decreased as SNR decreases. When SNR ≤ −5 dB,
due to overfitting during the training process, the overall recognition accuracy is less than
80%, much lower than the results without parameter deviation. Therefore, how to more
effectively improve the robustness of the model is the focus of our future research.
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Figure 11. Effect of deep metric learning on recognition performance.

Figure 12. Effect of parameter deviation on recognition performance.

Table 5. Different parameter settings for the test set.

Radar Signal Parameter Train Parameter Test Parameter

LFM B U(1/6, 1/5) fs U(1/16, 1/8) fs
BPSK Nc {7,11,13} {11,13}
Costas fh {3,4,5,6} {2,3,4,5}

Frank, P1–P4 Ncc {3,4,5} {4,5,6}
T1–T4 k {4,5,6} {3,4,5}

4. Conclusions

In this paper, we propose a novel radar signal recognition method to solve the problem
of low recognition accuracy under low SNR conditions by introducing a feature enhance-
ment network with deep metric learning. To achieve this goal, we have developed a
pre-training feature enhancement network that enhances TFI features in the presence of
noise interference. In the feature enhancement network, we have designed an ADFE block
that can adaptively extract TFI features under low SNR conditions. Furthermore, we have
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incorporated deep metric learning into the feature enhancement network to guarantee the
distinguishability and stability of the extracted TFI features. We have verified, through ab-
lation experiments, that the ADFE block and deep metric learning contribute to improving
recognition performance. Finally, the experimental results show that compared with three
advanced LPI radar signal recognition methods, LPI-net, CDAE-DCNN, and LDC-Unet,
the proposed method achieves better recognition performance under low SNR conditions.
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