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Abstract: With the increasing use of electric vehicles (EVs), EVs will be widely connected to the
microgrid in the future. However, the influence of the disorderly charging behavior of EVs on the
stable and reliable operation of the power grid cannot be ignored. To address these challenges, the
charging load characteristic model is established to describe the charging behavior of EVs. Then,
an EVs orderly charging strategy based on electricity price guidance is proposed, and the goal is
to minimize the peak–valley difference ratio and the total cost of EV charging. The result shows
that, compared with disorderly charging, the EV orderly charging strategy based on electricity price
guidance proposed in this paper can effectively reduce the peaking and valley difference ratio of
load, reduce user’s charging costs, and optimize the reliability level of the microgrid.

Keywords: electric vehicles; disorderly charging; orderly charging; electricity price guidance; reliabil-
ity evaluation; microgrid

1. Introduction

With the worsening of environmental problems, people’s awareness of environmental
protection has reached an unprecedented height. As a representative of green transportation
and a contributor to carbon emissions, new energy electric vehicles (EVs) have been widely
recognized and developed at home and abroad [1]. According to statistical data from the
International Energy Agency (IEA) in the “Global EV Outlook 2023” [2] and Bloomberg’s
“Electric Vehicle Outlook 2023” [3], the majority of EV sales are currently concentrated in
three major markets: China, Europe, and the United States. Over half of global EV sales
in 2022 took place in China, and EV sales in Europe and the United States are increasing
by 15% and 55%, respectively. Projections indicate that by 2030, China will maintain its
position as the largest EV market, accounting for 40% of total sales. By the end of this
century, the market share in the United States is expected to double, reaching 20%, while
Europe’s market share will remain at its current 25%. At present, the microgrid presents four
characteristics: extensive access to new energy, diversified load characteristics, versatile
operational modes, and the increasing penetration of EVs. At the same time, the impact
of the rapid development of EVs on the microgrid should not be ignored [4–6]. Without
proper guidance, the disordered access of large-scale EVs will increase the peak–valley
difference of the power grid load, resulting in line overload and endangering the safe and
stable operation of the power grid [7–9]. Since EV charging is entirely determined by user
willingness, conventional measures have a limited impact on EV guidance. Through the
implementation of a time-of-use (TOU) mechanism, users can be encouraged to shift their
charging loads temporally. This ensures that the load levels during different periods remain
within manageable limits, allowing for the optimization of the grid’s load curve and an
enhancing the system’s reliability [10,11].
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In recent years, a lot of research has been carried out on the orderly charging of EVs at
home and abroad. The acceptance capacity of the power grid for EVs and the degree of
users’ response are two important factors in measuring orderly charging, and the former is
described in detail in the literature [12]. By increasing the capacity of access points, line
overload can be avoided and the reliability of a small-region distribution network can be
effectively improved [13]. At present, TOU and real-time pricing (RTP) mechanisms are im-
portant methods with which to guide users to charge orderly. Based on TOU, studies [14,15]
have established a multi-objective orderly charging model from the perspectives of users
and power grids, which ensures the safety and stability of distribution networks and
improved users’ charging satisfaction. Further, a study [16] proposed an orderly charging
method based on the demand response of the optimal time-of-use price (OTOUP) of EVs,
and used the demand price elasticity matrix to measure the relationship between the charg-
ing demand and charging price of EVs. Through the guidance of RTP, another study [17]
maximizes the reliability of MG while minimizing the comprehensive operating cost (COC)
by establishing a two-layer planning optimization model for HESS capacity.

In addition, a comprehensive operating cost, peak–valley load difference, and network
loss are also optimized objects for orderly charging research [18–21]. With the aim of
optimizing power supply reliability, a study [18] established a peak–valley TOU model
to evaluate system reliability before and after. Another study [19] used a dynamic TOU
mechanism to guide EVs to make charging and discharging decisions. Then, the orderly
charging and discharging scheduling model of EVs was established by considering the
comprehensive operating cost and minimizing the peak–valley load difference. Similarly
to the study in [19], the study in [20] developed an EV orderly charging strategy aimed
at minimizing peak–valley difference and network loss, and evaluated the impact of EV
access under different proportions, load transfer rates, and scenarios. More extensively,
Ref. [21] mentions a hybrid modified MG-SAPSO scheme for optimizing load scheduling
in microgrids that include EVs. The cost and load changes of the microgrid are compared
using three strategies: disorderly charging, orderly charging and discharging, and the
orderly charging and discharging of distributed generation (DG). The results show that the
orderly charging and discharging strategy of DG is more advantageous.

In summary, the above studies provide valuable insights into the topic of this paper.
However, few studies have focused on the impact of large-scale EV access to microgrids
on power supply reliability, and the reliability of microgrids also needs to be evaluated
from multiple dimensions, especially in the context of research related to TOU. In fact, the
greater the number of EVs connected to the grid, the greater the impact on grid reliability.
Therefore, it is of great significance to take the orderly charging of EVs into the research
field of microgrid reliability evaluation.

Differing from the aforementioned literature, the purpose of the research in this paper
is to obtain the characteristics of the charging start time, charging end time, charging
duration, and daily mileage by modeling the charging load characteristics of EVs. Subse-
quently, taking the reliability of the microgrid into consideration, an orderly EV charging
strategy is proposed with the following objectives: minimizing the peak–valley difference
ratio and total charging costs for EVs users. This strategy incorporates constraints such
as power balance, ESS charging and discharging, and EV SOC limitations. Finally, the
effects of disorderly charging and orderly charging on the peak–valley load ratio, total
charging cost of EVs, and microgrid reliability are calculated via the elite genetic algorithm
(EGA) method.

The contributions of this paper are as follows:

(1) The interactive relationship between the orderly charging and reliability of microgrid
are analyzed, and the reliability of the microgrid can be improved via orderly charging;

(2) By comprehensively considering the orderly charging and reliability evaluation of
EVs, an orderly charging strategy for EVs based on TOU pricing guidance is proposed,
which can effectively reduce the peak–valley load difference ratio and reduce the
charging cost for users.
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The rest of the paper is arranged as follows. We build the EV charging load character-
istic model in Section 2. In Section 3, we elaborate on electricity price guidance and orderly
charge optimization, which includes establishing the optimization objective function and
determining constraint conditions. Then, the workflow and implementation of the elite
genetic algorithm (EGA) are given in Section 4. In Section 5, the optimization effect of
EV charging and reliability evaluation based on electricity price guidance are analyzed,
followed by the conclusions of the paper in Section 6.

2. Modeling of EV Charging Load Characteristics

The study of EV charging load modeling is helpful for analyzing the impact of EVs
on the power grid. However, it is difficult to model and analyze the charging behavior
of a single EV due to the large differences in users’ travel needs and habits, types of EVs,
and battery parameters. Through a statistical analysis of EV driving patterns, such as the
2017 National Household Travel Survey (NHTS) data released by the U.S. Department of
Transportation, accurate EV charging load data can be obtained. By extracting the daily
mileage distribution, charging start time, charging time and charging end time of EVs, and
other main factors affecting the load characteristics of EVs, the load characteristic model of
EVs was obtained via the Monte Carlo (MC) probabilistic simulation method.

2.1. EV Charging Start Time

As a special load and energy storage device, an EV’s mobility makes its charging load
random and dynamic in time and space. Users can choose the appropriate time and way
to charge according to their travel needs. Therefore, one day can be divided into several
charging periods based on the travel statistics of EVs, and the probability distribution of the
charging start time can be determined by the driving habits of users and actual statistical
data. The research shows that the charging start time meets the normal distribution, and
the probability density function (PDF) is [4] as follows:

fT(ti) =


1√

2πσ2
i

exp
− (ti−µi)

2

2σ2
i , µi − 12 < ti ≤ 24

1√
2πσ2

i
exp

− (ti+24−µi)
2

2σ2
i , 0 < ti ≤ µi − 12

(1)

where ti is the charging start time of the i-th EV, and µi and σi are the expectation and
standard deviation of ti, respectively.

2.2. EV Charging End Time

According to the research, the EV charging end time also satisfies the normal distribu-
tion, and its PDF can be expressed via Equation (2) [22]:

fT(td) =


1√

2πσ2
d

exp
− (td−24−µd)

2

2σ2
d , µd + 12 < td ≤ 24

1√
2πσ2

d

exp
− (td−µd)

2

2σ2
d , 0 < td ≤ µd + 12

(2)

where td is the charging end time of the d-th EV, and µd and σd are the expectation and
standard deviation of td, respectively.

2.3. EV Charging Time

At present, EV manufacturers mainly focus on lithium iron phosphate batteries and
ternary lithium batteries in terms of on-board battery selection. A lithium battery is
generally charged via the three-stage charging method of pre-charging, constant-current
charging, and constant-voltage charging. When an EV starts charging from a lower starting
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state of charge (SOC), in order to avoid the impact of large currents on the battery, a short
period of pre-charging is required. In the constant-current charging stage, the voltage at
both ends of the battery is basically unchanged, so the charging power of the process is
basically unchanged. When the battery is nearly fully charged, the battery will undergo a
short period of constant-voltage charging. Therefore, the charging process of the lithium
battery can be assumed to be a constant-power charging mode. The research shows that the
EV charging time is mainly determined via the EV rated capacity, rated power, charging
efficiency, and SOC state, as shown in Equation (3) [23]:

Ti =
Ei

EV(1− SOCEV)

ηPi
EV

(3)

where Ei
EV, Pi

EV, and η are the rated capacity, rated charging power, and charging efficiency
of the i-th EV, respectively. SOCEV is the SOC of the EV.

2.4. EV Daily Mileage

The daily mileage reflects the power consumed by an EV in a day. This research shows
that EV daily mileage approximately follows a lognormal distribution with parameters (µ,
σ2), and its PDF can be expressed via Equation (4) [24]:

fD(di) =
1

di

√
2πσ2

D

exp
− (ln di−µD)2

2σ2
D (4)

where di is the daily mileage of the i-th EV after the last charging, and µD and σD are the
expectation and standard deviation of di, respectively.

3. Electricity Price Guidance and Orderly Charging Optimization
3.1. Electricity Price Guidance

According to a news release by The People’s Government of Beijing Municipality [25],
by the end of June 2023, the number of motor vehicles in China reached 426 million,
including more than 3 million in Beijing and other cities, representing an increase of 41.6%.
It can be seen that, with the increase in EV ownership year by year, the demand for EV
charging will be more urgent. Only relying on distribution capacity expansion does not
only make it difficult to support the huge EV charging demand, but also impacts the
stable economic operation of the distribution network. Without proper guidance, the
large-scale disorderly load will be imposed on the distribution network, which will put
forward a severe challenge to the safety of the distribution network and the acceptance
capacity of the charging station. For the power grid, disorderly charging means that EVs
only have charging behavior and are not controlled by the power grid; that is, EVs can
be connected to the microgrid at different times and in different places. Compared with
disorderly charging, orderly charging adjusts EV charging through control strategies or
technical methods, reduces the peak and valley difference of the grid load, ensures a
balance between supply and demand, and improves the comprehensive utilization rate
of electric energy and the acceptance level of EVs in the distribution network. The peak–
valley TOU electricity price mechanism is one effective incentive for the orderly charging
of EVs. In general, when the electricity price during the charging period is lower, the
number of EVs charged will increase. In contrast, when the price of the charging period
increases, the number of EVs charged will decrease. This can not only encourage users
to shift their energy consumption to valley hours, but also promotes the integration of
renewable energy [26,27]. Grid operators formulate TOU pricing intervals and prices based
on the peak–valley characteristics of grid loads, providing spatial–temporal guidance for
EV charging behavior [28].

According to the charging data of the public charging stations in Shijingshan district of
Beijing in September 2023, the public charging stations in this area apply the TOU electricity
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price, in which the valley time period is 0:00–7:00 and 23:00–24:00, and the charging price is
1.2334 CNY/kWh. The standard hours are 7:00–10:00, 13:00–17:00, and 22:00–23:00, and the
charging price is 1.4813 CNY/kWh. The peak hours are 10:00–13:00 and 17:00–22:00, and
the charging price is 1.7291 CNY/kWh, as shown in Figure 1. The charging price consists
of a basic electricity charge and charging service fee. The charging service fee, which is
0.800 CNY/kWh at public charging stations in the region, is charged by the operators of the
charging station, which acts as a communication bridge between the power grid and the
users. Its provide users with operational information and charging tariff data. Users use
this information to make charging decisions according to their requirements and then send
charging requests to the charging station operators. Then, the operators, upon verifying
the charging orders, proceed with the charging process. By obtaining the agency of the
charging facilities in a certain area, the charging service is purchased from the power grid
to provide the users with a charging service and make profits from it.
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3.2. Objective Function

On the foundation of ensuring the optimal reliability level of the microgrid, we
developed an orderly EV charging strategy with the following objectives: minimizing the
peak–valley difference ratio and total charging costs for EV users. This strategy incorporates
constraints such as power balance, ESS charging and discharging, and EV SOC limits.

(1) Minimizing Peak–Valley Difference Ratio

With the goal of minimizing the peak–valley difference ratio, the day is divided into
24 schedulable time periods. One of the objective functions is to minimize the difference
in the ratio of load peaks to valleys, which is achieved by combining the microgrid’s base
load with the EV load across these time periods.

min f1 =
max(PMG

L (h) + PEV
L (h))−min(PMG

L (h) + PEV
L (h))

max(PMG
L (h) + PEV

L (h))
× 100% (5)

where PMG
L (h) and PEV

L (h) represent the microgrid base load and EV load, respectively.

(2) Minimizing Total Charging Costs for EV Users
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Simultaneously, to balance the interests of users and the grid, we propose an objective
function that minimizes the total cost of EV charging:

min f2 = min
24

∑
t=1

PEV
L (h)FEV

L (h)PtTi (6)

where FEV
L (h) represents the EV state function, FEV

L (h) = 1 indicates that the EV is charging
at this moment, and FEV

L (h) = 0 indicates that the EV is idle; Pt represents the charging
electricity price at the current time.

There are two objective functions aforementioned, each optimizing different dimen-
sions. Therefore, it is necessary to transform the multi-objective optimization problem into
a single-objective optimization problem. Here, the weight coefficient method is used for
multi-objective optimization problems:

minF = λ1 f1 + λ2 f2 (7)

where λ1 and λ2 are the weighting coefficients of the objective functions f 1 and f 2, respec-
tively, and λ1 + λ2 = 1.

3.3. Constraint Conditions

(1) Power Balance Constraint

To ensure the reliable operation of the microgrid, the real-time power balance in the
microgrid needs be taken into account.

PMG
L (h) + PEV

L (h) = PPV(h) + PMT(h) + PWTG(h) + PESS(h) + PG(h) (8)

where PPV(h), PMT(h), and PWTG(h) represent the output power of the photovoltaic (PV),
microturbine (MT), wind turbine generator (WTG), and PESS(h) and PG(h) represent the
energy storage system (ESS)’s charging/discharging power and grid power, respectively.

(2) ESS Charging and Discharging Constraint

During ESS charging and discharging, the power should not exceed the constraints of
the ESS charging and discharging power and SOCESS.

SOCmin
ESS ≤ SOCESS(h) ≤ SOCmax

ESS (9)

SOCESS(h) = EESS(h)/Emax
ESS (10)

−Pmax
dch (h) ≤ PESS(h) ≤ Pmax

ch (h) (11)

where SOCmin
ESS and SOCmax

ESS are the allowable lower and upper limits of the ESS SOC,
SSOC(h) is the SOC of ESS at the h-th moment, EESS(h) is the current capacity of the ESS, Emax

ESS
is the upper limit of ESS capacity, and Pmax

ch (h) and Pmax
dch (h) are the maximum allowable

charge and discharge power of the ESS, respectively.

(3) EV SOC Constraint

To extend the lifespan of EV batteries, the SOCEV of EVs at any given moment should
not exceed the set SOCEV upper and lower limits.

SOCmin
EV ≤ SOCi,j

EV ≤ SOCmax
EV (12)

where SOCmin
EV and SOCmax

EV are the upper and lower limits of EV SOC, and SOCi,j
EV is the

i-th EV SOC in the time period j.
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4. The Workflow and Implementation of Elite Genetic Algorithm

The genetic algorithm (GA) is a method for searching for optimal solutions by simulat-
ing the natural process of evolution. In GA, species undergo operations such as selection,
crossover, and variation to achieve the “survival of the fittest” [28,29]. The EGA is an
improved genetic algorithm that performs well in solving complex optimization problems
by retaining excellent solutions, and improving convergence speed and precision. For the
EGA, its core parameters include population size, iteration number, crossover probability,
variation probability, and so on. In this manuscript, the population size is 100, the number
of iterations is 200, and the crossover probability and variation probability are 0.8 and
0.4, respectively. The main steps of the EGA algorithm include the following, and its
algorithmic flowchart is depicted in Figure 2.
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Step 1. Initialize the parameters: Initialize the population size, number of iterations, etc.
Step 2. Fitness evaluation: Fitness values are calculated for each individual in the

population and are used to measure an individual’s ability to solve problems.
Step 3. Selection: A subset of individuals from the current population is selected as

“Elites”. Usually, selection is based on fitness values, and individuals with higher fitness
are more likely to be selected as elites.

Step 4. Crossover and variation: A crossover operation is used to pair the remaining in-
dividuals to produce new offspring individuals. Variation manipulation is applied to some
offspring individuals to introduce new diversity. The variation operation randomly changes
certain characteristics or parameters of an individual to explore a new solution space.
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Step 5. Eliminate: Some old individuals with newly generated offspring are eliminated
to form a new population. Usually, elite individuals are not replaced in order to preserve
the best solution to the problem.

Step 6. Iterative repetition: Steps 2 through 5 are repeated executed until the maximum
number of iterations is reached or the predefined optimization objectives are achieved.

5. Simulation Analysis
5.1. Basic Parameter Configuration

The study utilizes the improved RBTS BUS6 F4 system for simulation analysis, with
25 branches of the microgrid system, consisting of MT, WTG, PV, EVs, ESS, and loads, as
shown in Figure 3. There are 23 load points in the system in total, and some branches are
equipped with intelligent switches, which can effectively cut off the load currents. Energy
interaction between the microgrid and the upper-level grid occurs via the point of common
coupling (PCC). The output characteristic models of MT, WTG, PV, and ESS have been
established in the literature [30]. For the EV load model, by using the MC simulation
method, we extracted the load characteristic information of each EV, such as the charging
start time, daily mileage, charging duration, etc. [31–33]. After superimposing the load
characteristics of N-th EVs, the total charging load of EVs under a certain number was
obtained. The model was mainly fitted with the data of passenger cars, and could reflect the
load characteristic fluctuation curve of passenger cars. Compared with commercial vehicles
such as buses, engineering vehicles, and postal vehicles, which usually have fixed driving
characteristics and parking places, the power demand of cars is fixed, while passenger
vehicles are more random and flexible in terms of mileage or user charging behavior, and
can achieve orderly charging through electricity price guidance. Therefore, this paper takes
the family passenger car as the research object and considers its driving characteristics.
Here, the basic parameters of the EV model are shown in Table 1. In addition, the failure
rates of MT, WTG, PV, and ESS were 0.05 occurrences per year, 0.05 occurrences per year,
0.25 occurrences per year, and 0.05 occurrences per year, respectively. The repair rates were
0.083 occurrences per hour, 0.0167 occurrences per hour, 0.0125 occurrences per hour, and
0.02 occurrences per hour, respectively. The parameters of the PV power output model with
beta distribution are 2 and 0.8. The capacity of MT is 2.2 MW, the capacity of PV and WTG
are both 2.4 MW, and the capacity and power of ESS are 4 MWh and 2 MW, respectively.
The expectation of the microgrid base load deviation, µL, and standard deviation, σL, are 0
and 0.1, respectively. Appendix A Tables A1–A3 shows the microgrid base load data.
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curve, it can be seen that the peak time of microgrid users’ electricity consumption is from 
16:00 to 21:00, which is also the peak time of EV charging. The overlap of the charging 
peak and user consumption peak  easily causes line overload and endangers the safe op-
eration of the power grid. Therefore, it is very necessary to carry out research on the or-
derly charging of EVs under a certain scale with electricity pricing guidance. 

Figure 3. The microgrid system with a microturbine (MT), wind turbine generator (WTG), photo-
voltaics (PVs), electric vehicles (EVs), an energy storage system (ESS), and loads.
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Table 1. Basic parameters of EV model [21–23].

Parameters Numerical
Value Parameters Numerical

Value Parameters Numerical
Value

Battery
capacity 60 kWh Fast charging

power 20 kW
Standard

deviation of
leave home, σd

3.24 h

100 km of
electricity

consumption
13 kWh

Expect to
arrive home,

µi

17.6 h
Daily mileage
expectations,

µD

3.2 km

Driving range 480 km

Standard
deviation of
arrive home,

σi

3.4 h

Standard
deviation of

daily mileage,
σD

0.88 km

Conventional
charging

power
7 kW

Expect to
leave home,

µd

8 h / /

Figure 4 depicts the charging demand of different EVs when they are connected to the
microgrid, obtained using the MC simulation method. It can be seen that the more EVs
are connected, the greater the charging power is demanded. From the microgrid base load
curve, it can be seen that the peak time of microgrid users’ electricity consumption is from
16:00 to 21:00, which is also the peak time of EV charging. The overlap of the charging peak
and user consumption peak easily causes line overload and endangers the safe operation of
the power grid. Therefore, it is very necessary to carry out research on the orderly charging
of EVs under a certain scale with electricity pricing guidance.
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5.2. Analysis of EV Charging Optimization Effect Based on Electricity Price Guidance
5.2.1. Optimization Effect Analysis of a Certain Number of EVs

In order to analyze the optimization effect of electricity price guidance under a certain
number of EVs, we take 100 EVs as an example to illustrate this, as shown in Figure 5. In
combination with Figure 4, through electricity price guidance, the charging time of EVs
is more concentrated in the valley electricity price period, while the charging demand
is reduced due to the peak electricity price. This avoids the overlap of microgrid users’
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electricity consumption and EV charging peaks, and is conducive to the stable and reliable
operation of microgrid.
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Furthermore, taking Table 2 as an example, a comparison is made between microgrid
load levels and total EV charging costs before and after electricity price guidance. It can be
seen that under the guidance of the electricity price, the peak load is reduced from 1.90 MW
to 1.71 MW, a decrease of 10%. The valley load increased by 0.13 MW from 0.86 MW to
0.99 MW. The peak–valley difference decreased from 1.03 MW to 0.72 MW, and the peak–
valley difference ratio also decreased from 54.63% to 41.92%. The above data show that
electricity price guidance can achieve the peak cutting and valley filling of the microgrid
well. Simultaneously, with electricity price guidance, the total EV charging costs decrease
from 6562.54 CNY to 5525.76 CNY; 1036.78 CNY is saved for users. Obviously, reduced
charging costs for EV users can effectively increase user responsiveness to the electricity
price guidance mechanism, which can enhance users’ adherence to orderly charging.

Table 2. Comparison of optimization results before and after electricity price guidance with 100 EVs.

Mode Peak
Load/MW

Valley
Load/MW

Peak–Valley
Differ-

ence/MW

Peak–
Valley Difference

Ratio/%

Total EV
Charging

Costs/CNY

Before
Guidance 1.90 0.86 1.03 54.63 6562.54

After
Guidance 1.71 0.99 0.72 41.92 5525.76

5.2.2. Analysis of the Optimization Effect of EV Number Changes

In the above experiments, we analyzed the peak–valley difference and the total charg-
ing cost before and after electricity price guidance with a certain number of EVs. In order to
further analyze the optimization effect of the electricity price guidance strategy under the
condition of an increasing number of EVs, the access scale of EVs was gradually increased
from 100 to 300, and from 500 to 1000. The effect of electricity price guidance for different
numbers of EVs is shown in Tables 3–5. It can be seen that whether the number of EVs is
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300, 500, or 1000, the peak–valley difference ratio and the total EV charging cost can be
effectively reduced through electricity price guidance.

Table 3. Comparison of optimization results before and after electricity price guidance with 300 EVs.

Mode Peak
Load/MW

Valley
Load/MW

Peak–Valley
Differ-

ence/MW

Peak–Valley
Difference

Ratio/%

Total EV
Charging

Costs/CNY

Before
Guidance 2.59 0.96 1.63 62.94 19,687.63

After
Guidance 2.28 1.10 1.18 51.72 14,893.20

Table 4. Comparison of optimization results before and after electricity price guidance with 500 EVs.

Mode Peak
Load/MW

Valley
Load/MW

Peak–Valley
Differ-

ence/MW

Peak–Valley
Difference

Ratio/%

Total EV
Charging

Costs/CNY

Before
Guidance 3.29 1.06 2.23 67.76 32,812.71

After
Guidance 2.89 1.10 1.78 61.79 24,232.05

Table 5. Comparison of optimization results before and after electricity price guidance with 1000 EVs.

Mode Peak
Load/MW

Valley
Load/MW

Peak–Valley
Differ-

ence/MW

Peak–Valley
Difference

Ratio/%

Total EV
Charging

Costs/CNY

Before
Guidance 5.04 1.25 3.79 75.17 62,625.43

After
Guidance 3.84 1.10 2.74 71.32 39,421.48

5.3. Analysis of the Influence of EV Orderly Charging on Reliability
5.3.1. Reliability Analysis for a Certain Number of EVs

The reliability level of a microgrid can be evaluated using reliability indicators. With
the rapid development of microgrid technology, a large number of reliability indicators
have been proposed to comprehensively evaluate the reliability of a microgrid. The reliabil-
ity indicators proposed in this paper include the loss of load probability (LOLP), customer
average interruption duration index (CAIDI), system average interruption frequency in-
dex (SAIFI), system average interruption duration index (SAIDI), and average service
availability index (ASAI) [30,34–36]. Among them, the LOLP refers to the probability that
the system cannot meet the load demand within a specified time period. CAIDI refers
to the duration in average hours of customer outage. SAIDI refers to the average power
outage hours of the system within the total simulation time. SAIFI refers to the average
outages of the system within a specified length of time. ASAI can represent the probability
that the system does not have a power outage within the total simulation time. These
reliability indicators can not only describe the demand for the power supply reliability
from microgrid load users and for the operating status of the system under grid-connected
or off-grid conditions, but also better reflect the reliability level of the system from the
perspective of probability, frequency, and time. Therefore, they have been widely used in
power system reliability evaluation. Table 6 shows reliability indicators before and after
electricity price guidance with 100 EVs.
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Table 6. Comparison of reliability indicators before and after electricity price guidance with 100 EVs.

Mode LOLP
/(%)

CAIDI/(h/
Customer

Interruption)

SAIFI/
(Interruption/
Customer·yr)

SAIDI
/(h/Customer·yr)

ASAI
/(%)

Before
Guidance 0.017 5.00 1.23 2.57 99.97

After
Guidance 0.005 2.00 1.16 1.66 99.98

It can be seen from Table 6, compared with disorderly charging, that LOLP, CAIDI,
SAIFI, and SAIDI all decrease to varying degrees when EVs are charged in an orderly
manner. Among them, the LOLP decreased from 0.017% to 0.005%, CAIDI decreased
from 5.00 h/customer·interruption to 2.00 h/customer·interruption, SAIFI decreased from
1.23 interruption/customer·yr to 1.16 interruption/customer·yr, and SAIDI decreased from
2.57 h/customer·yr to 1.66 h/customer·yr. Meanwhile, the ASAI increased from 99.97%
to 99.98%. The above data indicate that the reliability of the microgrid can be improved
through electricity price guidance.

5.3.2. Reliability Analysis for EV Number Changes

Still taking the reliability index ASAI as an example for analysis, when the number of
EVs accessed increases from 0 to 1000, the results of the ASAI with and without electricity
price guidance are shown in Figure 6.
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It can be seen that the ASAI of a microgrid will decrease with the access of EVs. The
reason is that as the number of EVs increases, the total load level of the microgrid continues
to increase, and in a microgrid system, the load size has an essential impact on the reliability
level of the system. However, when orderly charging is selected, the ASAI reducing rate is
slower than that of disorderly charging, and the microgrid shows higher reliability than
that of disorderly charging. When the ASAI required by the microgrid is not less than
99.5%, the approximate number of EVs that can be connected in the case of disorderly
charging is 590. However, if orderly charging is chosen, the number of EVs can be increased
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to approximately 770. It can be seen that at the same reliability level, orderly charging can
improve the acceptance of EVs to connect to the microgrid, which undoubtedly provides
an effective way for large-scale EVs to connect to the grid.

6. Conclusions

In this paper, a characteristic model of the EV charging load was established, including
the charging start time, charging end time, charging duration, and daily mileage. Then, on
the foundation of ensuring the optimal reliability level of the microgrid, we developed an
orderly EV charging strategy with the following objectives: minimizing the peak–valley
difference ratio and total charging costs for EVs users. This strategy incorporates constraints
such as power balance, ESS charging and discharging, and EV SOC limits. Finally, the effects
of disorderly charging and orderly charging before and after electricity price guidance on
the peak–valley load difference ratio, total EV charging cost, and microgrid reliability are
evaluated using the EGA. The research results show that the large-scale access of EVs has a
great impact on the reliability of the microgrid, and that microgrid reliability will decrease
with the access of EVs. Compared with disorderly charging, the orderly charging strategy
proposed in this paper can not only effectively reduce the peak-to-valley difference ratio of
microgrid load to user charging costs, but also improve the reliability level of the microgrid.

With large-scale EVs connected to the microgrid, the EV access forms are diverse,
and the energy use characteristics are different, not only make EV charging characteristics
diversified in demand but also diversified in supply characteristics. Factors such as the
security of the microgrid, the acceptance level of charging stations, the charging demand
of EVs, and the uncertainty of user behavior interact with each other. The frequent inter-
action between supply and demand and the diversity of the space–time scale make the
improvement of the ordering level of EV charging face huge challenges. Therefore, EV
orderly charging strategies covering more factors need to be further studied in future work.
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Appendix A

Table A1. Load data of RBTS Bus6 F4 system.

Load Point Number Peak Load/MW Average Load/MW

1, 6 0.2964 0.1659
2 0.3229 0.1808

3, 13, 17 0.6517 0.2501
4, 18 0.6860 0.2633

5 0.3698 0.2070
7, 23 0.7965 0.3057

8, 11, 14, 19 0.2776 0.1554
9, 21 0.7375 0.2831

10, 12, 16, 22 0.2831 0.1585
15, 20 0.5025 0.1929
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Table A2. Daily load variation parameter.

Hour Percentages Hour Percentages

0:00 0.7407 12:00 0.9133
1:00 0.6923 13:00 0.9531
2:00 0.6527 14:00 0.9392
3:00 0.6212 15:00 0.9489
4:00 0.5845 16:00 0.9758
5:00 0.5972 17:00 0.9893
6:00 0.6079 18:00 1
7:00 0.6227 19:00 0.9921
8:00 0.6410 20:00 0.9554
9:00 0.6939 21:00 0.9104
10:00 0.7498 22:00 0.8467
11:00 0.8621 23:00 0.8154

Table A3. Monthly load variation parameter.

Months Percentages Months Percentages

1 0.5959 7 0.9422
2 0.4973 8 1
3 0.4356 9 0.9695
4 0.4343 10 0.8081
5 0.5136 11 0.5305
6 0.7530 12 0.4861
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