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Abstract: A three-dimensional Network-on-Chip (3D NoC) equips modern multicore processors
with good scalability, a small area, and high performance using vertical through-silicon vias (TSV).
However, the failure rate of TSV, which is higher than that of horizontal links, causes unpredictable
topology variations and requires adaptive routing algorithms to select the available paths dynamically.
Most works have aimed at the congestion control for TSV partially 3D NoCs to bypass the TSV
reliability issue, while others have focused on the fault tolerance in TSV fully connected 3D NoCs and
ignored the performance degradation. In order to adequately improve reliability and performance in
TSV fully connected 3D NoC architectures, we propose a TSV-aware Reinforcement Learning Assisted
Routing Algorithm (RLARA) for fault-tolerant 3D NoCs. The proposed method can take advantage
of both the high throughput of fully connected TSVs and the cost-effective fault tolerance of partially
connected TSVs using periodically updated TSV-aware Q table of reinforcement learning. RLARA
makes the distributed routing decision with the lowest TSV utilization to avoid the overheating
of the TSVs and mitigate the reliability problem. Furthermore, the K-means clustering algorithm
is further adopted to compress the routing table of RLARA by exploiting the routing information
similarity. To alleviate the inherent deadlock issue of adaptive routing algorithms, the link Q-value
from reinforcement learning is combined with the router status based in buffer utilization to predict
the congestion and enable RLARA to perform best even under a high traffic load. The experimental
results of the ablation study on simulator Garnet 2.0 verify the effectiveness of our proposed RLARA
under different fault models, which can perform better than the latest 3D NoC routing algorithms,
with up to a 9.04% lower average delay and 8.58% higher successful delivered rate.

Keywords: deadlock mitigation; fault tolerance; K-means clustering; through silicon vias; 3D
network-on-chip; reinforcement learning

1. Introduction

With advances in the scaling of node technology down to 5 nm, an increasing number
of processors in multicore architectures can be integrated into a single chip. Network-on-Chips
(NoCs) are preferred in multicore processors because of their low communication latency,
high network bandwidth, and good scalability [1]. Using three-dimensional (3D) stacking
technology, 3D NoCs can achieve lower latency and lower area consumption [2,3]. The
3D mesh topology is widely used in academic research and industrial products because it
is symmetric and regular, with a standard chip shape [4]. Silicon vias (TSVs) are adopted
to implement vertical links and connect the multiple layers in a 3D mesh, since they can
achieve a lower latency, minor power consumption, a smaller area, and a higher density
than conventional links [5]. Therefore, TSV-connected 3D NoCs are becoming increasingly
popular in modern processor design.

The new reliability issue in 3D NoCs results from the high susceptibility of TSVs to
high failure [6]. This is caused by the generated gaps and deviations that occur during
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the TSV fabrication process and is determined by the inherent characteristics of necessary
materials with a wide range of chemical and mechanical properties. More importantly,
the highly frequent usage of TSVs, even though it provides a lower latency, also causes
severe overheating and a higher failure rate [7]. The critical challenges of TSVs in 3D NoCs
include two aspects: (1) higher failure rate because of heating problems and low yield [8];
(2) higher area overhead of bigger TSV pads than conventional wires [9,10]. Therefore,
designing adaptive routing algorithms for fault-tolerant 3D NoCs is significant in order to
guarantee communication quality.

Most existing works on routing algorithms have aimed at the congestion control
for TSV partially 3D NoCs to bypass the TSV reliability issue. For example, the adap-
tive routing algorithms LEAD [11], Advertiser Elevator [12], Reflect3D [13], TCAR [14],
AdEle+ [15], and traffic-aware-based TAFT [16] have been proposed to reduce area and
alleviate the energy consumption of TSVs. The others have used 3D NoCs with fully
connected TSVs due to their high efficiency. It has been proven that an adaptive, fault-
tolerant, and congestion-aware (AFTC) routing algorithm [17], deadlock-free HLAFT [18],
and a fault-tolerant routing algorithm using the Hamiltonian path strategy [19] can utilize
more vertical TSVs in 3D NoCs for high communication performance. The former aims at
performance improvements and energy optimization with limited TSVs, while the latter
focuses on the reliability mitigation. Therefore, it is critical to balance the guaranteed fault
tolerance and performance degradation in 3D NoC routing algorithms. To address the
TSV reliability issue and performance loss jointly, we propose a TSV-aware Reinforcement
Learning Assisted fault tolerant Routing Algorithm (RLARA) for varying 3D NoCs.

A comparison between the proposed RLAR and the related works is presented in
Table 1. Though the latest routing algorithms have used some turn models, virtual channels,
and graph partition to optimize the communication performance, their adaptiveness is lim-
ited for the varying TSV-connected 3D NoCs. It is observed that the reinforcement learning
technique in our proposed RLARA has been used for effective routing algorithms [20,21]
to select routing paths adaptively. It can take advantage of both the lower failure rate of
partially connected TSVs and the high efficiency of fully connected TSVs. More impor-
tantly, RLARA can periodically update the 3D NoC routing decisions using a reinforcement
learning method and adapt to topology changes with fault horizontal links or TSVs. The
main contributions are as follows:

• We design a novel fault-tolerant routing algorithm RLARA, which uses Q-learning to
handle the changing 3D NoC topology due to faults occurrence, and explores the higher
failure rates of vertical TSVs in path selection for better communication performance;

• We develop a K-means clustering mechanism to compress the routing table by exploit-
ing the routing information similarity. The degradation of the successfully delivered
rate is just 1.57%, while the storage space for a routing Q-Table is reduced by 70%;

• We implement a mixed-status load balance mechanism to mitigate the deadlock issue
in our adaptive RALAR. The link Q-value and the router buffer are combined to
predict the congestion and decide on the possible routing paths. This scheme helps
RALAR to perform better than the latest works, even under the high traffic load of
3D NoCs;

• We conducted many experiments on the open-source NoC simulator Garnet. The ex-
perimental results of varying network sizes and fault models prove that our proposed
RLARA achieves better communication performance of up to a 9.04% lower latency
and an 8.58% higher successful delivery rate than state-of-the-art routing algorithms
on 3D NoCs.

The remainder of this work is organized as follows. Section 2 introduces the back-
ground and related work. Section 3 details the proposed method, while the results and
analysis are described in Section 4. Finally, the conclusion is summarized in Section 5.
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Table 1. Routing algorithm comparison for 3D NoC.

Algorithms Characteristics Limitations

LEAD [11] (2018) +Random or shortest path TSV
+Deadlock mitigation by splitting the topology

-Just suitable for TSV partially
connected 3D NoC

Advertiser Elevator [12] (2017)
+Divide topology into three sections
+Increases virtual channels to
alleviate congestion

-Just suitable for TSV partially
connected 3D NoC

TAFT [16] (2019) +Selects routing using traffic density
+Simple implementation -Packet cycling and suboptimal routes

Q-thermal [21] (2020) +Balances thermal distribution across different
layers of the chip using Q-learning technique

-More area and power consuption
-No fault tolerance

Reflect3D [13] (2021)
+Provides adaptive fault-tolerant routing
+Ensuring packet delivery with at least one
healthy TSV connecting all layers

-Just suitable for TSV partially
connected 3D NoC

TCAR [14] (2022)

+Optimizes thermal distribution based on the
allocation of thermal and congestion weights
+Optimizes path selection by considering
network congestion status

-Just suitable for TSV partially
connected 3D NoC

AFTC [17] (2023)

+ Introducing 12 turn models to effectively
avoid deadlock
+Using a three-dimensional diagonal region
division method for better adaptability
+Reducing turn steps during fault situations
+Setting different congestion thresholds to
balance traffic

-Lack of realistic applications mapped
into 3D NoCs for comprehensive
verfication
-No TSV consideration

AdEle+ [15] (2023)

+Dynamically manages traffic congestion
on elevators
+AdEle+ switches to a distance-based selection in
low congestion
+AdEle+ is lightweight, adaptable to runtime
traffic loads, and selects the best elevator
during runtime

-Just suitable for TSV partially
connected 3D NoC

Our RLARA

+Dynamic routing selection using reinforcement
learning for both local and global information
+K-means clustering to shrink routing
table addresses
+TSV aware routing selection
+Suitable for fully or partially TSV-connected
3D NoC

-Lack of realistic applications mapped
into 3D NoCs for comprehensive
verification

2. Background and Related Work

This section briefly introduces the basic fault 3D NoC architecture, related fault-tolerant
routing algorithms, and K-means clustering.

2.1. Fault 3D NoC Architecture with Fully Connected TSVs

Our work considers the often-used 3D Mesh with fully connected TSVs as the basic 3D
NoC architecture, as shown in Figure 1a. Each internal router has six neighbors in the west,
east, north, south, up and down, and one local direction, by which it connects with the IP
core, as shown in Figure 1b. Its router has seven input ports, a seven by seven crossbar and
seven output ports to pipeline the injected packets via the popular wormhole flow control
mechanism. The corner or boundary routers have fewer neighbors.
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routers with seven directions; (c) link faults.

The faults are injected randomly in the horizontal links or vertical TSVs at a specific
fault injection rate between different routers as is shown in Figure 1c. Algorithm 1 details
the fault model in a 3D NoC with three inputs and one output. Using lines 2 to 9, the
faults are randomly injected into the horizontal links at a lower fault rate, while the similar
faults are injected into TSVs at a higher fault rate in line 10. We assume that the topology
is a strongly connected graph for a standard routing algorithm in line 5. Otherwise, the
routing procedure is interrupted, and the complete statistics are unavailable. Moreover, the
multiple fault injection rates are configured to model the varying and realistic scenarios
of low, medium, and high loads, respectively. To dynamically bypass the fault horizontal
links or TSVs, the fault-tolerant 3D NoC routing algorithm should capture the routing
information and select from the candidate routing paths.

Algorithm 1: Fault model

Input: fault_injection_rate, total_num_link, TSV_fault_ratio
Output: fault_links
1. Initialize fault_link_num to 0 and fault_links as an empty array
2. while fault_link_num < fault injection rate * total_link_count * (1- TSV_fault_ratio)
3. Currently← a random router number
4. dir← a random direction
5. if <current, dir> not in fault_links && new topology is strongly connected graph
6. fault_links.append(<current, dir>)
7. fault_link_num + = 1
8. end if
9. end while//inject a fault into the horizontal links with a lower fault ratio
10. repeat the above loop and inject faults into the TSV links with a higher fault ratio
11. return fault_links

2.2. Fault Tolerant Routing Algorithm for 3D NoC

The 3D NoC routing algorithms have been widely studied to satisfy different commu-
nication requirements. LA-XYZ [22], M-XYZ [23], and DyXYZ [24] are proposed for use in
regular 3D Mesh architectures. They can address the 3D NoC deadlock problem and the
congestion challenge well, but cannot handle the increasing faults in TSVs.

The reinforcement learning technique is good for optimizing fault-tolerant routing
algorithms in 3D NoCs [20]. Q-learning, as one model-free reinforcement learning method,
is more suitable for fault routing algorithm design from a cost-effective perspective. The
collected fault information can be stored in a routing Q-Table, which is updated periodically
for dynamic path selection. Some 3D NoC routing solutions use Q-learning to alleviate
congestion [20] and do the thermal management [21]. Inspired by the Q-learning based
fault-tolerant algorithm for 2D NoCs [25,26], we try to design a 3D NoC fault-tolerant
routing algorithm RLARA.

When the fault links occur in the TSVs, the 3D NoC topology with fully connected
TSVs becomes a partially vertical TSVs-based 3D NoC. Therefore, their routing algorithms



Electronics 2023, 12, 4867 5 of 22

can be adaptive for a fault-tolerant 3D NoC with partial TSVs. An adaptive routing algo-
rithm LEAD [11] is proposed based on the queuing theory for fast analytical performance
evaluation. Based on the well-known distributed routing algorithm Elevator First [27],
Advertiser Elevator [12] tracks the vertical links failure and re-routes the packets around
using the collected message in 3D NoC with partially vertical TSVs. TAFT [16] considers
the faulty links to the maximum traffic state and avoids using them. Meanwhile, two or
more virtual channels are used [28–30], or some constraints are set on the vertical links to
guarantee deadlock-free routing algorithms [31].

Unlike these works, our proposed method RLARA uses TSV-aware information to
design a simple and effective routing algorithm to improve the communication performance
and alleviate the deadlock problem.

2.3. K-Means in 3D NoC Routing

Compared with hierarchical clustering and density-based clustering, partition-based
clustering involves lightweight computing and a fast speed. It has been used in some 3D
NoC routing algorithm designs, such as the K-means multicast routing algorithm [32] and
our previously designed KARL routing algorithm [33].

To characterize the packet transmission and make good routing decisions for a
fault-tolerant 3D NoC, the Q-Table used in the reinforcement learning method records
the probabilities of all directions that should go from a current router to a destination
router. If the total number of routers is N, the size of the Q-Table will be bigger than N2

and becomes very large for a 3D NoC. Therefore, it is necessary for K-means clustering to
exploit the routing information similarity and compress the Q-Table very well.

3. Proposed TSV-Aware Routing Algorithm RLARA
3.1. Motivation

The higher failure rate of TSVs than that of horizontal links means that more routing
algorithms make good use of partial TSVs [11,12,14–16] to avoid the heat problem. How-
ever, their adaptiveness and the potential deadlock issues are challenging. Therefore, some
researchers try to use turn models, region division and congestion threshold control to
further exploit the efficiency of more TSVs in 3D NoCs [17,34]. Without being aware of
the varying fault links, global network information and local communication status, these
routing algorithms have shown limited adaptiveness. Therefore, our proposed routing
algorithm RLARA makes good use of the reinforcement learning technique, K-means clus-
tering method and TSV-aware design to achieve good adaptiveness, high communication
performance and guaranteed fault tolerance in 3D NoCs.

3.2. Overall TSV-Aware Reinforcement Learning Routing Algorithm

RLARA is a reinforcement learning-assisted routing algorithm for fault-tolerant 3D
NoCs. It can make the routing decision adaptively by considering vertical TSVs utilization
and the mixed faults status. A K-means clustering method is used to achieve excellent
trade-off between performance degradation and area overhead.

The reinforcement learning method takes advantage of an agent to maximize its
benefits through interactive actions in a complex and uncertain environment [35]. As
an off-policy reinforcement learning method, Q-Learning is preferred for designing fault-
tolerant routing algorithms because of its random exploration and experience reuse capacity.
Random exploration enables one to traverse all the candidate routing paths as soon as
possible so that the agent can track the links’ and routers’ situations in the changing 3D NoC
topology. It helps RLARA to select a TSV-aware shortest routing path with minimal TSVs
from all candidates. Reusing experience enables RLARA to use the collected information
from Q-Table and adapt to new fault models dynamically.

RLARA uses the Q-learning method to determine the action of routing the next hop
based on the Q-Table update, as Figure 2 shows. A large Q-Table is required to record
the Q-value and the product of the total number of states. Therefore, the total number
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of routing actions determines the Q-Table size. For example, a 4 × 4 × 4 3D NoC has
64 routers, and thereby 64 × 64 states, as shown in Figure 3, while there are six actions with
adjacent directions (E, S, W, N, U, D) in a 3D NoC. Therefore, the Q-Table’s size is 6N2 for
the 3D NoC when the total number of routers is N. If some actions are forbidden for the
corner or border routers with fewer adjacent neighbors, the actions are invalid and will
be done again. Q-Values in the Q-Table are initialized as 0 and updated by the Q-learning
training procedure in Algorithm 2.
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Algorithm 2 details the complete Q-Table training procedure of RLARA. To achieve
a balance between the TSV’s high failure rate and the shortest path using TSVs, RLARA
calculates the Q-values of available routes and chooses the routing path with minor TSV
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vertical links to transmit packets. Initialization is performed from line 1 to line 6. The ε
-greedy strategy uses the value of ε to decide on the exploration strategy or the exploita-
tion strategy using line 7 to line 12. The agent will randomly choose an action At if the
exploration strategy is adopted. Otherwise, if using the exploitation strategy, At will be the
corresponding action whereat the Q-value is the biggest. The environment will return a
new state St + 1 and reward R to the agent after it receives this action At.

Algorithm 2: Q-Table training procedure of RLARA

Input: 3D Mesh topology environment (env), Q-Table (old Q-Table before training), learning rate
α, discount factor γ, and the strategy rate ε for greedy strategy.
Output: Q-Table (new compressed Q-Table after training)
1. initialize the candidate routes all_routes as empty
2. for i = 0 to training_round
3. initialize the current route as empty
4. while done == True
5. St← [start, end]
6. while env.is_legal(St, At)
7. if a random number > ε
8. select a random action At
9. else //mixed status load balance scheme
10. At← action of max(Q-table[S, :])
11. end if
12. end while
13. 1append [St, At] to route
14. St+1, R← env.step(St, At)
15. if St+1 is a destination
16. done← True
17. append [St+1, 0] to route
18. append route to all_routes
19. end if
20. Q-table[St, A]← Qtable[St, A] + α × (R + γ×max(Qtable[St+1, :])–Q-table[St, A])
21. end while
22. end for
23. best_route← select the route with the least TSV vertical links from all_routes
24. K-means(Q-Table)//use K-Means to compress Q-Table

Then, RLARA saves the routing states in a list “route” after choosing an action from
line 13 to line 17. Once the destination has been reached, RLARA appends a complete
“route” to the candidate routes “all_route” in line 18. The agent will update the Q-Table,
and the Q-values in the Q-Table are recalculated in line 20 using the following formula [36]:

Q(St, At) = Q(Si, Aj) + α× [R + γ×maxAQ(St + 1, At)−Q(St, At)] (1)

where R is the feedback reward of a new topology environment according to the selected
routing action At. In this paper, the reward will take a positive value if the routers are
reachable. On the contrary, it will be a negative number if the routers are unreachable and
connected to faulty links.

At the end of this training procedure, RLARA selects the best_route from all candidates
in “all_route” in Line 23. Additionally, the K-means clustering method can be used to
compress the Q-Table effectively in line 24.

To illustrate this procedure, we give a simple example of the source R0, and the
destination is R7 in Figure 1c. α is set to 0.1 and γ is set to 0.9. The Reward will be 10 upon
reaching the destination and otherwise it will be 0 or -10. At first, all the values in the
Q-Table are initialized to 0, and the related Q-Values in the table for the paths from R0 to
R7 are also zero. Let us assume it chooses to forward the packet to R1, i.e., the action is “E”.
Upon updating the Q-Table, Max(Q((R1, R7), A)) = 0, and Q((R0, R7), E) = 0. Since R1 is
not the destination, the Reward is 0. Then, we calculate the new value using Formula (1).
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The result remains 0, signifying no learning has occurred. This situation persists until
any exploration reaches the destination. When R3 chooses to transmit the data packet
downward during exploration, the Reward is set to 10 for this action. When updating
the table, Max(Q((R7, R7), A)) = 0 and Q((R3, R7), D) = 0. We calculate the new value
again by Q((R3, R7), D) = 0 + 0.1 × (10 + 0.9 × 0 − 0) equal to 1. This result makes
the packet more inclined to choose “Down” as the output direction when its next hop
reaches R3. In the following rounds, if other routers send packets to R3, the Q-Table will
continue to be updated. For example, assuming that at R1 it sends a data packet to R3, it
is determined that when Max(Q((R3, R7), A)) = 1, Q((R1, R7), S) = 0, and Reward = 0, the
New Q-Value will be 0.09. Even with a modest increase of 0.09, it makes the packet more
likely to be sent to R3 the next time it reaches R1. Similarly, R0 transmitting packets to
R1 also updates the Q-Table. Then, Q((R0, R7), S) = 0 + 0.1 × (0 + 0.9 × 0.09 − 0) = 0.0081.
This continual accumulation allows the Q-Table to be continually refined, eventually
approaching a better path. In the scenario where the path from R3 to R7 experiences a
malfunction, rendering data transmission impossible, and assuming R3 selects Down as
the output direction, causing the data to be routed through a faulty path, let us assume
the obtained Reward is −10. In such a situation, after updating the Q-Table results in
Max(Q((R7, R7), A)) = 0, we can get Q((R3, R7), D) equal to 0.81. Substituting this into
the formula, Q((R3, R7), D) = 0.81 + 0.1 × (−10 + 0.9 × 0 − 0.81) = −0.271. Through these
iterations, the data packet exhibits an even greater reluctance to select this specific path as
the output direction.

3.3. K-Means Clustering-Based Routing Table Compression

RLARA further exploits the similarity of routing information to shrink the large
Q-Table using the K-means clustering method in Algorithm 3.

The value of K and the original Q-Table are the inputs. To initialize K clustering
centers, K states A = [A1, A2, . . ., Ak] are randomly selected from all states in the trained
Q-Table and saved from line 1 to line 2. For each state in Q-Table, the Euclidean distance
between it and each cluster center is calculated by Equation (2), where EAi denotes the east
Q-Value of Ai in a cluster center, and ESj represents the east Q-value of corresponding State
Sj in the Q-Table. Similarly, the other directions can be defined.

d(Ai, Sj) =

√√√√(EAi − ESj
)2

+
(
SAi − SSj

)2
+
(
WAi −WSj

)2
+
(
NAi −NSj

)2

+
(
UAi −USj

)2
+
(
DAi −DSj

)2 (2)

Using lines 3 to 13, all the states are classified into one of the K clusters based on
the minimal Euclidean distance. Then, the average Euclidean distance is calculated using
Equation (3) to select the new center point of each cluster from line 14 to line 16.

EAi =
1
n

(
∑n

x=1 Eix

)
(3)

This procedure is repeated, and K-means are returned unless the results of all cluster
centers show no significant change between line 17 and line 19. In summary, RLARA can
use K-means clustering to compress the large Q-Table to ensure its scalability in multicore
processors. More results are shown in Section 4.3.

3.4. Deadlock Mitigation Using Mixed Status Load Balance

More virtual channels (VCs) or limited link usages are often used to guarantee dead-
lock freedom and avoid communication quality degradation. In this paper, we use a load
balance scheme to mitigate the deadlock issue in an adaptive routing algorithm. This
scheme uses both the link Q-Value from Q-learning and the router buffer to decide the
next hop.
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Wr denotes the unoccupied buffer utilization in a router port, while the product of Wr
and the Q-Value are used to select routing direction from all candidates. For example, the
Q-Value of a link is 0.57 in the east and 0.29 for the south. If only considering the Q-Value,
east is better. However, the unoccupied buffer utilization is 22% for the east and 64% in the
south. Comparing the joint value 0.1254 (0.57 × 22%) with 0.1856 (0.29 × 64%), the south is
better according to the mixed status of the router and link together.

The complete deadlock mitigation scheme is detailed in Algorithm 4. It helps us to
select the best direction for the next hop routing. The algorithm uses a variable ε to control
whether to use an exploit strategy or an exploratory strategy in line 1. After obtaining the
unoccupied buffer utilization of the router and the corresponding link Q-value from the
Q-Table, their product is calculated from line 3 to line 7. The direction with the highest
product is selected as the final decision.

Algorithm 3: K-Means clustering algorithm

Input: Qtable, K clusters
Output: kmeans (after clustering), index
1. kmeans = random K States in Qtable
2. old_kmeans = kmeans
3. for count = 0 to N // N is the upper bound of repeated procedure
4. for i = 0 to Qtable’s size // traverse all states
5. min_dis = inf
6. for j = 0 to K // traverse all K clusters
7. dis = d(Qtable[i], kmeans[j]) // using Equation (2)
8. if dis < min_dis
9. min_dis = dis
10. index[i] = j

// index shows which group is the state in
11. end if
12. end for
13. end for
14. for each row in kmeans
15. update kmeans with the average Q-Values

of all the states in a group
16. end for
17. if old_kmeans == kmeans // no change and stop the procedure
18. break
19. end if
20. end for

Algorithm 4: Deadlock mitigation via mixed status load balance scheme

Input: Qtable, state, ε decides whether exploration or exploitation strategy.
Output: maximum
1. if rd.randint(1, 100)/100 < ε then
2. for direction = 1 to Max_ports
3. Wr← get_next_buffer(state, direction)
4. if buffer * Qtable[state][i] > max_value then
5. maximum := i
6. max_value := C * Qtable[state][i]
7. end if
8. end for
9. else
10. maximum := rd.randint(0, Max_ports-1)
11. end if
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4. Experiments and Analysis
4.1. Experiments Configuration

The experiments were performed in the open-source NoC simulator Garnet 2.0 [37]. To
reflect the higher failure rate of TSV under realistic scenarios, the ratio of fault injection into
TSV and conventional links is set to 4:1 [5]. The Q-learning configuration refers to the work
in [38]. To verify the proposed RLARA, we use two often-used metrics—average latency
and successfully delivered rate—and compare our work with five methods, which are the
ideal routing algorithm [37], LEAD [11] and Advertiser Elevator denoted as adv_ele [12],
TAFT [16], and Elevator first denoted as ele_first [27] for 3D NoC with different network size.
The typical 3× 3× 3 and 4× 4× 4 topologies [15,34] are selected to verify the effectiveness
of the proposed routing algorithm. The configuration with more parameters is listed in
Table 2, which includes the related parameters for network and reinforcement learning.

Table 2. Experimental parameters configuration.

Experimental Parameters Values

Network size 3 × 3 × 3, 4 × 4 × 4
Fault injection rate 5%, 10%, 15%, 20%
Packet injection rate(Packet/cycle/node) 0.01, 0.02, 0.03, 0.04, 0.05, 0.06
Compression rate 30%, 50%, 70%, 90%
The ratio of inject fault into TSV and conventional links 4:1
Fault injection mode Random
Packet size 64 bits
Synthetic traffic Uniform random
Link width 32 bits
The number of Simulation cycles 50,000
Learning rate α for reinforcement learning 0.01
Discount factor γ for reinforcement learning 1

4.2. TSV-Aware Routing Impacts on Communication Performance
4.2.1. Network Performance: Average Latency and Successfully Delivered Rate

The average latency and successfully delivered rate are compared among different
routing algorithms for a 4 × 4 × 4 3D NoC under a 5% fault link injection in Figure 4.
RLARA performs similarly to the ideal case—better than TAFT [16] and adv_ele [12] in the
stable stage but worse in the early stage. The reason is that the extra exploration of Q-Table
training starts from an initial state in the early stage and searches for the best routing path
later. Here, training all the source routers and the destination routers one time is called a
training round. Because RLARA cannot search the best routing path in the early training
stage, we only record the average latency and successful delivery rate starting from five
training rounds. The performance metrics are recalculated every five training rounds. After
25 to 30 training rounds, the successfully delivered rate increases quickly and enters a
stable stage, as shown in Figure 4b. The lower average latency in the early stage mainly
results from the lower packet transmission shown in Figure 4a.

Then, the average latency will gradually decrease in the middle stage because the
training is imperfect and many packets do not always take the shortest route.

Finally, all the packets can find the best route to the destination router when the
training enters the saturation region, where the optimal paths are selected and very close to
the ideal case. Unlike RLARA, TAFT and adv_ele give the fixed routing decisions without
an extra training process.

The improvement of RLARA over adv_ele and TAFT routing algorithms is detailed
in Table 3. The average latency and the successful delivered rate are all improved for
4 × 4 × 4 Mesh under varying fault injection rates of 5%, 10%, 15% and 20%. RLARA can
decrease the average latency by 9.04% over adv_ele under a low fault injection rate of
5%. The improved successful delivery rate of RLARA over TAFT increases up to 8.58%.
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Therefore, the proposed RLARA achieves a lower latency and a higher successful delivery
rate than the TAFT and adv_ele for 4 × 4 × 4 Mesh under different fault injection rates.
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Table 3. Improvement of RLARA with different fault injection rates under 4 × 4 × 4 3D NoC.

Varying Fault Injection Rate in 4 × 4 × 4 3D NoC 5% 10% 15% 20%

Lower average latency RLARA—adv_ele 9.04% 7.99% 7.40% 7.63%
RLARA—TAFT 8.21% 7.51% 6.53% 7.34%

Higher successful delivered rate RLARA—adv_ele 2.95% 4.56% 4.82% 7.77%
RLARA—TAFT 2.41% 4.83% 4.56% 8.58%

For a 3 × 3 × 3 network, Table 4 shows the similar results and lower performance
improvements of RLARA over adv_ele and TAFT—up to an 8.48% lower average latency
and 6.21% higher successful delivered rate. The larger the network is, the higher the
performance benefits of RLARA. This is because the large topology provides more TSVs
and route candidates for RLARA.
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Table 4. Improvement of RLARA with different fault injection rates under 3 × 3 × 3 3D NoC.

Varying Fault Injection Rate in 3 × 3 × 3 3D NoC 5% 10% 15% 20%

Lower average latency RLARA—adv_ele 8.48% 8.37% 5.68% 3.57%
RLARA—TAFT 5.45% 4.64% 5.08% 5.36%

Higher successful delivered rate RLARA—adv_ele 0.62% 0.62% 1.25% 6.21%
RLARA—TAFT 0.62% 3.11% 4.94% 5.86%

In a word, RLARA performs better than the state-of-the-art under varying fault
injection rates and network sizes. It displays a minimal performance gap to the ideal
routing algorithm.

4.2.2. TSV Usage

TSV usage balance is a critical factor for RLARA. Comparisons of the average numbers
of used TSVs at different fault injection rates (5% and 15%) and network sizes (3 × 3 × 3
and 4 × 4 × 4) between the proposed RLARA and TAFT [16] are given in Figure 5. This
part excludes adv_ele because it is partially TSV connected and cannot deal with the faults
in a specific dimension. The average TSV usage is measured for 100 different randomly
generated fault models.
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(a) 3 × 3 × 3 NoC; (b) 4 × 4 × 4 NoC. The network size has little impact on the TSV usage while the
higher injection rate leads to higher utilization. Compared with TAFT, the proposed RLARA can
achieve stable and balanced TSV usage and thus avoid overheating and higher TSV failures.
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As can be observed in Figure 5, RLARA is more stable and has smaller fluctuations,
while TAFT is very unstable when used in varying fault models. The reason for this is that
RLARA is TSV-aware and prefers to select the lowest TSV utilization path. The TSV usage
can be reduced during the training process. However, the TSV usage in TAFT is fixed to the
topology of 3D NoC with given faults. Meanwhile, the number of used vertical TSV links
has a great deal to do with the variations in physical topology. It can cause back and forth
if the topology is changed. Such a difference can be explained by the number of average
hops shown in Table 5.

Table 5. TSV usage comparison for different routing algorithms using average hops.

Average Hops Ideal TAFT RLARA Improvement

3 × 3 × 3 NoC (5% faults) 2 2.8 2.73 3.41%
4 × 4 × 4 NoC (5% faults) 3 3.92 3.89 1.10%

3 × 3 × 3 NoC (15% faults) 2 2.9 2.80 5.11%
4 × 4 × 4 NoC (15% faults) 3 4.18 4.17 0.50%

The average number of RLARA in the overall average vertical links usage decreases
in the range of about 0.5% to 5.11%. Therefore, RLARA is more suitable for fault-tolerant
3D NoC and is able to make a good trade-off between performance and reliability.

4.2.3. Adaptiveness under Fast Faults Changing

The successful delivery rate, the average latency and the training time under varying
fault models are discussed to evaluate the adaptiveness of routing algorithms in the
subsection.

On one hand, the good adaptiveness and fast recovery are reflected in the successful
delivery rate under varying fault models. Figure 6 shows a comparison of the successful
delivery rates of packets with increasing training rounds in 3 × 3 × 3 and 4 × 4 × 4
NoCs. The fault model with different fault links is changed every 70 training rounds,
and the proportion of faults increases after the fault model is changed twice. Obviously,
the successful packet delivery rate of RLARA increases significantly at the beginning and
reaches a stable high point faster than TAFT. The successful delivery rate will not be much
lower than 80% even after the fault model is changed. RLARA can recover and enable
high-quality communication as soon as the training is continued.

On the other hand, the good adaptiveness and fast recovery are reflected in the
average latency. Figure 7 shows a comparison of average latency between different routing
algorithms when the fault model changes under different 3D NoC topologies. The lower
the latency, the higher the performance. The ideal case provides the best routing path,
and our proposed RLARA is between the ideal case and the worse TAFT. Some peaks
in the results for RLARA are caused by the update of the routing selection when the
topology was changed with a different fault model configuration. Changing the fault
model twice represents how the average latency changes when the fault model changes.
The Garnet simulator cannot change the topology of 3D NoC during one simulation.
The red vertical line indicates that the running fault model has changed. At the very
beginning, the low latency results are related to the initial training process, as is explained
in Section 4.2.1. Each time the fault model is changed, the latency will be increased suddenly
and then slowly drop, because each simulation includes some training rounds to ensure
the dynamic characteristics. Therefore, the robust RLARA shows a lower average latency
(1.06~5.63%) than TAFT under varying network sizes and fault models.



Electronics 2023, 12, 4867 14 of 22Electronics 2023, 12, x FOR PEER REVIEW 14 of 22 
 

 

 
(a) 

 
(b) 

Figure 6. Packets successfully delivered rate comparison under varying fault models for different 
network sizes: (a) 3 × 3 × 3 NoC; (b) 4 × 4 × 4 NoC. The changing fault models give rise to different 
fault links and new topologies such that the routing algorithms need some time to recalculate the 
new routing paths. RLARA can provide the new routing decisions using both local and global 
network information. 

On the other hand, the good adaptiveness and fast recovery are reflected in the av-
erage latency. Figure 7 shows a comparison of average latency between different routing 
algorithms when the fault model changes under different 3D NoC topologies. The lower 
the latency, the higher the performance. The ideal case provides the best routing path, 
and our proposed RLARA is between the ideal case and the worse TAFT. Some peaks in 
the results for RLARA are caused by the update of the routing selection when the to-
pology was changed with a different fault model configuration. Changing the fault 
model twice represents how the average latency changes when the fault model changes. 
The Garnet simulator cannot change the topology of 3D NoC during one simulation. The 
red vertical line indicates that the running fault model has changed. At the very begin-
ning, the low latency results are related to the initial training process, as is explained in 
Section 4.2.1. Each time the fault model is changed, the latency will be increased sud-
denly and then slowly drop, because each simulation includes some training rounds to 
ensure the dynamic characteristics. Therefore, the robust RLARA shows a lower average 
latency (1.06~5.63%) than TAFT under varying network sizes and fault models. 

Figure 6. Packets successfully delivered rate comparison under varying fault models for different
network sizes: (a) 3 × 3 × 3 NoC; (b) 4 × 4 × 4 NoC. The changing fault models give rise to different
fault links and new topologies such that the routing algorithms need some time to recalculate the
new routing paths. RLARA can provide the new routing decisions using both local and global
network information.

The training time also influences the dynamic adaptiveness and speed of recovery.
Figure 8 shows the training time variation under different topologies. It can be observed
that the training time spent on 10 training rounds in a 3 × 3 × 3 3D NoC is very close to 0.
Even in a 3D NoC with a scale of 4 × 4 × 4, the training time of 10 training rounds is less
than 1 second. Each training round costs about 8 ms in 4 × 4 × 4 3D NoC, and even less
than 1 ms in 3 × 3 × 3 3D NoC. This time gap results from the larger Q-Table of 4 × 4 × 4
than 3 × 3 × 3. Therefore, even though it is acceptable to periodically detect fault models
and retrain them based on the original Q-Table, K-means clustering can further compress
the Q-Table in order to save space and speed up recovery.
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Figure 7. Average latency comparison under varying fault models for different network sizes:
(a) 5% faults in 3 × 3 × 3 NoC; (b) 5% faults in 4 × 4 × 4 NoC. The lower the average latency, the
better the performance. Compared with TAFT, the proposed RLARA can achieve lower average
latency and approach to the ideal case. The peaks represent retraining for new routing decisions
under a new fault model. The red vertical line indicates that the running fault model has changed.

The training time also influences the dynamic adaptiveness and speed of recovery.
Figure 8 shows the training time variation under different topologies. It can be observed
that the training time spent on 10 training rounds in a 3 × 3 × 3 3D NoC is very close to 0.
Even in a 3D NoC with a scale of 4 × 4 × 4, the training time of 10 training rounds is less
than 1 second. Each training round costs about 8 ms in 4 × 4 × 4 3D NoC, and even less
than 1 ms in 3 × 3 × 3 3D NoC. This time gap results from the larger Q-Table of 4 × 4 × 4
than 3 × 3 × 3. Therefore, even though it is acceptable to periodically detect fault models
and retrain them based on the original Q-Table, K-means clustering can further compress
the Q-Table in order to save space and speed up recovery.
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Figure 8. Short training time of RLARA for varying network sizes. The smaller the network size, the
shorter the training time. Moreover, the early stage of training, devoted to selecting the routing path,
requires much more time, while the following retraining is very fast and requires little recovery time
for a new fault model.

4.3. K-Means Impacts on Q-Table

RLARA uses K-means clustering to reduce the size of the large Q-Table via exploiting
the similarity of routing information. The K value has significant impacts on the routing
results, as Figure 9 shows.
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Figure 9. K-means impacts on packet timeouts under varying clustering groups: (a) 3 × 3 × 3
NoC; (b) 4 × 4 × 4 NoC. It is noted that a 70% compression rate can result in the lowest number of
packet transmissions out-of-time; 219 and 1229 are the best K-values for the 3 × 3 × 3 and 4 × 4 × 4
networks, respectively.
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Different optimal K values are selected for different network sizes of 3 × 3 × 3 (in
Figure 9a) and 4× 4× 4 Mesh in (Figure 9b). The performance can be effectively guaranteed,
even when the Q-Table is reduced by 70%, such that the number of packet timeouts is stable
in a low range. Therefore, we consider 70% reduction as a basic RLARA and compare its
performance with the original Q-Table.

As is shown in Figure 10, the average latency and successfully delivered rate are
compared at a 5% fault injection rate between the Q-Table with the 70% reduction of
RLARA and the Q-Table without compression. The degradation of both average latency
and successful delivery rate occurs, but can be ignored after the Q-Table is compressed by
K-means clustering in large-scale 3D NoCs.
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The performance loss or gap between before and after the K-means compression of the Q-Table is
nearly negligible because of the average latency and successful delivery rate.

Tables 6 and 7 show the performance gap between the original RALAR and the
K-means-enhanced RALAR under varying fault injection rates, compression rates and
network sizes. It can be noted that using the K-means-assisted Q-Table with 70% reduction,
the performance gaps between both average latency and successful delivery rate range
from 1.25% to 8.78% under varying fault injection rates, as shown in Table 6.
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Table 6. Performance gap of the basic RALRA and the K-means-enhanced RALAR with a 70%
compression rate and varying fault injection rates.

Fault Injection Rate 5% 10% 15% 20%

3 × 3 × 3 3DNoC
Average latency 7.74% 8.78% 7.69% 7.29%

Successful delivery rate 1.25% 2.18% 3.49% 5.10%

4 × 4 × 4 3DNoC
Average latency 6.36% 7.11% 6.64% 7.40%

Successful delivery rate 1.57% 3.78% 5.96% 6.30%

Table 7. Performance gap of the basic RALRA and the K-means-enhanced RALAR with a 5% fault
injection rate and varying compression rates.

Compression Rate 30% 50% 70% 90%

3 × 3 × 3 3DNoC
Average latency 2.94% 6.71% 7.74% 19.52%

Successful delivery rate 0.77% 0.56% 1.25% 27.29%

4 × 4 × 4 3DNoC
Average latency 2.42% 5.51% 6.36% 16.04%

Successful delivery rate 0.54% 1.27% 1.57% 27.68%

Table 7 shows that the higher compression rates of 30%, 50% and 70% induce greater
performance degradation, while a 90% compression rate decreases the performance metrics,
with a 27.68% lower successful delivery rate and 19.52% higher average latency. The
compression rate is critical to reducing the Q-Table in RLARA. Therefore, the trade-off
between Q-Table compression and performance degradation is determined by a good K
value. In a word, the K-means clustering method of RLARA is useful for reducing the size
of the Q-Table on demand.

4.4. Deadlock Mitigation Analysis

The deadlock issue often causes congestion and causes latency to increase dramatically.
Therefore, we compare the proposed RLARA with various 3D NoC routing algorithms
under varying traffic loads in Figure 11. The higher the packet injection rate, the higher the
traffic load. Similarly to pre-existent works on LEAD [11] and Advertiser Elevator denoted
as adv_ele [12], TAFT [16], and Elevator first denoted as ele_first [27], which were designed
for partially connected TSVs, the faults here are only injected in TSVs. RLARA_Ablation a
RLARA with no load balance scheme via the mixed status of the link and router.

The traffic load is measured by the packet injection rate. In this paper, a packet/node/cycle
above 0.05 indicates high traffic load, and causes the latency to increase rapidly, as shown
in Figure 11. Figure 11a,b give average latency comparisons for the 3 × 3 × 3 Mesh and
4 × 4 × 4 Mesh, respectively, and these show similar results. Firstly, it is to be expected
that all the routing algorithms have low and stable latency under a low packet injection rate.
However, the high packet injection rate causes packet blocking with large latency. More
importantly, RLARA enters the saturation very late, and its latency is the lowest, compared
with other routing algorithms. This ablation study shows that RLARA_Ablation performs
better than LEAD and ele_first, but worse than TAFT, adv_ele and RLARA. Therefore, the
mixed status load balance scheme assists RLARA in achieving good communication quality
and mitigating the deadlock issue even under a high traffic load.

4.5. Discussion

Based on the above results and analysis, it is concluded that the proposed RLARA
takes advantage of reinforcement learning to update the TSV-aware routing selection, and
it performs better than LEAD, ele_first, TAFT and adv_ele. The lower average latency
and higher successful delivery rates of RLARA under diverse configurations demonstrate
its benefits when used in fault-tolerant 3D NoC architectures. Moreover, the issues of a
large Q-Table and deadlock are also effectively solved. On one hand, the K-means cluster-
ing algorithm is adopted for compressing the Q-Table and minimizing the router’s area
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consumption. The 70% compression rate represents a good choice to balance the perfor-
mance loss and area consumption. On the other hand, deadlock alleviation is achieved by
using the mixed status of links and routers such that the proposed RLARA can achieve
higher performance.
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Figure 11. Average latency comparison of various routing algorithms under varying packet injection
rates for 3D NoC: (a) 3 × 3 × 3 3D NoC; (b) 4 × 4 × 4 3D NoC. The deadlock mitigation of the
proposed RLARA causes it to enter the saturation region later and achieve the lowest average latency
compared to other routing algorithms.

It is also noted that this proposed approach uses a random fault injection and network
pattern. More realistic applications, such as VOPD, MWD and JPEG, should be mapped
into 3D NoC for further evaluation. On the other hand, the power and area consumptions
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of the router in RLARA have not been estimated and optimized. We will focus on these
two directions in future works.

5. Conclusions

A TSV-aware routing algorithm, RLARA, is here proposed for use in fault-tolerant
3D NoCs using the K-means enhanced reinforcement learning method globally and the
mixed status load balance locally. The high failure rate of TSV vertical links is comprehen-
sively considered in the routing decisions, while the various fault models are dynamically
characterized via a reinforcement learning approach. The K-means clustering method can
be used to further exploit the routing information similarity and reduce the Q-Table by
70%, with acceptable performance loss. The mixed status of links and routers is proven to
mitigate the deadlock blocking issue well. The experimental results demonstrate that the
proposed approach can achieve an average latency reduction of 9.04% and an improvement
in successful delivery rate of 8.58% compared to the state-of-the-art for 3D NoCs. Addi-
tionally, TSV usage can be reduced by 5.11% to alleviate TSV overheating, while a strong
communication performance can be achieved due to its good adaptiveness, with less than
1 s training time, even with the frequent changing of fault models. Therefore, the proposed
RLARA represents an efficient fault-tolerant routing algorithm for use in 3D NoCs.
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