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Abstract: Outlier detection is an essential research field in data mining, especially in the areas of
network security, credit card fraud detection, industrial flaw detection, etc. The existing outlier
detection algorithms, which can be divided into supervised methods and unsupervised methods,
suffer from the following problems: curse of dimensionality, lack of labeled data, and hyperparameter
tuning. To address these issues, we present a novel unsupervised outlier detection algorithm based
on mutual information and reduced spectral clustering, called MISC-OD (Mutual Information and
reduced Spectral Clustering—Outlier Detection). MISC-OD first constructs a mutual information
matrix between features, then, by applying reduced spectral clustering, divides the feature set
into subsets, utilizing the LOF (Local Outlier Factor) for outlier detection within each subset and
combining the outlier scores found within each subset. Finally, it outputs the outlier score. Our
contributions are as follows: (1) we propose a novel outlier detection method called MISC-OD with
high interpretability and scalability; (2) numerous experiments on 18 benchmark datasets demonstrate
the superior performance of the MISC-OD algorithm compared with eight state-of-the-art baselines
in terms of ROC (receiver operating characteristic) and AP (average precision).

Keywords: outlier detection; unsupervised; mutual information; spectral clustering

1. Introduction

Outlier detection, sometimes referred to as anomaly detection or novelty detection,
is the process of picking out the outliers from normal values. According to Hawking, “an
outlier is an observation which deviates so much from the other observations as to arouse
suspicions that it was generated by a different mechanism” [1].

Outlier detection is an essential research field in data mining due to its widespread
use in a wide range of applications, such as network intrusion detection [2–7], intelligent
transportation [8–10], video content analysis and detection [11–13], fraud detection [14–18],
and social media analysis [19–21].

Outlier detection is an important field of research and is a concern for industry and
academia. By identifying outliers, researchers can obtain vital knowledge, which assists in
making better decisions or avoiding risks.

As mentioned before, these applications require outlier detection to achieve the fol-
lowing goals: (1) a short running time, especially for some online detection tasks, (2) high
detection accuracy, and (3) being easy to interpret, especially in fraud detection and network
security applications.

Over the past few decades, many outlier detection algorithms have been proposed [22–25].
These can be divided into five main categories: (1) statistical and probabilistic-based
methods; (2) proximity-based methods; (3) clustering-based methods; (4) ensemble-based
methods; and (5) learning-based methods. We will give a more detailed introduction in
Section 2.
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Although the above algorithms have achieved good performance in the past, with the
arrival of the era of big data, these algorithms have shown the following shortcomings:

(1) Curse of dimensionality. In the era of big data, the dimensions of data are steadily
increasing. The performance of traditional outlier detection algorithms, especially
those based on proximity, will decrease rapidly with the increase in dimensions.

(2) Missing labeled data. Cluster-based algorithms require a large amount of labeled data,
which is difficult to implement or comes at a high cost in many scenarios.

(3) Hyperparameter tuning. Algorithms based on learning have a large number of
hyperparameters, which need hyperparameter tuning to achieve good performance.
Hyperparameter tuning requires a large amount of time and computing power, which
is difficult to implement in some online outlier detection applications, especially in
unsupervised settings.

To address these limitations, this manuscript proposes a new outlier detection algo-
rithm based on mutual information and reduced spectral clustering (Mutual Information
and reduced Spectral Clustering—Outlier Detection, abbreviated as MISC-OD). Firstly,
the mutual information between features is calculated and a mutual information matrix is
constructed. Then, reduced spectral clustering is used to cluster the features. On this basis,
the LOF outlier detection algorithm is used to detect outliers in each feature subset, and the
result of outlier detection is finally obtained.

Compared with traditional outlier detection algorithms, the MISC-OD algorithm has
better performance in the face of the curse of dimensionality, scalability, and higher inter-
pretability. In addition, since the algorithm is unsupervised, there is no need to carry out a
significant amount of hyperparameter tuning, which is critical in online detection scenarios.

The contributions are as follows:

(1) A new anomaly detection algorithm, MISC-OD, is proposed. Especially when faced
with highly dimensional data, its anomaly detection effect is better than other classic
algorithms. The MISC-OD algorithm has high interpretability and scalability. These
characteristics are critical in practical applications.

(2) A large number of experiments have been carried out, and the experimental results
prove that the algorithm has good performance compared with state-of-the-art outlier
detection methods.

The rest of this manuscript is organized as follows: we introduce some existing outlier
detection techniques in Section 2, which can be divided into statistical and probabilistic-
based methods, proximity-based methods, clustering-based methods, ensemble-based
methods, and learning-based methods. We introduce some preliminary knowledge in
Section 3, including mutual information, spectral clustering, and the definition of anomaly
detection problems. We describe the algorithmic details of MISC-OD and its properties
in Section 4. We carry out experiments to compare MISC-OD with state-of-the-art outlier
detection methods and demonstrate its excellent performance in Section 5. Finally, we
conclude this manuscript in Section 6 with future research directions.

2. Related Work

As mentioned above, outlier detection methods can be classified into five categories.
In this section, the main ideas and pros and cons of each category are introduced in detail.

2.1. Statistical and Probabilistic-Based Methods

Statistical and probabilistic-based methods firstly make an assumption about the
distribution of data, and then calculate the extreme degree of a certain data point based on
this assumption. The extreme degree of a certain data point is called an “outlier score”.

Depending on whether it has parameters or not, these methods can be divided into
two classes: parametric methods and nonparametric methods. Representative parametric
methods are linear regression [26,27] and Gaussian mixture models (GMM) [26,27]. Non-
parametric methods do not assume a parametric model for the data. Some typical examples



Electronics 2023, 12, 4864 3 of 12

include histogram-based methods (HBOS) [28,29], Kernel Density Estimation (KDE) [30],
and other variants.

The premise that methods can achieve better results is that the assumed data distribu-
tion is consistent with actual situations. This means that sometimes this assumption does
not hold, leading to poor detection results using these methods.

2.2. Proximity-Based Methods

Proximity-based methods are based on local neighborhood information and define a
data point as an outlier when its locality (or proximity) is sparsely populated [31]. These
algorithms can be categorized into density-based and distance-based algorithms [31].

The core principle of the density-based outlier detection methods is that an outlier can
be found in a low-density region, whereas non-outliers (inliers) are assumed to appear in
dense neighborhoods [27]. A typical representative of this method is LOF. Some improve-
ments were later introduced, such as ELOF [32] (extract local outlier factor) and COF [33]
(class outlier factor).

Distance-based outlier detection methods detect outliers by computing the distances
between data points. A data point that is at a far distance from its nearest neighbor is
regarded as an outlier [27].

One classic distance-based outlier detection method is KNN (k-nearest neighbor),
which is often used as a benchmark for comparison with other outlier detection algorithms.

The main advantages of proximity-based methods are nonparametric and easy to
interpret. However, these methods are computationally expensive for computing each pair
of data points, sensitive to hyperparameters such as how to define neighbor or distance.

2.3. Clustering-Based Methods

The core of clustering-based methods is clustering. Through clustering, smaller-
sized clusters in the dataset can be found, and the smaller-sized clusters that comprise
significantly fewer data points than other clusters are labeled as outliers.

A detailed description of these methods can be found in [34]. The merit of clustering-
based methods are that they are (1) unsupervised, which means they are easy to use,
and (2) robust to different data types. However, the shortcomings are obvious, including
(1) the need to specify the number of clusters in advance, which is a difficult task on
certain occasions, and (2) the result of clustering-based methods is binary, which means no
quantitative indication of the outlierness.

2.4. Ensemble-Based Methods

Ensemble-based methods combine the results obtained from various base outlier
detectors to produce more robust and more accurate results.

The key to the success of this approach is how base detectors are selected and how
the different results are combined. Some remarkable research on this category includes
isolation forests, feature bagging, and LSCPs [22] (Locally Selective Combination in Parallel
Outlier Ensembles).

Ensemble-based methods can be very useful in areas where the data are noisy and in
streaming scenarios because they are more stable and robust. In addition to this, they are
suitable for outlier analysis in highly dimensional data.

However, selecting the right base outlier detectors is a difficult task. Furthermore, it
results in a yes or no answer, which prevents further comparisons from being made.

2.5. Learning-Based Methods

With the emergence of big data and significant improvements in computing power, an
increasing number of machine learning methods are applied to outlier detection.

A machine learning model is trained to distinguish between normal values (inliers)
and abnormal values (outliers). When the model is trained, it will be used to find outliers
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from unlabeled data. The OCSVM (One-Class Support Vector Machine) is a classical
method in this category.

In recent years, some researchers have tried to use neural networks for outlier detec-
tion. Some representative examples include GANs (generative adversarial networks) [24],
variational autoencoders [35], and reinforcement learning [36].

Better results can be achieved from learning-based methods when large datasets exist.
However, in most scenarios of outlier detection, this assumption is not valid. In addition
to this, most learning-based methods are computationally expensive and need nontrivial
hyperparameter tuning to yield the best performance, especially in the unsupervised
setting. Lastly, learning-based methods are black box models, which means that it is hard
to interpret the results obtained using learning-based methods.

3. Preliminaries
3.1. Problem of Outlier Detection

Unsupervised outlier detection, without supervision, employs some criteria to identify
outlier candidates that deviate from major normal points [27,34]. Based on different
assumptions of outliers, many algorithms are proposed that assign an outlier score to each
point and return top-ks as outlier candidates.

We have n data points X1, X2, . . . , Xn ∈ Rd, which are sampled independently and
identically distributed. We use the matrix X ∈ Rn×d as the notation of the entire dataset,
which is formed by stacking each data point’s vectors as rows. Given X, an outlier detector
obtains an outlier score oi ∈ R for each data point xi, 1 ≤ i ≤ n. Having a higher outlier
score means it is more likely to be an outlier.

3.2. Mutual Information

In information theory, the mutual information (MI) of two random variables is a
measure of the mutual dependence between two variables [12]. In other words, the mutual
information between two random variables measures non-linear relations between them.
More specifically, it quantifies the “amount of information” (in units such as bits, nats, or
hartleys) obtained about one random variable by observing the other random variables.

The mutual information and entropy of a random variable are closely related concepts
in information theory. Entropy measures the anticipated “amount of information” carried
in a random variable.

For two discrete variables X and Y whose joint probability distribution is PXY(x, y), the
mutual information between them, denoted as I(X; Y), can be obtained using Equation (1).

I(X; Y) = ∑x;y PXY(x, y)log
PXY(x, y)

PX(x)PY(y)
= EPXY log

PXY
PXPY

(1)

Here, PXY(x, y) is a joint probability distribution, and PX(x) and PY(y) are the marginal
distribution, which can be obtained through Equations (2) and (3).

EPXY , PXY, PX , PY means the expectation, joint probability value, marginal distribu-
tion value on X, and marginal distribution value on Y when given a specific x and y.

PX(x) = ∑
y

PXY(x, y) (2)

PY(y) = ∑
x

PXY(x, y) (3)

Whereas to compute the mutual information for continuous random variables, the
summations must be replaced by the integrals.

I(X; Y) =
∫ +∞

−∞

∫ +∞

−∞
p(x,y)(x, y)·log

(
p(X,Y)(x, y)
pX(x)pY(y)

)
dxdy (4)
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3.3. Spectral Clustering

Spectral clustering is a technique with roots in graph theory, where the approach
is used to identify communities of nodes in a graph based on the edges connecting
them [27,34]. The method is flexible and clusters non-graph data as well.

Spectral clustering uses information from the eigenvalues (spectrum) of special matri-
ces built from the graph or the dataset. Its main process includes constructing matrices and
using the eigenvectors of matrices to assign data to different clusters.

By clustering the features, the highly correlated features are grouped into the same
group, which reduces the complexity of the subsequent training, and also produces more
accurate results and better interpretability.

In fact, different clustering algorithms can be employed to cluster the quantities
describing correlations, such as k-means clustering, or DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) clustering, for Pearson correlation coefficients or
mutual information. In many cases, the correlation between features is not necessarily
linear. Therefore, this manuscript uses reduced spectral clustering to cluster the mutual
information to realize the subsets of features.

4. Proposed MISC-OD Method

Here, we provide the details of the new outlier detection algorithm based on mutual
information and reduced spectral clustering (Mutual Information and reduced Spectral
Clustering—Outlier Detection, abbreviated as MISC-OD).

Firstly, we provide the motivation and technical details of MISC-OD in Section 4.1,
and then discuss the properties of MISC-OD in Section 4.2, including interpretability
and scalability.

4.1. Detailed Steps of MISC-OD

Table 1 shows the major notations used in the following sections.

Table 1. Algorithm notations.

Notation Domain Description

n Z Number of samples

d Z Number of features

K Z Number of clusters

X Rn×d Dataset

Xi R1×d One instance, 1 ≤ i ≤ n

Cj Rn×1 One features, 1 ≤ j ≤ d

W Rd×d Mutual information matrix between features

D Rd×d Degree matrix

V (C1, C2, · · ·Cd) Vertex set

G (V, E, W) Weighted undirected graph

L Rd×d Laplacian matrix of G

4.1.1. Construction Mutual Information Matrix

As mentioned in Section 3.1, now we have n data points X1, X2, . . . , Xn ∈ Rd, which
are sampled independently and are identically distributed. We use the matrix X ∈ Rn×d as
the notation of the entire dataset, which is formed by stacking each data point’s vectors
as rows.
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First, we perform data preprocessing on each data point, discretizing continuous
features using the equal width method. Then, the mutual information between each feature
can be calculated using Equation (5) and (6) to obtain the mutual information matrix.

w
(
Ci, Cj

)
= ∑

x∈Ci

∑
y∈Cj

p(x, y)log
(

p(x, y)
p(x)·p(y)

)
(5)

p(x, y) =
n(x, y)

d
, p(x) =

n(x)
d

, p(y) =
n(y)

d
(6)

In Equation (5), p(x, y) means the probability that a particular x and y appear in the
joint probability distribution, p(x) means the probability that the same x appears in the
marginal distribution PX, and p(y) means the probability that the same y appears in the
marginal distribution PY.

Equation (5) shows how to calculate p(x, y), p(x), p(y), and Equation (6) gives the
detailed calculation processes. In Equation (6), n(x, y) represents the number of occurrences
of this value (x, y) in

(
Ci, Cj

)
. Similarly, n(x) represents the number of occurrences of this

x value in Ci, while n(y) represents the number of occurrences of this y value in Cj.
Through the above equations, we can obtain matrix W, composed of mutual informa-

tion between features.

4.1.2. Reduced Spectral Clustering

Let G = (V, E, W) be a weighted undirected graph with vertex set V = (C1, C2, · · ·Cd).
In the following section, we suppose that the graph G is weighted; that is, each edge
between two vertices Ci and Cj carries a non-negative weight wij ≥ 0. The weighted
adjacency matrix of the graph is the matrix W =

[
wi,j
]

d×d, which can be obtained using
Equation (5) in previous section.

(1) As G is undirected, this means wij = wji. The degree of a vertex Ci ∈ V is defined as
di = ∑d

j=1 wij.
(2) The degree matrix D is defined as the diagonal matrix with the degrees di, 1 ≤ i ≤ d

on the diagonal. The unnormalized graph Laplacian matrix can be obtained by
L = D−W.

(3) Then, we can obtain the normalized graph Laplacians by

L′ = D−1/2LD−1/2

(4) We computed the first k eigenvectors (the eigenvectors corresponding to the k smallest
eigenvalues of L′).

(5) We obtained a new matrix formed by the first k eigenvectors; the l-th row defines the
features of graph node Cl .

(6) We clustered the graph nodes based on these features (e.g., using k-means clustering).
(7) We finally obtained subsets of features, Sub = Sub1 ∪ Sub2 ∪ · · · ∪ SubK, which

realized the use of mutual information to divide features into several closely related
sub-categories, which will help improve the efficiency and accuracy of detection in
the subsequent outlier detection stage.

4.1.3. Outlier Detection Using LOF

(1) For each sub-category of feature set, by using the classical LOF algorithm, we can
obtain the outlier score of each instance. We use the notation oij, which means sample
Xi’s outlier score in Subj, 1 ≤ j ≤ K.

(2) Then, we aggregate the outlier scores obtained from each sub-category {o1, o2, . . . , oi, . . . , on},
oi = ∑K

j=1 oij.
(3) The output is {o1, o2, . . . , oi, . . . , on}.
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4.1.4. Pseudocode of Algorithm MISC-OD

Through the previous steps (Sections 4.1.1–4.1.3), the entire process of outlier detection
is completed. To summarize the process, we have given the pseudocode of the MISC-OD
algorithm in Algorithm 1.

Algorithm 1 MISC-OD

Input: input data X =
[

xij

]
n×d

with n samples and d features

Output: Outlier scores {o1, o2, . . . , oi, . . . , on}
1. Obtain mutual information matrix W:

w
(

Ci, Cj

)
= ∑x∈Ci ∑y∈Cj

p(x, y)log
(

p(x,y)
p(x)·p(y)

)
,

p(x, y) = n(x,y)
d , p(x) = n(x)

d , p(y) = n(y)
d

2. Calculate degree matrix D =
[
dij

]
d×d

dij = dji = ∑d
j=1 wij.

3. Obtain Laplacian matrix L = D−W
4. Normalized graph Laplacians L′ = D−

1
2 LD−

1
2

5. Obtain subsets of features: Sub = Sub1 ∪ Sub2 ∪ · · · ∪ SubK
6. For each subset of feature sub in 1, · · · , i, · · ·K, do

apply LOF algorithm
return oij

7. Return {o1, o2, . . . , oi, . . . , on},oi = ∑K
j=1 oij

4.2. Properties of MISC-OD

(1) Interpretability. This is a key idea in machine learning because it gives domain
specialists a better understanding of how algorithms decide what to do. When a model
is transparent, people may try to understand why a certain data point is categorized and
obtain insight from the way models think. Transparency and dependability are both offered
by interpretable algorithms.

In credit card fraud detection scenarios, recognizing a fraudulent transaction and
providing an explanation for it are equally crucial. Thus, in applications involving outlier
detection, interpretability is equally vital.

Conventional anomaly detection algorithms identify patterns in every feature of
the complete dataset. Many anomaly detection algorithms, particularly learning-based
algorithms, become black boxes that can only output anomaly detection results when faced
with high-dimensional data; they are unable to determine why the data are anomalous. In
many real-world anomaly detection applications, this is unacceptable.

MISC-OD created a mutual information matrix from the mutual information between
features before performing outlier detection, and then grouped features with the help of
spectral clustering. The outlier detection was performed on subsets of features, which
accurately explains why the data are recognized as an outlier, as the algorithm can give
the specific features on which the outlier scores are higher, when necessary. Therefore,
MISC-OD is an outlier detection algorithm with high interpretability.

(2) Scalability. Proximity-based methods (introduced in Section 2.2) require frequent
calculations of the distance or density between data points. Unlike these algorithms, MISC-
OD only needs to compute the mutual information between features once. Distributed
computing or multithreading can be added to the outlier detection process of a subset of
features to make the MISC-OD method much more scalable.

(3) Time complexity analysis. In the first step (Sections 4.1.1 and 4.1.2), the construc-
tion mutual information matrix and reduced spectral clustering lead to O

(
nd2 + d3) time

complexity. In the second step (Section 4.1.3), outlier detection using LOF in each fea-
ture subset leads to O

(
n2) time complexity. So, MISC-OD has O

(
n2) time complexity

when n� d.
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We performed anomaly detection through MISC-OD on the synthetic dataset
(n = 1, 000, 000,d = 1000), and its running time was consistent with the above time complexity.

5. Experimental Results and Analysis
5.1. Evaluation Metric
5.1.1. ROC-AUC (Receiver Operating Characteristic, Area under the Curve)

The receiver operating characteristic (ROC) curve is frequently used for evaluating the
performance of binary classification algorithms. It provides a graphical representation of a
classifier’s performance, rather than a single value like most other metrics. The closer ROC
is to 1, the more effective that detection model is. When ROC is equal to or lower than 0.5,
this means the inspection model has no value for use.

5.1.2. AP (Average Precision)

Another way to evaluate outlier detection models is to use average precision (AP). AP
measures the average precision across all possible thresholds, with a higher value indicating
a better model. AP is more suitable for outlier detection problems with rare anomalies or
imbalanced data, as it focuses more on the positive class (anomalies) than the negative class
(normal instances). However, it may not reflect the overall accuracy or specificity of the
model, as it does not account for the true negatives or false negatives. Evaluating outlier
detection models can be challenging, especially when you do not have labeled data or
ground truth data to compare with. One of the possible ways to evaluate outlier detection
models is to use external validation, which means comparing the results with some other
sources of information, such as domain experts, feedback, or historical data.

Thirty percent of the dataset in experiments is reserved for testing, while the remaining
seventy percent is used for training. The area under the receiver operating characteristic
(ROC) and average precision (AP) are used to obtain the average score from ten separate
trials to assess performance.

5.2. Experimental Setup
5.2.1. Experimental Environment and Baselines

In the subsequent experiments, a Windows personal computer with an AMD Ryzen
7 5800H CPU and 16G of memory was used.

For the sake of fairness, we selected eight representative anomaly detection algorithms
from different categories, including proximity-based methods, clustering-based methods,
and ensemble-based methods. These eight algorithms are all classic algorithms in the field
of anomaly detection and have gained recognition from academia and industry.

We compared the performance of MISC-OD with eight state-of-the-art outlier detection
algorithms. These are k-nearest neighbor (KNN), Local Outlier Factor (LOF), Angle-Based
Outlier Detection (ABOD) [37], Histogram-Based Outlier Score (HBOS) [28], Isolation Forest
(IForest), Clustering-Based Local Outlier Factor (CBLOF), Locally Selective Combination in
Parallel Outlier Ensembles (LSCP) [22], and One-Class Support Vector Machine (OCSVM).

5.2.2. Dataset

To ensure fairness, our experiments chose public datasets instead of synthetic datasets
or private datasets. At the same time, in order to reflect the superiority of the MISC-OD
algorithm, 18 datasets with data dimensions greater than or equal to 10 were selected
from 31 public datasets of ODDS. The volume of datasets ranged from 129 to 286,048, the
dimension of the datasets ranged from 10 to 400, and the percentage of outliers ranged
from 0.9% to 32%. This shows that the selected datasets are highly representative from
multiple perspectives such as the data volume, the distribution of the data dimensions, and
the percentage of outliers, and can represent various datasets in real applications.

Table 2 presents the 18 multi-dimensional datasets with data dimensions greater than or
equal to 10 from ODDS (https://odds.cs.stonybrook.edu/, accessed on 1 September 2023).

https://odds.cs.stonybrook.edu/
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Table 2. Eighteen real-word benchmark datasets.

Dataset Number of Samples Number of Dimensions Outliers (%)

Lympho 148 18 6 (4.1%)

WBC 278 30 21 (5.6%)

Vowels 1456 12 50 (3.4%)

Cardio 1831 21 176 (9.6%)

Musk 3062 166 97 (3.2%)

Satimage-2 5803 36 71 (1.2%)

Letter Recognition 1600 32 100 (6.25%)

Speech 3686 400 61 (1.65%)

Satellite 6435 36 2036 (32%)

Arrhythmia 452 274 66 (15%)

Ionosphere 351 33 126 (36%)

Mnist 7603 100 700 (9.2%)

Optdigits 5216 64 150 (3%)

ForestCover 286,048 10 2747 (0.9%)

Pendigits 6870 16 156 (2.27%)

Wine 129 13 10 (7.7%)

Seismic 2584 11 170 (6.5%)

Heart 224 44 10 (4.4%)

5.3. Experimental Results for Benchmark Datasets

In this section, we give the experimental results of MISC-OD for the benchmark
datasets in Tables 3 and 4. The highest ROC or AP score is marked in bold, which means
that the algorithm achieves the best performance for this dataset.

Table 3. ROC scores of outlier detector performance (the highest ROC score is marked in bold).

Dataset KNN LOF ABOD HBOS IForest CBLOF LSCP OCSVM MISC-OD

Lympho 0.916 0.499 0.69 0.953 0.657 0.434 0.955 0.48 0.795

WBC 0.72 0.94 0.549 0.418 0.443 0.78 0.735 0.95 0.954

Vowels 0.57 0.619 0.455 0.624 0.608 0.823 0.789 0.425 0.527

Cardio 0.401 0.483 0.527 0.416 0.668 0.543 0.913 0.945 0.917

Musk 0.455 0.582 0.647 0.675 0.716 0.577 0.983 0.509 0.986

Satimage-2 0.505 0.717 0.412 0.438 0.781 0.698 0.408 0.776 0.783

Letter Recognition 0.465 0.898 0.711 0.742 0.728 0.476 0.836 0.964 0.83

Speech 0.926 0.722 0.697 0.651 0.911 0.632 0.764 0.531 0.948

Satellite 0.795 0.753 0.513 0.914 0.508 0.969 0.63 0.551 0.98

Arrhythmia 0.862 0.668 0.519 0.796 0.538 0.482 0.761 0.747 0.914

Ionosphere 0.615 0.686 0.728 0.877 0.487 0.411 0.631 0.944 0.92

Mnist 0.484 0.592 0.401 0.529 0.57 0.757 0.655 0.713 0.868

Optdigits 0.525 0.861 0.758 0.773 0.507 0.866 0.505 0.673 0.677

ForestCover 0.816 0.431 0.654 0.474 0.95 0.532 0.436 0.803 0.829

Pendigits 0.787 0.738 0.76 0.5 0.949 0.536 0.455 0.814 0.635

Wine 0.592 0.833 0.901 0.743 0.868 0.852 0.934 0.603 0.519

Seismic 0.918 0.978 0.844 0.804 0.626 0.877 0.629 0.491 0.934

Heart 0.527 0.895 0.444 0.782 0.582 0.442 0.809 0.74 0.87

Average ROC 0.66 0.716 0.622 0.672 0.672 0.649 0.712 0.703 0.827
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Table 4. Average precision (AP) scores of outlier detector performance (the highest AP score is
marked in bold).

Dataset KNN LOF ABOD HBOS IForest CBLOF LSCP OCSVM MISC-OD

Lympho 0.874 0.248 0.535 0.929 0.486 0.152 0.933 0.692 0.62

WBC 0.58 0.91 0.324 0.127 0.165 0.887 0.603 0.924 0.37

Vowels 0.355 0.429 0.183 0.435 0.413 0.735 0.684 0.137 0.291

Cardio 0.101 0.225 0.291 0.123 0.501 0.315 0.959 0.917 0.676

Musk 0.182 0.98 0.47 0.512 0.573 0.365 0.875 0.263 0.88

Satimage-2 0.257 0.575 0.119 0.157 0.672 0.547 0.113 0.664 0.678

Letter Recognition 0.197 0.847 0.566 0.614 0.592 0.214 0.755 0.946 0.505

Speech 0.889 0.584 0.546 0.476 0.866 0.448 0.646 0.296 0.922

Satellite 0.693 0.629 0.27 0.871 0.262 0.954 0.446 0.326 0.971

Arrhythmia 0.793 0.502 0.278 0.694 0.307 0.222 0.641 0.621 0.871

Ionosphere 0.422 0.529 0.591 0.816 0.23 0.116 0.447 0.916 0.88

Mnist 0.226 0.389 0.102 0.293 0.355 0.635 0.483 0.57 0.803

Optdigits 0.287 0.792 0.636 0.659 0.26 0.799 0.258 0.509 0.516

ForestCover 0.818 0.146 0.482 0.211 0.925 0.298 0.153 0.705 0.744

Pendigits 0.681 0.607 0.64 0.25 0.924 0.304 0.182 0.72 0.452

Wine 0.388 0.75 0.852 0.615 0.802 0.778 0.901 0.404 0.278

Seismic 0.878 0.966 0.766 0.707 0.44 0.815 0.444 0.237 0.901

Heart 0.29 0.842 0.166 0.673 0.374 0.163 0.713 0.61 0.805

Average AP 0.495 0.608 0.434 0.509 0.508 0.485 0.568 0.58 0.675

5.4. Analysis of Experimental Results

The proposed MISCO-OD algorithm achieved the best performance, with an average
ROC of 0.827 and an average precision of 0.675. In Table 3, MISC-OD exhibits the highest
ROC in 9 out of 18 datasets. Additionally in Table 4, MISC-OD achieves the highest AP
(average precision) in 8 out of 18 datasets.

It is noteworthy that, by analyzing the data in Tables 3 and 4, it can be found that
the higher the data dimensionality, the better results the MISC-OD algorithm can achieve,
for example, in the Musk, Letter Recognition, Speech, Arrhythmia, and Mnist datasets.
This confirms that the MISC-OD algorithm is highly scalable and performs well with
high-dimensional data, as we proposed in Section 4.2.

6. Conclusions

In this manuscript, we present a novel unsupervised outlier detection algorithm based
on mutual information and reduced spectral clustering called MISC-OD. MISC-OD can be
mainly divided into three stages: (1) constructing a mutual information matrix between
features; (2) dividing the feature set into subsets using reduced spectral clustering; and
(3) utilizing LOF for outlier detection within each subset and combining the outlier scores
found within each subset. Finally, the outlier scores are given as output.

We carried out a large number of experiments on 18 benchmark datasets from OODS.
The proposed MISCO-OD achieves the best performance, with an average ROC of 0.827
and an average precision of 0.675. In addition to providing better experimental results,
the MISC-OD algorithm also has a high interpretability and scalability, as explained in
Section 4.2.

In specific applications of MISC-OD, algorithm tuning can be performed as follows:
(1) use domain knowledge to determine the initial values of hyperparameters; (2) if the



Electronics 2023, 12, 4864 11 of 12

mutual information between two features is relatively small, mutual information can be set
to 0. This has little impact on the results of the algorithm, but can speed up its execution.

In further study, we will investigate the parallel method of the proposed MISC-
OD algorithm to apply the method to large data in real-life applications. In the first
stage, if it is an ultra-high-dimensional dataset, it will face an extremely large-scale matrix
decomposition problem and will need to be implemented in parallel computing frameworks
such as MPL, MapReduce, and Spark. In the second stage, the anomaly detection tasks of
different feature subsets can be assigned to different computing nodes to achieve parallel
computing, and finally, the anomaly scores of each computing node are summarized. In this
way, the execution speed of the algorithm is accelerated, which is very effective in real-time
anomaly detection scenarios. In addition to the study of static datasets, the datastream
outlier detection method considering mutual information between features will also be
investigated in the future.
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