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Abstract: In heterogeneous wireless networks, when multiple nodes need to share the same wireless
channel, they face the issue of multiple access, which necessitates a Medium Access Control (MAC)
protocol to coordinate the data transmission of multiple nodes on the shared communication channel.
This paper presents Proximal Policy Optimization-based Multiple Access (PPOMA), a novel multiple
access protocol for heterogeneous wireless networks based on the Proximal Policy Optimization
(PPO) algorithm from deep reinforcement learning (DRL). Specifically, we explore a network scenario
where multiple nodes employ different MAC protocols to access an Access Point (AP). The novel
PPOMA approach, leveraging deep reinforcement learning, adapts dynamically to coexist with other
nodes. Without prior knowledge, it learns an optimal channel access strategy, aiming to maximize
overall network throughput. We conduct simulation analyses using PPOMA in two scenarios:
perfect channel and imperfect channel. Experimental results demonstrate that our proposed PPOMA
continuously learns and refines its channel access strategy, achieving an optimal performance level in
both perfect and imperfect channel scenarios. Even when faced with suboptimal channel conditions,
PPOMA outperforms alternative methods by achieving higher overall network throughput and
faster convergence rates. In a perfect channel scenario, PPOMA’s advantage over other algorithms is
primarily evident in its convergence speed, reaching convergence on average 500 iterations faster. In
an imperfect channel scenario, PPOMA’s advantage is mainly reflected in its higher overall network
throughput, with an approximate increase of 0.04.

Keywords: medium access control; deep reinforcement learning; heterogeneous wireless network;
imperfect channel

1. Introduction

In the field of wireless communications, the concept of heterogeneous wireless net-
works has emerged to address the convergence of different communication technologies
and protocols in order to meet the growing demands for communication. It comprises
various communication technologies, including, but not limited to, Wi-Fi, cellular net-
works, short-range communication, IoT, LoRa, and more. The advent of heterogeneous
wireless networks aims to overcome the limitations of a single technology and protocol
by effectively integrating multiple technologies, providing a more flexible and efficient
communication solution. While widely applied, heterogeneous wireless networks also face
multiple challenges, such as spectrum resource management, mobility management, and
security management [1–3].

In order to make the most of limited spectrum resources, dynamic spectrum sharing
has emerged as a promising approach to enhance spectrum utilization efficiency in the
context of cognitive radio technology [4]. However, to achieve effective spectrum sharing,
the primary challenge is addressing the Media Access Control (MAC) problem. The MAC
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protocol is a network communication protocol situated in the Data Link Layer of the
OSI model. It plays a crucial role in wireless communication networks, responsible for
managing and controlling terminal devices’ access to the shared channel. This involves
the rational allocation of spectrum resources to ensure coordination and collaboration
among different nodes, thereby maximizing network throughput. Specifically, the MAC
protocol establishes access rules, determining when and how each terminal device sends
data. Such scheduling mechanisms are vital in avoiding data collisions and conflicting
transmissions. In the context of multiple access issues, where multiple terminal devices
compete for limited channel resources, the MAC protocol’s task is to coordinate these
devices, ensuring they transmit data effectively at the same time and in the same space.

The significance of addressing multiple access issues lies in its direct impact on network
performance and efficiency. By optimizing the MAC protocol, we can enhance network
throughput and reduce data packet collisions, thereby improving communication reliability
and stability. Effective multiple access solutions also contribute to lowering network latency
and enhancing real-time data transmission, especially in applications requiring low latency,
such as VoIP [5], smart grids [6], and others.

In recent years, with the continuous advancement of artificial intelligence, deep rein-
forcement learning has achieved significant success in various fields. Deep reinforcement
learning is an approach that combines deep learning and reinforcement learning. It aims
to train an agent to perform actions in an environment to maximize cumulative rewards.
This typically involves using deep neural networks to learn complex policies and value
functions. It has given rise to popular algorithms like Deep Q Network (DQN) [7], which
leverages deep neural networks to approximate Q-values for effective decision-making, and
Proximal Policy Optimization (PPO) [8], an algorithm designed to address decision-making
challenges in both continuous and discrete action spaces. These algorithms showcase
remarkable optimization capabilities in addressing complex decision-making challenges,
as seen in applications within gaming [9] and robot control [10]. Additionally, in the field of
communications, where challenges like channel coding [11–14], spectrum allocation [15–17], and
dynamic spectrum access [18,19] exist, deep reinforcement learning has emerged as a pow-
erful tool to address these challenges, with its strengths lying in its ability to tackle complex
decision optimization problems, handle large-scale datasets, and adapt to high-dimensional
state and action spaces.

Deep reinforcement learning methods can optimize policies, which is highly valuable
for policy selection in MAC protocols [20]. This is particularly advantageous because the
multiple access problem exhibits Markovian properties, enabling the utilization of deep
reinforcement learning methods to tackle decision-making challenges of this nature. The
selection of strategies in MAC protocols is crucial for effectively managing and controlling
terminal devices’ access to shared channels. By leveraging deep reinforcement learning
methods, we can optimize these strategies, thereby enhancing system performance and
network throughput. This is because deep reinforcement learning excels in adapting
strategies to different network conditions and variations in complex multiple access en-
vironments through continuous learning and adjustment. Additionally, the advantages
of deep reinforcement learning lie in its ability to handle large-scale, high-dimensional
state spaces and complex decision-making problems. In the context of MAC protocols,
this implies a more comprehensive consideration of various factors, including network
topology, channel states, data transmission requirements, etc., enabling the formulation of
more intelligent and adaptive strategies. For example, Yu et al. [21] applied DQN as a foun-
dational framework to formulate a novel MAC protocol, denoted as Deep-Reinforcement
Learning Multiple Access (DLMA). Yu et al. [22] introduced a distributed DQN-based
MAC protocol aimed at facilitating efficient and equitable spectrum sharing within het-
erogeneous wireless networks. References [21,22] primarily utilize the DQN algorithm
from deep reinforcement learning to address the multiple access problem. However, DQN
demands a substantial amount of experiential data during application and may exhibit less
stable training processes. In contrast, the PPO algorithm outperforms DQN in the field of
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deep reinforcement learning, particularly when dealing with highly dynamic and complex
decision-making problems. It exhibits superior convergence performance, implying a
quicker optimization of the channel and improvement in network performance. Moreover,
the PPO algorithm can more effectively harness limited experiential data, reducing reliance
on hyperparameter adjustments and typically demonstrating more consistent performance.
Therefore, we have integrated the PPO algorithm with the MAC protocol to propose a
novel multiple access protocol known as the Proximal Policy Optimization-based Multiple
Access (PPOMA).

PPO, a type of deep reinforcement learning method, is commonly employed to address
decision problems in discrete or continuous action spaces. It is based on the policy gradient
method, iteratively updating policies to maximize cumulative rewards. PPOMA is a MAC
protocol based on PPO, indicating that in the design of PPOMA, we draw inspiration from
the PPO algorithm and apply it to protocol design at the MAC layer. This choice stems
from the fact that the multiple access problem in heterogeneous wireless networks is a
type of decision problem, prompting the introduction of the PPO algorithm to tackle such
issues. While PPOMA borrows core ideas from PPO, adjustments to the algorithm have
been made to accommodate specific requirements of wireless communication. This may
include considerations for channel access, data transmission, and collision handling in
wireless communication scenarios.

The primary focus of this paper is the single-channel multiple access problem in
heterogeneous wireless networks. However, traditional MAC protocols suffer from issues
such as low spectrum efficiency and frequent data transmission collisions. Therefore, there
is a need for a more efficient MAC protocol to address the challenges of multiple access.
The introduction of PPOMA aims to tackle the multiple access problem in heterogeneous
wireless networks, striving to achieve an optimal channel access strategy, which inherently
leads to maximizing network throughput. We demonstrated that when PPOMA protocol
nodes coexist with nodes using different protocols, it is possible to achieve near-optimal
total throughput without any prior knowledge. In other words, PPOMA does not require
knowledge of the characteristics of the coexisting protocols; it employs deep reinforcement
learning to eventually maximize network throughput in the presence of other protocols.
This paper also investigates the performance of PPOMA when coexisting with other
protocols in both imperfect and perfect channel conditions.

Specifically, under the assumption of a perfect channel, we disregard external interfer-
ence factors like noise. In this perfect scenario, there are only two possible states during
data transmission: either the data are successfully sent or a collision occurs. In the case
of an imperfect channel, we consider the impact of interference factors, such as noise,
on data transmission. In this scenario, a new possibility arises during data transmission:
the potential loss of data due to external interference, increasing the uncertainty in data
transmission. Unlike a perfect channel, the imperfect channel acknowledges the possibility
of data packet loss, making the data transmission state more intricate and necessitating
a more adaptable handling mechanism to deal with packet loss. Our designed PPOMA
protocol demonstrates efficient channel utilization when coexisting with other protocols in
both imperfect and perfect channel scenarios. In imperfect channels, the PPOMA protocol
leverages the capabilities of deep reinforcement learning, gradually adapting to channel
variations by continuous exploration and learning to identify optimal transmission strate-
gies. In perfect channels, the PPOMA protocol utilizes precise channel state information to
achieve optimal transmission strategies more rapidly, thereby enhancing channel utilization
and increasing the overall network throughput.

The experimental results show that our PPOMA protocol, designed for heterogeneous
wireless networks, improves total throughput and expedites convergence under various
channel conditions, including both perfect and imperfect scenarios. This swift convergence
holds particular importance in the realm of wireless networks, as it enables the algorithm to
uncover superior strategies in a shorter timeframe, thereby yielding enhanced performance.
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This also implies that MAC protocols can begin optimizing network resource scheduling
and utilization at an earlier stage, further enhancing overall throughput and performance.

In summary, the main contributions of this paper are as follows:

1. We introduce a novel multiple access protocol, PPOMA, which is designed based on
the PPO algorithm from deep reinforcement learning. PPOMA offers faster conver-
gence, improved sampling capabilities, and enhanced exploration abilities. These
features enable the effective resolution of the multiple access problem in heteroge-
neous wireless networks, ultimately enhancing network performance.

2. We conduct simulation experiments with the PPOMA protocol under both perfect
and imperfect channel conditions, considering various real-world factors like channel
interference and packet loss. This comprehensive evaluation provides a more objective
assessment of PPOMA’s performance and brings us closer to real-world scenarios.

3. By comparing the experimental results with existing multiple access protocols, we find
that PPOMA outperforms them by achieving higher overall throughput and faster
convergence in different channel conditions. This satisfies the demands of practical
communication systems for efficiency and reliability. We believe that PPOMA holds
great potential and broad applicability in the field of multiple access protocols.

The subsequent sections of this paper will be organized as follows: Section 2 provides
an overview of related works. Section 3 offers a detailed description of the system model,
encompassing crucial elements such as the communication environment. Section 4 delves
into the design and specific details of the PPOMA protocol based on the PPO algorithm.
This includes its operational principles and key algorithms. Section 5 presents simulation
results and corresponding analyses to validate and evaluate the performance of the PPOMA
protocol in various scenarios. Section 6 summarizes the experimental conclusions.

2. Related Works

The problem of dynamic spectrum access in wireless networks has garnered significant
attention due to the ever-increasing demand for wireless communication resources. Efficient
utilization of the available spectrum is crucial for improving network performance and
accommodating the diverse needs of multiple users. In this context, Yu et al. [21] designed
a MAC protocol for heterogeneous wireless networks called DLMA, utilizing an improved
DQN algorithm to maximize the total throughput of heterogeneous wireless networks.
However, they only verified the protocol’s performance under perfect channel conditions.
In contrast, our research goes further by considering scenarios with imperfect channel
conditions, with a particular focus on data packet loss caused by interference. We conducted
simulations of common data packet loss scenarios in real network environments, making
our study more aligned with the requirements of practical communication environments.

Yu et al. [22] explored how to maximize the throughput of heterogeneous wireless
networks in the presence of unreliable channels by leveraging the collaboration of multiple
agents. They employed a feedback recovery mechanism to acquire accurate channel feed-
back information. However, the recovery of precise channel feedback post-transmission can
be regarded as operating under perfect channel conditions. We do not consider this recov-
erable scenario; in other words, our focus is on imperfect channels rather than unreliable
ones, and we investigate the protocol’s performance in this context.

Kaur et al. [23] studied the problem of incomplete feedback dynamic spectrum access
in multi-user wireless networks. They designed a solution based on distributed deep rein-
forcement learning to ensure that multiple agents collaborate to make consistent decisions
to maximize network utility. This approach deals with a multi-agent problem, whereas our
focus is based on using a single agent to maximize network throughput.

Naparstek et al. [24] focused on solving the spectrum access problem in multi-channel
heterogeneous wireless networks. They utilized the Dueling DQN method and employed a
distributed multi-user DRL algorithm, ultimately successfully maximizing network utility
at a lower cost. However, their MAC protocol was designed for homogeneous wireless
networks, where all users use the same MAC protocol to dynamically access multiple



Electronics 2023, 12, 4845 5 of 23

wireless channels. In contrast, our designed MAC protocol is intended for heterogeneous
network scenarios.

Xu et al. [25] also utilized deep reinforcement learning techniques to address dynamic
spectrum access problems. Similar to the study mentioned in reference [24], they discussed
multi-channel scenarios. However, a key difference is that they considered time-varying
channels, as some “primary” or “legacy” users might occasionally occupy the channels.
Therefore, it can also be viewed as a study on heterogeneous networks. Their approach
focused on learning the channel characteristics and transmission patterns of these “primary”
or “legacy” users to maximize their own throughput. In contrast, our PPOMA does not
require such learning to achieve throughput maximization.

Chang et al. [26] applied deep reinforcement learning within cognitive networks,
where secondary users aimed to efficiently utilize spectrum resources not in use by primary
users. Specifically, secondary users used deep reinforcement learning to mitigate potential
interference with primary users. In contrast, our research goes beyond the avoidance of
such mutual interference and focuses on achieving the harmonious coexistence of secondary
and primary users, ultimately reaching the goal of maximizing total throughput.

The MCT-DLMA protocol proposed by Zhang et al. [27] is designed to address the
multi-channel transmission multiple access problem in heterogeneous wireless networks. It
improves the spectrum utilization of multi-channel heterogeneous wireless networks based
on considering the practical communication model with non-saturated traffic. However,
our research focuses on the saturated communication traffic scenario, which is slightly
different from what they considered.

The aforementioned studies have primarily employed the DQN algorithm from deep
reinforcement learning, or they have introduced modifications to the DQN algorithm to
address specific issues. In contrast, our research utilizes the PPO algorithm from deep
reinforcement learning to design a MAC protocol known as PPOMA. PPOMA has the
capability to operate cohesively with other MAC protocols in heterogeneous wireless
networks, thereby enhancing the overall system throughput.

This is primarily because PPO offers several advantages over DQN:

(1) PPO employs a clipping mechanism to limit the range of policy updates, ensuring
that each policy update remains within a reasonable range and avoids significant
fluctuations. This stabilizes parameter updates, resulting in faster convergence.

(2) It utilizes importance sampling, estimating the value of previous policies with samples
generated by the current policy. This enhances the efficiency of sampling, enabling
more effective use of historical data and reducing the number of required samples,
thus accelerating training.

(3) PPO exhibits stronger exploration capabilities. This is because PPO falls under the
category of policy-based learning methods. It directly employs neural networks to
approximate the policy function π(a|s) for the purpose of updating policy, enabling
agents to explore more flexibly during the learning process. In contrast, DQN is a
value-based learning method that focuses on approximating the optimal action-value
function Q∗(s, a) to find the best policy, which can limit its exploration capabilities.

Therefore, we attempted to utilize the PPO algorithm for MAC protocol design.

3. System Model

The system model considered in this paper is a single-channel heterogeneous wireless
network, comprising one AP node and multiple distinct transmitting nodes. This type
of network structure is quite common in the context of the IoT or LoRa networks, and
our network configuration can be viewed as a simplified representation of these intricate
networks. It is worth noting that our research primarily focuses on LOS scenarios, where we
assume our network to be a short-distance network. In this setting, multiple transmitting
nodes compete on the same wireless channel to transfer data to the AP. Additionally, we
assume that each node has data packets to transmit, leading to competition for channel
resources among the nodes for data transmission. This scenario is particularly typical in
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specific IoT applications or LoRa network environments, especially in situations where
efficient short-distance communication is crucial, such as in smart homes, wireless sensor
networks, and similar contexts.

The nodes employ a transmission model based on slotted ALOHA [28]. In the slotted
ALOHA transmission model, time is divided into multiple frames, each containing several
time slots. Each node can send data packets only at the beginning of each time slot, transmit-
ting data packets on the shared wireless channel and completing the packet transmission
before the end of the time slot. Only one node is allowed to transmit data to the AP node
in each time slot; otherwise, it would result in a collision, leading to transmission failure.
In the context of an imperfect communication channel, we explore a situation where data
packets transmitted by nodes have the potential to be lost. Even when only a single node is
transmitting in the channel without any collision, there is still a probability of data packet
loss, which results in transmission failure.

Each node in the network employs different MAC protocols, including TDMA, q-
ALOHA, FW-ALOHA, and EB-ALOHA. Additionally, the network has at least one PPOMA
node that uses the PPOMA protocol, as shown in Figure 1. The primary task of the PPOMA
node is to maximize the overall network throughput by learning and achieving an optimal
channel access strategy.
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The detailed descriptions of different MAC protocols used by different nodes are
given below:

TDMA Protocol: TDMA nodes transmit data in X fixed time slots within each frame,
while the remaining time slots are not used for data transmission. This slot allocation is
ordered, not random, and offers high controllability.

q-ALOHA Protocol: The q-ALOHA protocol is a random access protocol where q-
ALOHA nodes, in each time slot, decide whether to transmit data with a fixed probability
q. Therefore, data transmission in q-ALOHA exhibits randomness.

FW-ALOHA Protocol: In the FW-ALOHA protocol, nodes, after completing a trans-
mission in a specific time slot, randomly select a value w from the range of 1 to W with
equal probability. Subsequently, they transmit data again in the time slot, which is w time
slots ahead. W is referred to as the window size.

EB-ALOHA Protocol: The EB-ALOHA protocol introduces certain modifications to
FW-ALOHA, mainly reflected in the fact that its window size is not fixed, that is, the
value range of w is dynamically changed. Specifically, each collision occurrence leads
to a doubling of the window size W. Continuous collisions can result in the window
size reaching a maximum of 2mW, where m represents the “maximum backoff stage”. A
successful transmission is the only condition for the window size to revert to its initial
value, W.
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PPOMA Protocol: The PPOMA protocol employed by PPOMA nodes, as proposed
in our work, offers two choices at the beginning of each time slot: (1) Send a data packet,
followed by determining the success or failure of the transmission based on the reception
of an ACK signal from the AP node. (2) Abstain from transmitting a data packet, and,
instead, listen to the channel to obtain channel observations, gaining insights into the
transmission activities of other nodes. Leveraging these observations, PPOMA nodes
set learning objectives to ultimately achieve the goal of maximizing the total network
throughput when coexisting with various protocols. This implies that PPO has learned the
optimal channel access strategy.

4. PPOMA Protocol Design
4.1. Overview of PPO Algorithm

PPO is a high-performance deep reinforcement learning algorithm [29] that utilizes
the actor–critic architecture [30]. It demonstrates excellent performance in both discrete and
continuous action spaces. The algorithm’s framework is illustrated in Figure 2. Its neural
network structure primarily consists of two parts: (1) Actor Network (Policy Network): The
Actor network approximates the policy, denoted as π(a|s; θ) ≈ π(a|s) . It takes the current
state st as input and outputs a probability distribution π(at|st; θ) over the possible actions
at. The actor network’s main role is to learn and generate the policy for taking actions in
different states. (2) Critic Network (Value Network): The Critic network approximates
the state-value function, denoted as Vπ(st; w) ≈ Vπ(st). It takes the state st as an input
and provides the state value function Vπ(st; w) as an output. The critic network’s primary
function is to evaluate the quality of states and assist the actor network in adjusting action
policies. Specifically, the critic network can be used to calculate the advantage function,
which estimates the advantage of each action relative to the average action and guides
policy improvements. In the PPO algorithm, these two networks work together to help the
agent learn better policies, ultimately achieving the effect described in Equation (1).

max
θ

{
J(θ) , ES[Vπ(S)]

}
(1)

where Vπ(S) represents the state-value function, ES[Vπ(S)] denotes the expectation over
all possible states st, θ represents the parameters of the neural network, and J(θ) represents
the performance metric under the parameter θ, which in this context is the expectation of
the state value.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 23 
 

 

𝐿(𝜃) = 𝐸 𝜋 (𝑎 |𝑠 )𝜋 (𝑎 |𝑠 ) ⋅ 𝐴 = 𝐸 𝑟 (𝜃) ⋅ 𝐴  (2) 

s.t.  𝐸 𝐾𝐿 𝜋 (⋅ |𝑠 ), 𝜋 (⋅ |𝑠 ) ≤ 𝛥 (3) 

where 𝐸 [⋅]  represents the expectation over multiple samples, 𝑟 (𝜃) = 𝜋 (𝑎 |𝑠 )/𝜋 (𝑎 |𝑠 ) is the probability ratio of the new policy to the old policy. 𝜋 (𝑎 |𝑠 ) is the 
new policy, while 𝜋 (𝑎 |𝑠 ) is the old policy. 𝐾𝐿[⋅] computes the divergence between 
the new and old policy probability distributions, with smaller divergence values indicat-
ing less difference between new and old policies. 𝛥 represents the confidence region, and 
having a divergence below the confidence region signifies that the difference between the 
new and old policies is small. 

 
Figure 2. The framework of the PPO algorithm. 

In contrast, in PPOMA, the loss function 𝐿 (𝜃) is defined as 𝐿 (𝜃) = 𝐸 𝑚𝑖𝑛( 𝑟 (𝜃)𝐴 ,clip(𝑟 (𝜃),1 − 𝜀, 1 + 𝜀)𝐴 )  (4) 

where the clip function is a truncation function that restricts the range of changes between 
the new and old policies to [1 − ε, 1 + ε]. Compared to TRPO, which uses KL divergence 
to constrain the new and old policies, using the clip function is notably simpler and re-
duces computational complexity. 𝐴  represents the advantage function used to assess the 
advantage of taking action 𝑎 in state 𝑠 relative to the average behavior. It is generally 
defined as follows: 𝐴 = 𝑄 (𝑠 , 𝑎 ) − 𝑉 (𝑠 ) (5) 

where 𝑄 (𝑠 , 𝑎 )  is the action value function, representing the expected total return of 
taking action 𝑎  in state 𝑠 , and 𝑉 (𝑠 ) is the state value function, representing the ex-
pected total return in state 𝑠 . 

However, in practical applications, the Generalized Advantage Estimation (GAE) is 
often used. In this case, the definition of the advantage function 𝐴  is updated as follows: 𝐴 = 𝛿 + (𝛾𝜆)𝛿 +. . . +(𝛾𝜆) 𝛿  (6) 𝛿 = 𝑟 + 𝛾𝑉(𝑠 ) − 𝑉(𝑠 ) (7) 

ActorEnv

Critic

( )tV s1( )tV s +

1ts + ts

ts

ta

( | )t ta sπ

tr
− tδ


tA

+

Figure 2. The framework of the PPO algorithm.



Electronics 2023, 12, 4845 8 of 23

PPO can be regarded as an improvement over the Trust Region Policy Optimization
(TRPO) algorithm [31]. The primary motivation for this enhancement is that TRPO involves
highly complex computations, demanding substantial computational resources for every
policy update. The core idea of both algorithms is to limit the magnitude of policy updates
during the training process, ensuring that each update stays within an acceptable range.
The key difference is that TRPO uses the KL divergence to impose this constraint, while
PPO employs a clipping function to bind the policy update magnitude.

TRPO approximates the objective function J(θ) in Equation (1) with a loss function
L(θ). The definition of L(θ) is as follows:

L(θ) = Êt

[
πθ(at|st)

πθold(at|st)
· Ât

]
= Êt

[
rt(θ) · Ât

]
(2)

s.t. Êt
{

KL
[
πθold(·|st), πθ(·|st)

]}
≤ ∆ (3)

where Êt[·] represents the expectation over multiple samples, rt(θ) = πθ(at
∣∣st)/πθold(at

∣∣st)
is the probability ratio of the new policy to the old policy. πθ(at|st) is the new policy, while
πθold(at|st) is the old policy. KL[·] computes the divergence between the new and old policy
probability distributions, with smaller divergence values indicating less difference between
new and old policies. ∆ represents the confidence region, and having a divergence below
the confidence region signifies that the difference between the new and old policies is small.

In contrast, in PPOMA, the loss function LCLIP(θ) is defined as

LCLIP(θ) = Êt
[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
(4)

where the clip function is a truncation function that restricts the range of changes between
the new and old policies to [1− ε, 1 + ε]. Compared to TRPO, which uses KL divergence
to constrain the new and old policies, using the clip function is notably simpler and
reduces computational complexity. Ât represents the advantage function used to assess
the advantage of taking action a in state s relative to the average behavior. It is generally
defined as follows:

Ât = Qπ(st, at)−Vπ(st) (5)

where Qπ(st, at) is the action value function, representing the expected total return of
taking action at in state st, and Vπ(st) is the state value function, representing the expected
total return in state st.

However, in practical applications, the Generalized Advantage Estimation (GAE) is
often used. In this case, the definition of the advantage function Ât is updated as follows:

Ât = δt + (γλ)δt+1 + . . . + (γλ)T−t+1δT−1 (6)

δt = rt + γV(st+1)−V(st) (7)

where δt is the TD error at time t, rt is the reward obtained after taking an action, γ is
the discount factor, λ is the hyperparameter for GAE, controlling the weighting of future
rewards, and T represents the total number of time steps.

The importance of employing the GAE algorithm lies in its weighted averaging of
future TD errors, with the weights being determined by the value of γλ. This allows the
algorithm to better consider future rewards when assessing the advantage of the current
action. It improves the estimation of the advantage function, stabilizes the learning process,
and enhances the performance of the PPO algorithm.

Finally, the policy and value network parameters in PPO are updated using gradient
ascent. The updated method is as follows:

wt+1 = wt + αwδt∇wV(st, wt) (8)
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δt = rt + γV(st+1, wt+1)−V(st, wt) (9)

θt+1 = θt + αθδt∇θlgπθt(at|st; θ) (10)

where wt and θt represent the parameters of the policy network and value network at the
current time step, respectively. wt+1 and θt+1 represent the updated network parameters.
αw and αθ are the learning rates for the networks. ∇wV(st, wt) denotes the gradient with
respect to w. ∇θlgπθt(at|st; θ) represents the gradient with respect to θ.

When applying the PPO algorithm to the MAC protocol, we leverage its outstanding
performance in deep reinforcement learning, particularly its strong adaptability and effec-
tiveness in both discrete and continuous action spaces. In MAC protocol design, we model
the problem as a Markov Decision Process, where nodes need to make optimal decisions to
maximize network performance when competing for limited communication resources,
ultimately resulting in the design of the PPOMA protocol. PPOMA achieves a near-optimal
channel access strategy without prior knowledge.

Specifically, in the initial phase, PPOMA nodes lack sufficient experience samples,
leading to significant randomness in the actions chosen at the beginning of each time slot.
The node might choose to send data or not, and simultaneous data transmission by other
nodes may lead to collisions, reducing network throughput and increasing latency. In such
instances, a penalty is assigned to the PPOMA node’s intelligent agent. After accumulating
experience samples over time, the agent simultaneously chooses actions based on the policy
and optimizes the strategy based on the acquired experience samples.

For instance, having learned from experience samples with penalties, in similar situa-
tions, the agent might choose not to send data to avoid penalties. The agent’s ultimate goal
is to maximize the cumulative reward value, prompting it to avoid actions that incur penal-
ties. This minimizes collisions in the network, maximizing throughput. After each time
slot, regardless of whether the channel environment is perfect or imperfect, an experience
sample is generated, allowing PPOMA to continuously learn and refine its channel access
strategy.

Algorithm 1 provides pseudocode for the PPO-based multiple access algorithm, offer-
ing a clear illustration of our specific process in MAC protocol design.

Algorithm 1: PPOMA

Initialize s0, ρ, γ, F
Initialize the parameter of actor as θ, the parameter of critic as w, the parameter of actor–target
as θ−

For t = t0, t1, t2, . . . do
Input st into actor and output π(a|st, θ)
Sample action at based on the probability π(a|st, θ)
Observe zt, rt
Compute st+1 from st, at, zt
Store (st, at, rt, st+1)
If Remainder (t/F == 0) then

Update θ− by setting θ− = θ

End if
Input st into actor–target and output πold

(
aold
∣∣st, θ−

)
Input st into critic and output V(st, w)
Calculate Ât, δt, rt(θ)
Calculate LCLIP(θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
Update θ and w by using gradient descent
Minimize L(θ)

End for

4.2. Action, Observation, State, and Reward

The PPOMA node selects an action at ∈ {a0, a1} at the beginning of each time slot,
where a0 indicates that the node does not transmit data, and a1 signifies that the node
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sends data. If it chooses not to transmit data, PPOMA will engage in channel sensing to
understand the transmission status of other nodes. If it opts to send data, it will determine
the success of the transmission based on whether it receives an ACK signal from the AP
node. Ultimately, the PPOMA node determines the channel observation value zt based on
the received ACK signal from the AP and channel sensing.

In PPOMA node, zt ∈
{

zyes, z f ailed, zno

}
represents the channel observation value

after taking action, where zyes indicates that in the current time slot, only one node has
successfully transmitted data, meaning that only one node has chosen to send data, while
the rest of the nodes have chosen not to transmit data. z f ailed signifies data transmission
failure, indicating that in the current time slot, at least two or more nodes have chosen to
send data, leading to a collision in the channel, resulting in data transmission failure. zno
represents an idle channel, indicating that there is no data transmission by any node in
the current time slot. Based on these observations, the PPOMA node establishes learning
objectives to ultimately achieve the goal of maximizing the total network throughput when
coexisting with different protocols. This implies that PPO learns the optimal channel
access strategy.

States are the foundation for making policy decisions in deep reinforcement learning.
Well-designed states should capture critical information about the environment to enable
intelligent decision-making by the agent. We define the action–observation pair at time
t + 1 as ct+1 , (at, zt). Where ct+1 primarily records the action at taken by the agent at
time t and the channel observation value zt. As previously discussed, there are a total of
six permutations of these two values. However, the combination {a1, zn} is impossible,
representing a situation where the PPOMA node sends data, but the channel is idle. The
remaining five possible combinations for ct+1 are

{
a1, zy

}
,
{

a1, z f

}
,
{

a0, zy
}

,{a0, zn}, and{
a0, z f

}
. It is important to note that, for a PPOMA node coexisting with another protocol

node, the combination
{

a0, z f

}
is also impossible.

We define the state at time t + 1 as st+1 , [ct−M+2, . . . , ct, ct+1], where the state st+1 is
composed of the actions and channel observation values from the previous M time steps.
The parameter M represents the length of historical states that need to be recorded. By
combining multiple past action–observation pairs into a sequence of states, PPOMA can
consider more historical information, leading to better decision-making. Intuitively, a
longer historical state length M will lead to better decisions, but it will also require a larger
state space, increasing computational complexity and time. Therefore, it is necessary to
choose a reasonable value for M.

After PPOMA takes action at, it transitions from state st to state st+1 and generates a
reward value rt. The reward value is a feedback mechanism for the agent to understand the
quality of its actions within the environment. It reflects whether the actions taken are, to
some extent, good or bad. The ideal strategy is to accumulate the maximum reward value
at each step, where each obtained reward is the best possible reward.

We define rt as follows:

rt =

{
1, zt = zyes

0, zt = z f ailed or zno
(11)

In other words, when data transmission is successful on the channel, the reward value
is one. When there is a collision in data transmission or when the channel is idle, the reward
value is zero.

5. Performance Evaluation

In this section, we perform detailed experiments to evaluate the performance of our
proposed PPOMA protocol. We use the PPOMA protocol in two different environments: a
perfect channel and an imperfect channel. Specifically, we consider the following three sce-
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narios: (1) coexistence with the TDMA protocol; (2) coexistence with three different ALOHA
protocols separately; and (3) coexistence with the TDMA protocol and ALOHA protocol.

5.1. Simulation Setup

We conducted our simulation program on a computer equipped with an Intel(R)
Core(TM) i5-11260H CPU and an NVIDIA GeForce RTX 3050 Laptop GPU. We used
Python 3.6 and the Keras deep learning platform [32], along with the Adam optimizer [33]
for training the neural networks. We employed fully connected neural networks with
ReLU activation functions for the neurons. It is worth noting that the output layer of the
actor network utilized the Softmax function, while the critic network’s output layer had
no activation function. These settings were chosen to accurately model and evaluate the
performance of the PPOMA protocol. Table 1 provides the hyperparameter settings used in
PPOMA.

Table 1. PPOMA hyperparameter settings.

Hyperparameters Value

state history length M 20
learning rate in Adam optimizer 0.001

target network update frequency F 10
target network update weight w 0.9

discount factor γ 0.99
value in the Clip function ε 0.2

number of training batches B 10

5.2. Baseline and Performance Metrics

We compared the PPOMA protocol with the DLMA protocol, using theoretical values
computed from benchmark tests under sensor nodes as a reference.

DLMA protocol [21]: DLMA nodes are wireless nodes using the DLMA protocol.
DLMA is a multiple access protocol designed based on DQN, which approximates the
maximization of total throughput by using deep reinforcement learning and recording
historical state information.

Benchmark tests [34]: These tests involve coexistence with a sensing node and the
calculation of the theoretically optimal total throughput. Sensing nodes are different from
PPOMA nodes in principle. Sensing nodes have prior knowledge and are aware of the
information and patterns of coexisting MAC protocols. In contrast, PPOMA lacks prior
knowledge and can only achieve optimal throughput through deep reinforcement learning,
without prior knowledge of the MAC protocols used by the coexisting nodes.

Specifically, when a sensing node coexists with TDMA nodes, it fully understands the
number of time slots used by the TDMA protocol and can occupy the unsent time slots of
TDMA to maximize total throughput. In this case, the theoretical optimal throughput is
one because it sends data packets in every time slot. When a sensing node coexists with
q-ALOHA nodes, it knows the sending probability q, allowing it to send less data when q
is high and more data when q is low to achieve optimal throughput. When sensing nodes
coexist with FW-ALOHA and EB-ALOHA nodes, they are aware of the window size W
and the rules for sending data packets in advance.

This study employs throughput as the performance evaluation metric, defined as
the average number of successfully transmitted data packets in each timeslot, averaged
over the results of N timeslots. The throughput of nodes is calculated using the following
normalization formula:

T =
t

∑
τ=t−N+1

nτ

N
(12)

where ∑t
τ=t−N+1 nτ represents the number of successfully transmitted time slots within N

time slots, and N represents the total number of time slots.
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For the calculation of short-term throughput, we set the total number of time slots N
to 1000, with each time slot lasting 1 millisecond. This results in short-term throughput
reflect the performance of network nodes in the past 1 s. If we wish to calculate long-term
throughput, N can be set to t, providing the average throughput over t time slots.

5.3. Comparison of Total Throughput under Perfect Channel Conditions
5.3.1. Coexistence of PPOMA Nodes with TDMA Nodes

We first conducted a simulation analysis of the coexistence of PPOMA nodes with a
single TDMA node.

As shown in Figure 3a, when the total number of time slots is 10 and the number
of time slots allocated to TDMA is given by X = {2, 3, 5, 7, 8}, the theoretical optimal
value calculated by the sensor node is one. It can be observed that as the number of time
slots allocated to TDMA X increases, the throughput of TDMA nodes in the network
also increases. This is because the PPOMA node learns to occupy the idle time slots of
TDMA to send data packets, thereby achieving optimal total throughput. The experimental
results show that for this relatively simple scenario of coexistence with TDMA nodes, both
protocols eventually achieve optimal total throughput levels. However, the difference
between the two protocols lies in their convergence speed.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 23 
 

 

  
(a) (b) 

Figure 3. Coexistence of PPOMA nodes with TDMA nodes. (a) Throughput under different num-
bers of time slots 𝑋; (b) convergence speed when 𝑋 = 2. 

5.3.2. Coexistence of PPOMA Nodes with ALOHA Nodes 
Next, we consider the coexistence of PPOMA nodes with a single ALOHA node. 

Here, we study three variants of ALOHA protocols: q-ALOHA, FW-ALOHA, and EB-
ALOHA. 

In Figure 4a, we investigate the coexistence of PPOMA nodes with q-ALOHA proto-
col nodes, where q represents the probability of ALOHA sending data packets at the be-
ginning of each time slot. We set 𝑞 to various values, such as 𝑞 = {0.2,0.3,0.5,0.7,0.8}, and 
compare the results with the theoretically optimal values calculated by the sensor node. 
The optimal values for the five different 𝑞 values are 0.8, 0.7, 0.5, 0.7, and 0.8, respectively. 
The results show that when 𝑞 is small (e.g., 𝑞 = 0.2 and 𝑞 = 0.3), the throughput of the 
q-ALOHA nodes is nearly zero. This is because when the transmission probability is low, 
PPOMA nodes, aiming to maximize the total network throughput, will choose to send 
data in every time slot, leading to frequent collisions with the q-ALOHA nodes, resulting 
in almost zero throughput. As 𝑞 increases (e.g., 𝑞 = 0.7 and 𝑞 = 0.8), the situation is re-
versed, and our nodes choose to send data less frequently to avoid collisions with the q-
ALOHA nodes. In this case, most of the total network throughput comes from the q-
ALOHA nodes. Overall, in the case of these five different 𝑞 values, using the PPOMA 
protocol resulted in a total network throughput that was 0.013, 0.014, 0.004, 0.016, and 
0.015 higher compared to DLMA, respectively. This demonstrates that our PPOMA pro-
tocol can achieve results closer to the optimal throughput. 

  
(a) (b) 

Figure 4. Coexistence of PPOMA nodes with q-ALOHA nodes. (a) Throughput under different 
probability 𝑞; (b) convergence speed for 𝑞 = 0.2 

Figure 3. Coexistence of PPOMA nodes with TDMA nodes. (a) Throughput under different numbers
of time slots X; (b) convergence speed when X = 2.

Figure 3b shows a comparison of the convergence speed between the two protocols,
with a specific focus on the scenario where X = 2. Figure 3b shows that both protocols
converge to a value near 0.8 within about 2000 iterations. Nevertheless, PPOMA reaches
convergence approximately 200 iterations faster than DLMA, achieving the same level of
performance with fewer iterations. Furthermore, after convergence, the throughput curves
exhibit very little fluctuation. This is primarily because the TDMA protocol itself is highly
controllable, and once the PPOMA node fully understands the number of time slots it is
using, it can avoid collisions.

5.3.2. Coexistence of PPOMA Nodes with ALOHA Nodes

Next, we consider the coexistence of PPOMA nodes with a single ALOHA node. Here,
we study three variants of ALOHA protocols: q-ALOHA, FW-ALOHA, and EB-ALOHA.

In Figure 4a, we investigate the coexistence of PPOMA nodes with q-ALOHA protocol
nodes, where q represents the probability of ALOHA sending data packets at the beginning
of each time slot. We set q to various values, such as q = {0.2, 0.3, 0.5, 0.7, 0.8}, and compare
the results with the theoretically optimal values calculated by the sensor node. The optimal
values for the five different q values are 0.8, 0.7, 0.5, 0.7, and 0.8, respectively. The results
show that when q is small (e.g., q = 0.2 and q = 0.3), the throughput of the q-ALOHA
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nodes is nearly zero. This is because when the transmission probability is low, PPOMA
nodes, aiming to maximize the total network throughput, will choose to send data in every
time slot, leading to frequent collisions with the q-ALOHA nodes, resulting in almost zero
throughput. As q increases (e.g., q = 0.7 and q = 0.8), the situation is reversed, and our
nodes choose to send data less frequently to avoid collisions with the q-ALOHA nodes. In
this case, most of the total network throughput comes from the q-ALOHA nodes. Overall,
in the case of these five different q values, using the PPOMA protocol resulted in a total
network throughput that was 0.013, 0.014, 0.004, 0.016, and 0.015 higher compared to
DLMA, respectively. This demonstrates that our PPOMA protocol can achieve results
closer to the optimal throughput.
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To illustrate the convergence speed of both protocols, we only selected the case with
q = 0.2 for comparison. As shown in Figure 4b, PPOMA nodes exhibit significantly
faster convergence compared to DLMA, reaching the convergence state about 800 itera-
tions earlier. This indicates that our PPOMA protocol enhances the performance of the
communication system.

Figure 5a illustrates the coexistence of PPOMA nodes with FW-ALOHA protocol
nodes, where FW-ALOHA protocol’s window size varies (W = {2, 3, 4, 5, 6}). According to
the theoretical values calculated by the sensor node, the optimal throughput values for the
five scenarios are 0.667, 0.667, 0.7, 0.733, and 0.762, respectively.
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The window size, W, governs the data packet transmission frequency in the FW-
ALOHA protocol. For instance, when W = 2, the FW-ALOHA protocol will attempt to
retransmit data packets in the next one or two time slots after a collision occurs. As W
increases, FW-ALOHA nodes wait for a greater number of time slots. When W = 6, a
collision results in FW-ALOHA randomly selecting one of the next one to six time slots
for retransmission. Smaller values of W lead to more frequent data packet transmissions
by FW-ALOHA nodes, resulting in higher throughput. Conversely, larger W values cause
occasional data packet transmissions, leading to numerous idle time slots in the channel.
PPOMA nodes can seize these idle time slots to maximize the network’s total throughput.
Notably, a significant throughput improvement is observed only in the cases of W = 3 and
W = 4, with throughputs exceeding DLMA by 0.036 and 0.03, respectively. In the other
scenarios, the total throughput remains relatively similar. Experimental results indicate
that PPOMA nodes can bring the network’s total throughput closer to the optimal value
compared to DLMA nodes.

Figure 5b displays a comparison of the convergence speed of the two types of nodes
for the case of W = 5. It is evident that PPOMA roughly achieves convergence around
the 2000th iteration, nearly 900 iterations faster than DLMA. It is worth noting that FW-
ALOHA’s selection of waiting time slots, w, is random, which makes collisions unavoidable,
resulting in greater fluctuations in its throughput curve.

Figure 6a depicts the coexistence of PPOMA nodes with EB-ALOHA protocol nodes,
with theoretical optimal values of 0.785, 0.846, 0.882, 0.905, and 0.92 for different window
sizes (W = 2, 3, 4, 5, and 6). Here, the EB-ALOHA nodes are configured with a maximum
backoff level mmax = 2, meaning the window size can increase to up to four times its
original value. The window sizes W are employed to regulate the frequency of data
packet transmissions in the EB-ALOHA protocol, similar to FW-ALOHA in some respects.
Experimental results demonstrate that when coexisting with EB-ALOHA nodes, regardless
of the chosen W value, the throughput of EB-ALOHA nodes remains close to zero, and the
overall system’s throughput is predominantly determined by the PPOMA nodes. In this
scenario, the throughput of PPOMA nodes significantly outperforms that of DLMA nodes.
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This discrepancy primarily arises from the consideration of the backoff level m in
EB-ALOHA. By comparing Figure 6a with Figure 5a, we observe that the presence of
m results in a considerably lower number of data packet transmissions by EB-ALOHA
nodes for the same window size. Specifically, when W = 2, if EB-ALOHA experiences
two consecutive collisions, its maximum window size would increase to 4W = 8, which is
equivalent to setting W = 8 in FW-ALOHA (indicating a significantly lower data packet
transmission frequency). Therefore, even if EB-ALOHA and FW-ALOHA both use the same
W value, the final throughput results differ significantly. Figure 6b displays the comparison
of convergence speed between the two types of nodes when W = 6. In this case, PPOMA
reaches convergence approximately 300 iterations earlier than DLMA.

5.3.3. Coexistence of PPOMA Nodes with TDMA and ALOHA Nodes

Finally, we consider the coexistence of PPOMA nodes with both a TDMA node and
a q-ALOHA node and conduct simulation analysis for two specific scenarios: (1) The
transmission probability q of the q-ALOHA protocol remains constant at 0.2, while the
number of time slots allocated to TDMA transmission, X = {2, 3, 4, 5, 6}, varies. In this
case, we primarily investigate the impact of different TDMA time slot numbers X on the
total throughput when all three coexist. (2) The number of time slots allocated to TDMA
transmission remains constant at three, but the transmission probability q for the q-ALOHA
protocol varies as q = {0.1, 0.2, 0.5, 0.7, 0.8}. In this scenario, we examine the effect of
varying q values in q-ALOHA on the total throughput when all three coexist. Similar to the
previous sections, we use the theoretically derived maximum throughput values from the
sensor node for comparison. The theoretical maximum values for the two scenarios are as
follows: (1) 0.8, 0.8, 0.8, 0.8, 0.8; (2) 0.9, 0.8, 0.5, 0.58, 0.62.

Figure 7a addresses the first scenario in which we compared the throughput of PPOMA
and DLMA at different X values. In this scenario, at different X values, the throughput of
PPOMA is higher than that of DLMA by 0.01, 0.021, 0.006, 0.011, and 0.007, respectively. As
can be observed from the figure, it is evident that the variation in X values impacts the total
throughput. As X increases, more time slots become available for TDMA data transmission.
Consequently, PPOMA considers not only the possibility of q-ALOHA sending data within
a time slot but also that TDMA will transmit data at fixed time slots. Taking these factors
into account, PPOMA ultimately achieves throughput levels close to the optimum. Since
we set a low transmission probability q for q-ALOHA in this scenario, even if it chooses to
send, it often results in collisions due to the other two nodes also transmitting in the same
time slot, making q-ALOHA’s throughput almost imperceptible in the graph. Figure 7b
illustrates a comparison of the convergence speeds between the two nodes when q = 0.2 and
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X = 4. It is apparent from the graph that PPOMA reaches convergence in approximately
400 iterations, while DLMA requires around 2000 iterations to converge. In a multi-node
mixed scenario, PPOMA achieves faster convergence compared to DLMA.
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In Figure 8a, the second scenario is investigated. Here, when q is set to 0.1 and 0.2,
PPOMA outperforms DLMA by 0.012 and 0.005, respectively. As can be observed from the
figure, it is evident that changes in the q value have an impact on the total throughput. An
increase in q implies a higher probability of q-ALOHA transmitting during each time slot.
Similar to previous discussions, when q is relatively small (as in the cases of q = 0.1 and
q = 0.2), the throughput contributed by q-ALOHA is close to zero. It is only when q values
increase that q-ALOHA starts to exhibit higher throughput.
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Additionally, increasing q values also affects the throughput of TDMA nodes. Specifi-
cally, by comparing the two scenarios with larger q values (0.7 and 0.8) to those with smaller
q values (0.1 and 0.2) in Figure 8a, it can be observed that higher q values lead to a reduction
in TDMA node throughput. This is because when q-ALOHA has a higher q value, it is more
likely to send data regardless of whether the current time slot is occupied by TDMA. If the
current time slot is not occupied by TDMA, the higher transmission probability increases



Electronics 2023, 12, 4845 17 of 23

the network throughput without affecting the TDMA throughput. However, if the current
time slot is occupied by TDMA, the higher transmission probability increases the chances
of collision between two nodes, ultimately decreasing TDMA throughput.

Figure 8b depicts the comparison of convergence speeds between PPOMA and DLMA
under the conditions of X = 3 and q = 0.2. Here, PPOMA achieves convergence in around
400 iterations, while DLMA requires approximately 1200 iterations to reach convergence.

Overall, in both of these scenarios, the PPOMA protocol approaches the optimal
throughput more closely than the DLMA protocol and achieves convergence faster.

5.4. Comparison of Total Throughput under Imperfect Channel Conditions

In the previous section, our analysis was based on an idealized scenario, assuming
communication under perfect channel conditions. However, in real communication envi-
ronments, various interference factors can lead to data loss. Therefore, we need a more
realistic model for the multiple access problem.

In this section, we specifically focus on the multiple access problem in an imperfect
channel environment. In the context of imperfect channels, we have examined the potential
impact of interference factors, such as noise, on data transmission. Unlike perfect channels,
imperfect channel conditions introduce not only the possibilities of successful data trans-
mission and collision-induced failures, but also the probability of data loss. This introduces
an added layer of complexity to the data transmission status in imperfect channel scenarios.
Specifically, regardless of whether PPOMA nodes coexist with any other nodes, we intro-
duce a new variable, “p”, to represent the probability of data loss when sending packets.
This is because in real-world communication, due to the presence of noise and interference,
there is a certain probability, p, that data transmission may fail. We set this probability p
to various values, including 0%, 20%, 40%, 60%, and 80%, where 0% represents the ideal
scenario of a perfect channel condition, while the other values represent different degrees
of imperfections in the channel environment.

Figure 9 provides a detailed exploration of how PPOMA and TDMA nodes coexist
in an imperfect channel environment. In Figure 9a, we observed the total throughput for
TDMA with varying slot numbers X, while keeping the data loss probability p fixed at
0.2. As the number of slots allocated to TDMA, denoted as X, increases, the throughput
of TDMA nodes also increases, while the throughput of PPOMA nodes decreases. This
happens because PPOMA nodes have learned a channel access strategy to send data
packets when TDMA slots are idle, optimizing the overall throughput. However, due to
the probabilistic nature of data transmission, the total throughput cannot reach the optional
value of one, as seen in perfect channel conditions.

Figure 9b illustrates the scenario with X = 2, while varying data loss probability p.
From the graph, it is evident that there is a difference in throughput between PPOMA and
DLMA. At p = 0, representing a perfect channel condition, both types of nodes maximize
the total network throughput. However, as the channel environment deteriorates, with
increasing data loss probability p, our PPOMA protocol performs better in achieving maxi-
mum network throughput. Specifically, when p = 0.2, 0.4, 0.6, and 0.8, PPOMA’s throughput
is higher than DLMA by 0.008, 0.04, 0.06, and 0.059, respectively. These results emphasize
the superior performance of PPOMA in an imperfect channel environment, particularly in
scenarios with high data loss probabilities, where its throughput outperforms DLMA.

Figure 10 explores the throughput results of the coexistence of PPOMA and q-ALOHA
nodes in an imperfect channel environment. In Figure 10a, when the data loss probability
is fixed at p = 0.2, we compare the total throughput under different sending probabilities q
for q-ALOHA. These observations are similar to the coexistence scenario of PPOMA and q-
ALOHA nodes under perfect channel conditions. Specifically, when the sending probability
q is low, PPOMA nodes tend to send as many data packets as possible to fully utilize each
time slot, maximizing the total throughput. However, when the sending probability q is
high, PPOMA nodes choose to avoid sending data packets as much as possible to reduce
conflicts with q-ALOHA nodes, aiming to maximize the total throughput. Nevertheless,
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due to the impact of data loss probability, the total throughput cannot reach the optimal
level observed under perfect channel conditions.
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In Figure 10b, we keep the sending probability q fixed at 0.2 and study the impact
of different data loss probabilities p on the total throughput. It is evident from the graph
that, when facing an imperfect channel environment, PPOMA outperforms DLMA. Under
data loss probabilities of p = 0.2, 0.4, 0.6, and 0.8, PPOMA’s total throughput is higher than
DLMA by 0.03, 0.048, 0.042, and 0.055, respectively. These results highlight the superior
performance of PPOMA in an imperfect channel environment, especially in scenarios with
high data loss probabilities, where its throughput significantly exceeds that of DLMA.

Figure 11 presents the throughput performance of PPOMA and FW-ALOHA nodes in
an imperfect channel environment. In Figure 11a, we study the total throughput of FW-
ALOHA under different window sizes W when the data loss probability is fixed at p = 0.2.
It is worth noting that when focusing on the throughput of PPOMA under different W
values, it is clear that PPOMA achieves higher throughput compared to DLMA. Particularly,
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in the cases of W = 5 and W = 6, PPOMA’s throughput is higher than DLMA by 0.053 and
0.049, respectively.
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Figure 11b further demonstrates the impact of different data loss probabilities p on
throughput when W is fixed at five. In a perfect channel environment, the total throughput
of both types of nodes is similar. However, once the imperfect channel condition is consid-
ered, PPOMA’s superiority becomes evident. As the data loss probability p increases, the
total throughput decreases, but our PPOMA achieves higher total throughput. For instance,
at p = 0.2, PPOMA outperforms DLMA by 0.049, and the gap increases to 0.036 at p = 0.6.
These results emphasize the outstanding performance of PPOMA in an imperfect channel,
especially in scenarios with high data loss probabilities, where its throughput significantly
exceeds that of DLMA.

Figure 12 investigates the coexistence of PPOMA nodes with EB-ALOHA nodes in an
imperfect channel environment. In Figure 12a, when the data loss probability is fixed at
p = 0.2, we observe the cases with different window sizes W for EB-ALOHA, specifically
{2, 3, 4, 5, 6}. The results show that as W increases, the total network throughput also
increases. However, at the same time, the proportion of throughput contributed by EB-
ALOHA gradually decreases and even approaches zero.

Electronics 2023, 12, x FOR PEER REVIEW 20 of 23 
 

 

  
(a) (b) 

Figure 12. Coexistence of PPOMA and EB-ALOHA nodes in an imperfect channel. (a) When 𝑝 =0.2, 𝑊 = {2, 3, 4, 5, 6}; (b) when 𝑊 = 6, 𝑝 = {0, 0.2, 0.4, 0.6, 0.8}. 

Figure 13 explores the coexistence of PPOMA nodes with a TDMA node and a q-
ALOHA node in an imperfect channel environment. With a data loss rate of 𝑝 = 0.2, dif-
ferent 𝑞 and 𝑋 values were set for comparison. Specifically, in Figure 13a, the sending 
probability 𝑞 for q-ALOHA was fixed at 0.2, primarily examining the impact of the num-
ber of TDMA slots 𝑋  on throughput. The experimental results indicate that as 𝑋  in-
creases, the proportion of TDMA in the total throughput gradually rises, while the pro-
portion of PPOMA decreases. Additionally, the throughput of q-ALOHA is almost imper-
ceptible, primarily due to the very low 𝑞  value, which leads to collisions even if q-
ALOHA attempts to transmit data, resulting in transmission failures. 

  
(a) (b) 

Figure 13. Coexistence of PPOMA nodes with TDMA and q-ALOHA nodes in an imperfect channel. 
(a) When 𝑞 = 0.2, 𝑋 = {2,3,4,5,6}; (b) when 𝑋 = 3, 𝑞 = {0.1,0.2,0.5,0.7,0.8}. 

In Figure 13b, with 𝑋 fixed at three, the impact of different 𝑞 values on throughput 
is considered. When 𝑞 is low, the total network throughput is primarily contributed by 
TDMA and PPOMA. When 𝑞 is high, the total network throughput is mainly divided 
between TDMA and q-ALOHA. This is because, with a high 𝑞 value, PPOMA opts to 
reduce its data transmission to maximize the overall network throughput. 

In summary, the results from Figure 13 demonstrate that in an imperfect channel 
environment, different 𝑞 and 𝑋 values have varying impacts on throughput allocation. 
However, our PPOMA consistently outperforms DLMA under all conditions. 

Figure 12. Coexistence of PPOMA and EB-ALOHA nodes in an imperfect channel. (a) When p = 0.2,
W = {2, 3, 4, 5, 6}; (b) when W = 6, p = {0, 0.2, 0.4, 0.6, 0.8}.



Electronics 2023, 12, 4845 20 of 23

In Figure 12b, we study the impact of different data loss probabilities p on the total
network throughput when W is fixed at six. It can be observed that as the data loss
probability p increases, the total network throughput sharply decreases. Nevertheless,
the PPOMA protocol is capable of maintaining a relatively high total throughput. This
indicates that in an imperfect channel condition, PPOMA outperforms DLMA. These series
of observations emphasize the superiority of PPOMA in dealing with imperfect channel
environments.

Figure 13 explores the coexistence of PPOMA nodes with a TDMA node and a q-
ALOHA node in an imperfect channel environment. With a data loss rate of p = 0.2,
different q and X values were set for comparison. Specifically, in Figure 13a, the sending
probability q for q-ALOHA was fixed at 0.2, primarily examining the impact of the number
of TDMA slots X on throughput. The experimental results indicate that as X increases,
the proportion of TDMA in the total throughput gradually rises, while the proportion of
PPOMA decreases. Additionally, the throughput of q-ALOHA is almost imperceptible,
primarily due to the very low q value, which leads to collisions even if q-ALOHA attempts
to transmit data, resulting in transmission failures.
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In Figure 13b, with X fixed at three, the impact of different q values on throughput is
considered. When q is low, the total network throughput is primarily contributed by TDMA
and PPOMA. When q is high, the total network throughput is mainly divided between
TDMA and q-ALOHA. This is because, with a high q value, PPOMA opts to reduce its data
transmission to maximize the overall network throughput.

In summary, the results from Figure 13 demonstrate that in an imperfect channel
environment, different q and X values have varying impacts on throughput allocation.
However, our PPOMA consistently outperforms DLMA under all conditions.

To delve deeper into the discussion of how different data loss rates p affect the through-
put when three types of nodes coexist, we chose to further investigate the case with q = 0.2
and X = 3, as depicted in Figure 14. In this graph, we display the total network throughput
under various p values. By comparing the data in the graph, it is evident that the total
network throughput decreases as the data loss rate p increases.

However, it is worth noting that even under high data loss rates, PPOMA continues
to exhibit better performance than DLMA. Specifically, in scenarios with p = 0.2, 0.4, 0.6,
and 0.8, PPOMA’s throughput is higher than DLMA by 0.021, 0.034, 0.035, and 0.029,
respectively. These results underscore the superior performance of PPOMA when facing
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different data loss rates, especially in high data loss rate scenarios, where its throughput
significantly outperforms DLMA.
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6. Conclusions

In this research, we propose an innovative multiple access protocol, namely PPOMA,
which leverages the advantages of the PPO algorithm from the field of deep reinforcement
learning. This protocol excels not only in accelerating convergence but also in possess-
ing robust sampling and exploration capabilities. These remarkable features collectively
position PPOMA as an outstanding solution to address the various challenges posed by
multiple access in heterogeneous wireless networks. These challenges include navigating
complex communication environments, handling high-dimensional state spaces, and ad-
dressing intricate decision-making scenarios. The cumulative impact of these advantages
significantly elevates the overall performance level of the entire network. Through a series
of experiments, we rigorously evaluate the performance of the PPOMA protocol under
diverse and realistic channel conditions, which encompass channel interference and packet
loss. In a perfect channel scenario, PPOMA’s advantage over other algorithms is primarily
evident in its convergence speed, reaching convergence on average 500 iterations faster.
In an imperfect channel scenario, PPOMA’s advantage is mainly reflected in its higher
overall network throughput, with an approximate increase of 0.04. The comparative analy-
sis between PPOMA and existing multiple access protocols indicates that, under various
channel conditions, PPOMA achieves higher overall throughput and faster convergence.
This is attributed to the superior performance of the underlying PPO algorithm employed
by PPOMA compared to the DQN algorithm. These findings strongly align with the essen-
tial requirements of modern communication systems, where efficiency and reliability are
paramount. Consequently, we firmly believe that PPOMA possesses significant potential
and wide-ranging applicability within the realm of multiple access protocols. This research
thus opens doors to advancements in wireless network performance, promising a more
efficient and dependable communication environment. Nevertheless, there are limitations
to our approach. While PPOMA attains almost optimal throughput, it comes at the cost
of fairness among nodes. In future research, we are keen to utilize PPOMA to specifically
tackle the crucial issue of fairness among network nodes.
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