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Abstract: Sign language recognition is essential in hearing-impaired people’s communication. Wear-
able data gloves and computer vision are partially complementary solutions. However, sign language
recognition using a general monocular camera suffers from occlusion and recognition accuracy issues.
In this research, we aim to improve accuracy through data fusion of 2-axis bending sensors and
computer vision. We obtain the hand key point information of sign language movements captured
by a monocular RGB camera and use key points to calculate hand joint angles. The system achieves
higher recognition accuracy by fusing multimodal data of the skeleton, joint angles, and finger curva-
ture. In order to effectively fuse data, we spliced multimodal data and used CNN-BiLSTM to extract
effective features for sign language recognition. CNN is a method that can learn spatial information,
and BiLSTM can learn time series data. We built a data collection system with bending sensor data
gloves and cameras. A dataset was collected that contains 32 Japanese sign language movements of
seven people, including 27 static movements and 5 dynamic movements. Each movement is repeated
10 times, totaling about 112 min. In particular, we obtained data containing occlusions. Experimental
results show that our system can fuse multimodal information and perform better than using only
skeletal information, with the accuracy increasing from 68.34% to 84.13%.

Keywords: sign language recognition; sensor fusion; deep learning

1. Introduction

Recognition of hand motion capture is an interesting topic. Hand motion can represent
many gestures. In particular, sign language plays an important role in the daily lives
of hearing-impaired people. About 2.5 billion people are expected to have some degree
of hearing loss by 2050, according to the WHO. Additionally, more than 1 billion young
people are at risk of permanent hearing loss [1]. Moreover, due to the impact of infectious
diseases in recent years, online communication has become important. Sign and language
recognition can assist individuals with speech or hearing impairments by translating their
sign language into text or speech, making communication with others more accessible [2]. In
Human–Computer Interaction (HCI), sign recognition can be used for gesture-based control
of computers, smartphones, or other devices, allowing users to interact with technology
more naturally [3]. Facilitating communication between sign language users and non-users
via video calls remains a pertinent research focus. However, the intricate nature of sign
language gestures presents challenges to achieving optimal recognition solely through
wearable data gloves or camera-based systems.

Both wearable data gloves and camera-based systems have been extensively explored
for sign language recognition. Bending sensor gloves only focus on the degree of finger
bending. Consequently, several sign language words exhibiting similar curvature patterns
become indistinguishable. This limitation curtails the utility of such devices. Given the
significance of hand and arm gestures in sign language, it is imperative for vision-based
approaches to prioritize the extraction of keypoints data from the hands, thereby reduc-
ing interference from extraneous background elements. Occlusion presents a significant
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challenge to vision-based methodologies. During the acquisition of hand keypoints, monoc-
ular cameras may fail to capture certain spatial information due to inter-finger occlusions.
Such occlusions often act as impediments, constraining the potential for enhancement in
recognition accuracy. In gesture recognition, fingers can easily block each other, objects
can block hands, or parts can become nearly unrecognizable due to being overexposed
or too dark. As shown in Figure 1, occlusion problems significantly hinder the effective
acquisition of keypoints. Integration with bending sensors offers a solution, enabling
precise measurement of finger angles, even in regions overlapped by external entities.

Figure 1. Occlusion problem in hand sign language.

We hope to improve the stability of sign language recognition, verify the information
complementarity of data gloves and cameras, and study appropriate data fusion methods.

In this research, we integrate a wearable-sensor-based system with a camera-based
approach to enhance the precision of hand sign language capture. One inherent challenge
in extracting skeletal information for sign language is addressing occlusions among fingers
and accessing spatial data that is unattainable by standalone camera systems.

To address this, our proposed system leverages hand skeletons as delineated by
MediaPipe for sign language prediction. We adopt a hybrid methodology, intertwin-
ing Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory
(BiLSTM) models, to bolster our sign language recognition capabilities. CNN is good
at extracting relationships between features, and BiLSTM models are adept at temporal
data feature comprehension, rendering them ideal for action-oriented tasks such as sign
language interpretation. Through this CNN + BiLSTM amalgamation, we have achieved
superior recognition accuracy compared to single-sensor solutions.

The contributions of this research are itemized below:

1. To the best of our knowledge, this is the first time that the data from the bending
sensor and the keypoint data calculated by the camera have been fused to study sign
language recognition.

2. Our devised system integrates visual and bending sensor inputs. Visual data are
utilized to extract essential keypoints and joint angles while eliminating redundancy.
This approach mitigates the influence of background and lighting variations, enhanc-
ing the system’s generalizability and data efficiency. The flex sensor captures finger
flexion patterns, enabling adaptability across diverse environments.

3. We amalgamated keypoint coordinates, finger joint angles, and curvature features,
strategically combining multifaceted information at the feature level. This integration
forms the foundation for our CNN–BiLSTM model, facilitating information synergy
and effectively enhancing recognition rates.

Existing works based on camera systems have achieved high recognition rates, but
there are problems such as light and shadow, occlusion, and so on. For the first time,
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we propose the use of data gloves in combination with cameras to utilize information
redundancy and improve the stability of the system.

This paper consists of six sections. Section 1 explains sign language recognition,
outlines the goals, issues, solutions, and contributions of this research. Section 2 introduces
related works. In this section, we will introduce papers on sign language recognition and
hand skeleton prediction, and clarify the purpose of this research. Section 3 describes the
method of this research. It contains the overall system structure, including the bending
sensor, hand keypoint estimation method, and recognition method, introduced respectively.
Section 4 describes the implementation of this study, including the implementation of
curved sensor data gloves, sign language dataset collection, and data fusion. Section 5
describes the experiments and evaluation of this study. The experiments compare methods
using only image data and methods that fuse images and bending sensors. Section 6
presents the discussion and conclusions of this work, along with the current problems in
research and some directions for future research.

2. Related Works
2.1. Data Gloves System

The main research directions in sign language recognition include computer vision
systems and systems based on data gloves. In recent years, the evolution of wearable hand
measurement devices has been evident, predominantly driven by miniaturization processes
and advancements in algorithms. Notably, data gloves [4,5], including IMU [6] and bending
sensors [7,8], have demonstrated significant advancements in wearability, accuracy, and
stability metrics. Such advancements have consequently led to marked enhancements in
the results of sign language recognition leveraging these measurement apparatus. The
application model for sign language recognition based on data gloves is shown in Figure 2.

Figure 2. Application model.

2.2. Vision-Based Techniques

There are many studies on sign language recognition solutions based on computer
vision [9,10]. With the evolution of deep learning algorithms, the extraction and analysis
of features from visual data, including bone keypoint prediction [11], have substantially
improved. While sign language recognition has experienced significant advancements,
occlusions in images remain a notable challenge in computer vision. Himanshu and Sonia’s
review discusses the effects of occlusion on the visual system [12]. There are ways to
avoid occlusion problems by using a depth camera, multiple cameras, or labeling invisible
objects. There are also methods to detect occlusion, such as using shadows of objects and
learning information before and after occlusion using time series data. Although motion
capture using a special device such as Kinect [13] and Leap Motion Controller (LMC) [14]
exist, sign language recognition using a monocular camera is superior in that it can use a
common camera.

Many vision-based studies based on deep learning methods have been proposed. Deep
Rameshbhai et al. [15] proposed Deepsign to recognize isolated Indian Sign Language in
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video frames. The method combined LSTM and GRU and achieved approximately 97%
accuracy on 11 different signs.

Arun Singh et al. [16] proposed a model based on sign language recognition (SLR) of
dynamic signs using Convolutional Neural Network (CNN), achieving a training accuracy
of 70%. Avola et al. [17] used the SHREC dataset to perform sign language recognition.
SHREC is a dataset that uses a depth camera to acquire gesture skeletons. DLSTM, a deep
LSTM, is used for sign language recognition. In their method, SHREC is utilized, wherein
the angles formed by the fingers of the human hand, calculated from the predicted skeleton,
are used as features. The training using SHREC and DLSTM enables highly accurate sign
language recognition.

Existing work in hand pose estimation includes the following. Liuhao Ge et al. [18]
proposed Hand PointNet. This method directly processes 3D point cloud data representing
the hand’s visible surface for pose regression. It incorporates a fingertip refinement net-
work, surpasses existing CNN-based methods, and achieves superior performance in 3D
hand pose estimation. Nicholas Santavas et al. [19] introduced a lightweight Convolutional
Neural Network architecture with a Self-Attention module suitable for deployment on
embedded systems, offering a non-invasive vision-based human pose estimation technol-
ogy for various applications in Human-Computer Interaction with minimal specialized
equipment requirements. Liuhao Ge et al. [20] explained the prediction of the skeleton of
the hand from image recognition. It estimates the complete 3D hand shape and poses from
a monocular RGB image.

Multimodal sensor data fusion methods are crucial in systems that combine bending
sensors and vision. CNN [21] and BiLSTM [22] methods can obtain information from
spatial and time series data, respectively. The fusion of CNN and BiLSTM [23,24] has
been used in the field of Natural language processing. Moreover, the skeleton of the hand
is extracted from videos using a method called MediaPipe [25]. In addition, by using
the sensor, we can expect to measure the angle of the finger more accurately even in the
part that overlaps other objects. Therefore, combining sensor data with sign language
recognition will make it possible to accurately predict hand movements.

A comparison of related work is shown in Table 1. Sign language recognition mainly
includes two types: data-glove-based and camera-based. Systems based on data gloves gen-
erally use bending sensors and IMUs to obtain key point information on the hand skeleton,
and the amount of information is less than that of camera systems. The camera system’s
recognition rate will decrease due to line-of-sight occlusion, darkness, or overexposure.
Therefore combining cameras and data gloves is a potential solution.

Table 1. Comparison of related research.

Researches Sensor Input Features Fusion
Algorithm Occlusion Data

Our Camera and Bending
Hand Landmarks,
Finger Bending CNN-BiLSTM ©

Chu et al. [26] Bending sensor Finger Bending DTW Unnecessary

Clement et al. [27] IMU, Bending sensor
Orientation
Finger Bending HMM Unnecessary

Samaan et al. [11] Camera Hand Landmarks Bi-LSTM ×

Rao et al. [28] Camera
Hand Landmarks
Face Landmarks LSTM ×

Kothadiya et al. [15] Camera Images LSTM and GRU ×

Mohammed et al. [9] Camera Images EfficientNetB4 ×
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3. Method

The system simultaneously acquires data from bending sensors and vision and uses
deep learning methods to fuse the data for sign language recognition.

3.1. System Design

The structure of the system is shown in Figure 3. The system comprises two inputs:
video collected by the camera and sensor data collected by the bending data glove. Camera
data are used to obtain the keypoints of the hand through MediaPipe, and the joint angles
of the fingers are obtained through the keypoints. Subsequently, the joint angle data from
the keypoints and the finger bending angles from the sensor are combined. The semantics
of the sign language are then obtained through CNN + BiLSTM recognition.

Figure 3. Method structure: data collection and training.

3.2. MediaPipe

We use MediaPipe to predict skeletons from images. MediaPipe can predict face,
posture, and hand skeletons with high accuracy. This method is intended for use with
GPUs for real-time inference. However, there are also lighter and heavier versions of the
model to deal with CPU inference on mobile devices, which is less accurate than running
on desktop computers [29]. Figure 4 shows the output of MediaPipe hand skeleton data.
In (a), the predicted 21 keypoint positions are shown. In (b), the points in (a) correspond
to the numbers. In (c), an example of using MediaPipe is presented. In this research, the
21 keypoints, indicated by red dots, are utilized as skeleton data for the dataset.

Figure 4. Skeleton and bending sensor data fusion. (a) Definition of key points of the hand (b) Name
of each key point. (c) Results of real hand recognition of key points.

3.3. CNN + BiLSTM

Since video data is used for sign language recognition, a method that processes both
spatial information and time series data is effective. Spatial information is learned using
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CNN, and time series information is learned using BiLSTM. First, a sign language dataset
is input to MediaPipe. MediaPipe outputs the keypoint data of the sign language, which
is used as skeleton data. This skeleton data is then input to the CNN to extract spatial
information, and then temporal information is extracted by BiLSTM. The spatial and
temporal information are then integrated and used to train the model. By combining CNN
and BiLSTM, we achieve higher recognition accuracy, as this approach learns both spatial
and temporal features more effectively than using either method alone. We use Keras
(https://keras.io/) in Python to build our deep-learning network.

Our network structure is also lightweight due to the use of a less data-intensive
skeleton and bending sensor data for fusion. The network structure is shown in Figure 5.
We use Keras to construct the code, and the sampling frequency is 60 Hz. The input consists
of three seconds of data, with each frame containing 88 data points, resulting in a shape of
[88, 180]. The 1D-CNN has one layer with 32 filters, a kernel size of 3, and ‘valid’ padding,
followed by one layer of BiLSTM. The learning rate is set to 0.001.

Figure 5. The 1D-CNN–BiLSTM model structure diagram.

4. Implementation
4.1. Outline

The model of this sign language recognition system is shown in Figure 3. First, we
construct a data collection system that includes data gloves and cameras to collect bending
data. Then, we create a dataset. This dataset contains video data and finger-bending data
from sign language performances. Next, the hand skeleton is predicted from the sign
language video. The hand skeleton is estimated using MediaPipe. Finally, the sensor data
and skeletal data are fused, and the model is trained using CNN + BiLSTM. The model for
gesture estimation is formed.

https://keras.io/
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4.2. Bending Sensor Glove Design

This part describes the design of the original glove, the sensors, the sensor controllers,
and the sensor data structures. Figures 6 and 7 shows the actual 2-axis bending sensor
glove. The fingertips are securely attached while the rest is loosely secured to ensure that
the sensor does not come loose. As a result, parts for fixing the sensors were created using
a 3D printer. The fingertip part is designed so that the sensor can be inserted and fixed.
Additionally, if the sensor is fixed at every part, it would restrict finger movement, thereby
making it difficult to express sign language. Therefore, parts other than the fingertips are
not fixed. Furthermore, during actual use, white gloves are worn to conceal the sensors.
This prevents MediaPipe from failing to recognize the sensor glove as a hand. Then
Raspberry Pi Pico is used as a controller to control the sensor. Note that the sensor gloves
produce different values depending on the individual using them, even when the same
hand pose is applied.

Figure 6. Sensor glove design. The five bending sensors (1–5) transmit data to the PC through two
Raspberry Pi Pico.

Figure 7. Sensor glove.
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The 2-Axis Bending Sensor

The sensor used is a 2-axis bending sensor, as shown in Figure 8, developed by Bend
Labs. Compared to conventional sensors, this 2-axis bending sensor measures angular
displacement with greater accuracy. The sensor output is the angular displacement as
computed from the vectors defined by the ends of the sensor (v1 and v2) [30].

Figure 8. The 2-axis bending sensor from Bend Labs.

4.3. Sign Language Dataset

First, we create a dataset consisting of sign language videos to generate skeleton
data. The dataset comprises original data contributed by laboratory members. The dataset
includes 32 words from Japanese sign language. The Japanese language is represented by
46 letters. These letters include vowels (a, i, u, e, o) and consonants (k, s, t, n, h, m, y, r, w).
The list of letters used in this research is presented. In Japanese, there are letters with only
vowels, combinations of vowels and consonants, and special characters, like ‘nn’. The table
shows consonants in columns and vowels in rows. The first column from the right is for
vowels only (‘/’ indicates no consonants) and “nn” appears at the end of the column for
the consonant ‘n’.

4.4. Image Data Collection

The dataset has videos of four people for each word shot at 60 fps with a green screen
background. The sensor glove is worn on the right hand. Sign language words are basically
fixed, such as clenching a fist or raising only the index finger, without moving the hand.
However, some sign language words are expressed by moving the hand. For example, “ri”,
“no”, “nn”, and “mo” are in the word list. “mo” is a finger movement only, but “ri”, “no”,
and “nn” are expressed by moving the wrist.

4.4.1. Key Point Estimation

We predict skeletal data from videos of sign language, where the participants are
wearing sensor gloves. MediaPipe estimates 21 keypoints and makes them skeleton data.
Keypoint coordinates are 3D (x, y, z) and 60 frames are acquired per second.

4.4.2. Calculating Joint Angle

Finger angles are calculated from the skeleton data obtained with MediaPipe. This is
useful for data argumentation of the dataset. There is one finger angle for each joint, and
angles are calculated by the inner product. For example, the two adjacent segments of the
finger are~a and~b.

~a =
(

xj − xi, yj − yi, zj − zi
)
= (a1, a2, a3),~b =

(
xj − xi, yj − yi, zj − zi

)
= (b1, b2, b3)

If cos θ is the interior angle of~a = (a1, a2, a3),~b = (b1, b2, b3), it is calculated by

cos θ =
~a ·~b
|~a||~b|

=
a1b1 + a2b2 + a3b3√

a2
1 + a2

2 + a3
3

√
b2

1 + b2
2 + b2

3
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4.5. Collecting Sensor Data

This section describes the original bending sensor glove and finger angle data collec-
tion. We designed and created an original bending sensor glove specifically for collecting
finger angles. The glove is worn on the right hand. The data collected from the glove,
including time stamps and the 2-axis angles of the five fingers, is saved as a text file on
the main computer. Additionally, a video of the sign language performance is recorded
simultaneously with the collection of bending sensor data. The finger angles acquired
alongside the bending sensor data, together with the simultaneously captured images,
support the process of image recognition.

4.6. Data Fusion

Skeleton data are acquired using MediaPipe. Finger joint angles are then calculated from
this skeleton data, and subsequently, sensor data is fused with it. As shown in Figure 9. The
skeleton data comprise 63 points (21 keypoints × 3 dimensions), The finger joint angle data
consist of 15 points (5 fingers× 3 joint angles), and the sensor data include 10 points (5 fingers
× 2-axis).

Figure 9. Data fusion. (The red arrows indicate the MCP, PIP, and DIP positions of the index finger,
and θ1, θ2, and θ3 represent the joint angles.)

5. Experiment and Evaluation
5.1. Experiment Purpose

In this experiment, we aimed to evaluate the sign language recognition performance
of the fusion system comprising bending sensor gloves and computer vision. The exper-
imental evaluation and discussion will involve comparing the results of sign language
recognition using only skeleton data with those using all fused data.

5.2. Experiment Setting

We prepared a bending sensor glove and a camera to collect data. The camera uses
GoPro Hero10. Each action was collected for three seconds at one time. The camera, a
GoPro Hero10, captures high-resolution images (1080, 1920) at 60 fps. Its compact size
allows for fast and efficient recording. Additionally, a green screen was used to maintain
uniform background colors. Participants wore sensor gloves to collect both sensor data
and video data simultaneously. We collected sign language data from seven participants
(three females and four males). The bending sensor data glove we built has a sampling
rate of 60 Hz. Thirty-two sign language words were executed, as shown in Figure 10. Each
action was repeated 10 times per person, collecting 3 s each time. The sampling rate of the
system is 60 Hz. The dataset has 403,200 frames of data collected. In total, approximately
6720 s (112 min) of data were collected.
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Figure 10. Japanese sign language letter list.

To demonstrate the sensor’s effectiveness, occlusion was introduced in the sign lan-
guage videos, which were then processed and recognized by MediaPipe. In this occlusion
scenario, a paper strip measuring 15 cm in length and 3 cm in width was used to cover
the little finger, and data were collected under this specific type of occlusion. This specific
scenario is illustrated in Figure 11.

Figure 11. Occlusion data. (The occlusion way is as shown in the red box by covering part of the
hand with a paper strip.)

5.3. Experiment Process

Initially, the subject performed stationary movements while maintaining a flat hand,
which provided calibration data for the glove. The gloves and the camera were turned on
simultaneously to obtain synchronized data. Subjects were guided through each gesture.

5.4. Experiment Results

The model was trained with k-Fold cross-validation. When training with a small
dataset, the training accuracy could be misleadingly high. If this is the case, the accuracy
in training may be high, but the accuracy in testing may be lowered, resulting in over-
fitting. To prevent this, a technique known as k-Fold cross-validation is employed. In
k-Fold cross-validation, the data is divided into k segments, with some segments used for
validation and others for training. Since all the divided data are used once for validation
data, training is performed k times. The result is calculated as the average of the k
training accuracies. The cross-entropy method is used for calculating the loss function.
If the probability distributions of p and q are approximate, the cross-entropy loss is
smaller. In other words, the closer the learning accuracy approaches 1, the closer the
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result approaches 0. Results for the skeleton data only are shown below. Additionally,
the training and evaluation data are split at a ratio of 4:1. The training data is used for
the training process, evaluation data for evaluation during training, and test data for the
final model evaluation.

The training curve is shown in Figures 12 and 13. The blue line represents the accu-
racy of training, the orange line represents the accuracy of validation, and the green line
represents the accuracy of validation when using test data. The confusion matrix using
only skeleton data or using fused data is shown in Figures 14 and 15. In the skeleton-only
validation, cross-validation was performed five times, resulting in an average training
accuracy of 85.9% and an accuracy of 73.5% when using test data. In the fusion data
validation, cross-validation was also performed five times. The average training accuracy
was 99.2%, while the accuracy was 96.5% for training and 84.13% for test data.

Figure 12. Accuracy curve of only skeleton data.

Figure 13. Accuracy curve of fusion data.
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Figure 14. Confusion Matrix: Only Skeleton Data.

Figure 15. Confusion Matrix: Fusion Data.
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5.5. Discussion

The overall recognition rate of the fused system is improved compared to using only
skeleton data. Furthermore, the fused system requires fewer epochs to achieve a stable
recognition rate and exhibits lower overfitting. However, there are some areas that require
improvement. First, some sign language movements are indistinguishable using only
bending sensors. This is because the values recorded by the bending sensors are exactly
the same, leading to conflicts in recognition judgments. Additionally, when recognizing
partially similar sign languages, the similarity in added sensor data values results in lower
recognition accuracy for certain actions. When the recognition effect using only skeleton
data is poor, the sensor has a complementary effect.

Our primary comparison involved the use of features obtained solely by the camera
versus a combination of information from both the bending sensor and the camera. The
result of fusing the two pieces of information is better. First of all, this shows that the
information from the bending sensor and the camera are complementary. Second, the
fusion algorithm we use can effectively use complementary information to improve the
recognition rate.

The input end of the algorithm model employs feature splicing. It uses 1D-CNN
to analyze the relationship between features, followed by BiLSTM, which analyzes the
temporal relationship of features. The specific parameters of the model are obtained
through the backpropagation algorithm and data-driven training.

In our study on system robustness, we identified that the primary sources of errors
were attributable to variations in environmental conditions and individual differences
among users. We observed that environmental factors, particularly background elements,
could potentially skew the results. To address this, our implementation leverages Me-
diaPipe for keypoint extraction from images. MediaPipe’s effectiveness in background
suppression is a result of its training on extensive datasets, allowing for more accurate
keypoint detection irrespective of varied backgrounds. Furthermore, data variability due
to individual differences poses a challenge to the robustness of our system. We will ad-
dress these shortcomings by expanding the dataset to include broader data reflecting
different individuals.

6. Conclusions

In this research, we aimed to improve sign language recognition with occlusion accu-
racy by combining CNN + BiLSTM and also combining bending sensor data with skeleton
data. The combination of the CNN + BiLSTM method with sensor data enabled better
finger character recognition than using either the CNN or BiLSTM method alone. However,
there were limitations in acquiring spatial information, such as blind spot problems. There-
fore, we used a 2-axis bending sensor to assist with spatial information. The performance
evaluation of the original 2-axis bending glove further strengthened the spatial information
of sign language. By using sensor data, we were able to improve sign language recognition
accuracy in the presence of occlusion compared to skeleton data alone.

However, there are still some problems in the system that need to be solved urgently.
The current handling of occlusion data is relatively simplistic. There is a lack of consid-
eration for varying conditions such as shadows and overexposure. This may lead to a
decrease in accuracy in practical applications. Additionally, the bending sensor alone
cannot distinguish between certain sign language movements that have identical finger
bends, thereby limiting its effectiveness in providing discriminative information. When the
camera is blocked, there are limitations to using only bending sensors for supplementary
information. Therefore, it is necessary to integrate inertial sensors to capture the hand’s
posture and the upper limb’s skeleton.

Future work can be made to provide the system with complementary hand movement
measurement data of more different modalities and try to improve the data fusion method.
The recognition rate using only bending sensors is very low. Integrating IMU sensors
into the data gloves presents an opportunity to further enhance the fusion system’s sign
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language recognition rate in occlusion situations. Furthermore, the credibility or reliability
of the bending sensor and camera fluctuates with environmental changes. Introducing
Trust-Level Fusion to combine the data could potentially improve system stability.
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