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Abstract: As the scale and complexity of electrical grids continue to expand, the necessity for
robust fault detection techniques becomes increasingly urgent. This paper seeks to address the
limitations in traditional fault detection approaches, such as the dependence on human experience,
low efficiency, and a lack of logical relationships. In response, this study presents a cascaded model
that leverages the Random Forest classifier in combination with knowledge reasoning. The proposed
method exhibits a high efficiency and accuracy in identifying six basic fault types. This approach
not only simplifies fault detection and handling processes but also improves their interpretability.
The paper begins by constructing a power fault simulation model, which is based on the IEEE 14-bus
system. Subsequently, a Random Forest classification model is developed and compared with other
commonly used models such as Support Vector Machines (SVMs), k-Nearest Neighbor (KNN), and
Naïve Bayes, using metrics such as the F1-score, accuracy, and confusion matrices. Our results reveal
that the Random Forest classifier outperforms the other models, particularly in small-sample datasets,
with an accuracy of 90%. Then, we apply knowledge mining technology to create a comprehensive
knowledge graph of power faults. At last, we use the transE model for knowledge reasoning to
enhance the interpretability to assist decision making and to validate its reliability.

Keywords: power fault diagnosis; knowledge graph; random forest; transE

1. Introduction

The modern world is heavily reliant on electrical power, making it a critical component
of our infrastructure [1]. However, power systems are susceptible to various types of
faults, including short circuits, voltage fluctuations, equipment failures, and environmental
disturbances [2]. These faults can lead to power outages and equipment damage, and even
pose risks to public safety [3]. The economic and social consequences of power faults are
significant, emphasizing the need for robust fault detection and diagnosis methods.

Efficient fault detection techniques are essential to mitigate the impact of power faults.
Rapid identification and localization of faults allow power grid operators to take corrective
actions promptly, reducing downtime and minimizing economic losses [4]. Furthermore,
early fault detection can prevent cascading failures and ensure the stability of the entire
power system. Therefore, the development of accurate and reliable fault detection methods
is of utmost importance in the field of power system engineering.

Various methods have been proposed for power fault detection over the years [5],
encompassing a wide spectrum of approaches. These range from traditional techniques like
rule-based systems, which rely on predefined heuristics and thresholds, to more advanced
methodologies such as machine learning and data-driven methods [6]. Expert systems, for
instance, are designed to harness human knowledge by encoding expert rules, enabling
them to detect faults with a certain degree of expertise [7].

Support Vector Machines (SVMs), on the other hand, provide a potent tool for classifi-
cation tasks, including fault detection, by identifying optimal hyperplanes for separating

Electronics 2023, 12, 4808. https://doi.org/10.3390/electronics12234808 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12234808
https://doi.org/10.3390/electronics12234808
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12234808
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12234808?type=check_update&version=1


Electronics 2023, 12, 4808 2 of 14

different classes [8]. Recent years have witnessed the ascendancy of Convolutional Neural
Networks (CNNs) and Graph Neural Networks (GNNs), particularly in the realms of image-
and graph-based data, where their capabilities have shone in power fault detection [9,10].

Naive Bayes, rooted in the principles of Bayes’ theorem, employs probabilistic reason-
ing to make predictions based on statistical probabilities, making it a valuable addition to
the arsenal of fault detection methods [11]. On the other hand, the simplicity and effec-
tiveness of k-Nearest Neighbor (KNN) lie in its ability to classify data points based on the
majority class among their nearest neighbors, a feature that makes it an attractive option
for many applications, including power fault detection [12].

Despite their promise, each of these methods comes with its own set of limitations
that can impede their effectiveness. Traditional rule-based systems, characterized by their
reliance on predefined heuristics, can struggle to adapt to dynamic conditions and are often
ill suited to the management of complex, interconnected power systems. Deep learning
techniques like CNNs and GNNs frequently require large quantities of labeled data for
training, posing significant challenges in the context of power system fault detection.
Furthermore, the performance of KNN can be highly sensitive to the choice of distance
metric and the number of neighbors selected, making it important to fine-tune these
parameters for optimal results. Additionally, one common drawback shared by many of
these methods is their lack of interpretability, making it challenging to gain insights into
the underlying causes of detected faults.

While these methods have advanced the field of power fault detection, the need
for fault detection techniques that are both interpretable and adaptable to the complex,
evolving nature of modern power systems remains unmet. The inability to gain a deep
understanding of why certain faults are detected and the challenges in adapting existing
methods to new conditions underscore the necessity for innovative approaches.

This paper introduces a novel approach to power fault detection that aims to overcome
the limitations of existing methods. As shown in Figure 1, our proposed method leverages
the power of knowledge graphs, which allows us to represent and model the complex
relationships and dependencies within power systems. By capturing the knowledge of
experts and historical data, we create a structured representation of the power grid, making
it easier to identify and analyze faults.

To enhance the accuracy and robustness of our approach, we integrate knowledge
graphs with the power of random forests, a machine learning ensemble method. This com-
bination allows us to harness the strengths of both approaches, leveraging the structured
knowledge encoded in the graph while benefiting from the predictive power of random
forests. The result is a powerful and adaptable fault detection model that can handle the
intricacies of modern power systems.

In the subsequent sections of this paper, we will delve into the details of our proposed
knowledge-graph-based fault detection method, its implementation, and its performance
evaluation. We believe that this approach holds the potential to significantly improve the
reliability and efficiency of power fault diagnosis, ultimately contributing to the stability
and resilience of our electrical power systems.

Figure 1. Random Forest–transE combined model.
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2. Power Fault Model

With the continuous development of the power industry, the scale of power systems is
getting increasingly larger. In order to avoid the limitations of the scale and complexity of
the power system, and for the safety and reliability of the experiment, MATLAB simulations
are employed for modeling and analyzing the actual operation of the power system.
The IEEE 14-bus system is a commonly used standard test system in power systems for
simulating and analyzing various phenomena, such as stability, power flow, and power
faults [13]. It consists of 14 nodes, including 4 generator nodes, 3 load nodes, and 7 switch
nodes. Through simulation, we can more intuitively understand the operation of the power
system and can easily measure data under various fault conditions [14].

2.1. Structures and Elements

The various components of the power grid include generators, transformers, switchgear,
and transmission lines [15]. Generators are devices used to convert other energy sources
into electricity, transformers are devices used to enhance or reduce current and voltage,
switchgear is used to control the flow of electricity and maintain the proper operation of the
equipment, and transmission lines are devices used to transport electricity from the power
plant to the substation and then through the distribution grid to the consumer. All of these
components need to maintain a high degree of stability and reliability during operation to
ensure the normal operation of the power system.

In this paper, we have extracted the constituent elements of the grid, including the
generators, transformers, transmission lines, low-voltage lines, and power-using elements,
and then modelled these structures.

2.2. Fault Classification

A power failure refers to a problem or malfunction in the power supply system that
results in the inability to transmit or provide electricity effectively. As shown in Figure 2,
power failures can typically be categorized into two aspects: short circuit faults and open
circuit faults [16].

Figure 2. Basic power fault types.

2.2.1. Short Circuit Fault

A short circuit fault is an electrical fault that occurs when there is an unintended
low-resistance pathway for the electrical current to flow, leading to overheating, sparks, fire,
or even electrical shock hazards. Short circuit faults can be classified into two main types.

Symmetrical Faults: Also known as balanced faults, symmetrical faults occur when
all three phases of an electrical system experience the same level of fault. This can happen
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due to reasons such as conductor insulation failure, direct contact between conductors of
different phases, or faulty equipment.

Unsymmetrical Faults: Unsymmetrical faults, also known as unbalanced faults, occur
when the fault affects one or more phases of the electrical system differently. This can
occur due to reasons such as phase-to-phase or phase-to-ground faults, faulty insulation, or
equipment failure.

2.2.2. Open Circuit Fault

An open circuit fault refers to a discontinuity or break in an electrical circuit which
prevents the flow of current. This interruption can occur in one or multiple conductors
within the circuit, leading to different types of open circuit faults.

One-conductor open fault: In this type of fault, a single conductor in the electrical
circuit is broken or disconnected, causing a gap in the flow of electricity. As a result, current
cannot pass through the affected conductor, and the circuit becomes incomplete. This fault
could be due to a broken wire, a loose connection, or a faulty component.

Two-conductor open fault: Unlike the previous fault, a two-conductor open fault
involves the simultaneous breakage or disconnection of two conductors in the circuit.
As a result, two separate gaps are created, preventing the flow of current through both
conductors. This fault could occur due to multiple causes, such as physical damage,
incorrect wiring, or faulty components.

2.3. Model Construction

The power system model contains a three-phase source, connected to an RLC load
(three-phase series RLC load), connected to a three-phase transformer (three-phase trans-
former) via a three-phase PI section Line, and finally connected to a three-phase transformer
by a three-phase PI section Line. The three-phase PI section line is connected to the three-
phase transformer. Finally, the three-phase fault and three-phase breaker simulate various
faults, and the real-time parameters are measured by an oscilloscope to analyze the voltage
of each phase sequence of the fault [17].

3. Power Fault Graph

The knowledge graph of a power fault is a comprehensive representation of various
aspects related to electricity disruptions [18]. It encompasses the causes, consequences,
and preventive measures associated with power outages. Through interconnected nodes
and links, the graph organizes and visualizes the intricate network of factors, such as
equipment malfunctions, natural disasters, and human errors, that can result in power
failures. This knowledge graph provides a valuable resource for understanding and
analyzing power disruptions, aiding in their prevention and facilitating prompt resolution
when they occur [19].

3.1. Graph Construction

Constructing a power fault knowledge graph involves four essential steps: data
acquisition, knowledge extraction, integration, and quality improvement [20,21]. The
process is shown in Figure 3.

Data acquisition involves gathering information from diverse sources such as books,
the internet, and expert experience to obtain domain-specific knowledge on power faults.

Knowledge extraction employs techniques like crawling, parsing, and fact extraction.
Crawling systematically browses sources, parsing organizes and structures data, and fact
extraction identifies specific factual information related to power faults.

Integration combines the extracted information to construct a coherent and intercon-
nected knowledge graph. This process includes knowledge linking, establishing relation-
ships between information, and knowledge fusion, merging diverse knowledge sources to
ensure consistency and avoid redundancy.
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Quality improvement enhances the constructed graph’s overall quality. It includes
knowledge completion and correction. Knowledge completion fills gaps or missing in-
formation by leveraging additional sources or expert input, while knowledge correction
rectifies inaccuracies or errors for reliable information.

Figure 3. Power fault KG construction diagram.

3.2. Power Fault Knowledge Graph Framework

The electric power domain’s knowledge graph framework consists of four indispens-
able components: the equipment entity graph, the concept graph, the business logic graph,
and the fault case graph [22]. The equipment entity graph comprehensively captures
detailed information about physical assets and devices within the power system, thus
enabling a holistic view of the infrastructure.

Incorporating semantic knowledge, the concept graph augments the power fault
knowledge graph by defining relationships and associations between equipment entities,
significantly enhancing reasoning capabilities. Meanwhile, the business logic graph in-
tegrates operational rules and regulations, providing guidance for the power system’s
operation, monitoring, and maintenance practices.

Furthermore, the fault case graph serves as a repository of historical and simulated
data, housing fault records, potential causes, and diagnostic outcomes. This repository
facilitates timely fault detection, diagnosis, and resolution.

Collectively, these components synergize to create a comprehensive and dynamic
power fault knowledge graph. This knowledge graph is pivotal in optimizing system
performance and bolstering the reliability of power systems.

4. Random Forest Algorithm

In recent years, machine learning techniques have gained significant attention in the
field of power fault detection due to their ability to handle complex and non-linear patterns
in power system data. The Random Forest (RF) classifier, a popular ensemble learning
algorithm, has shown promise in this regard for its ability to handle high-dimensional
power fault data [23]. This section explores the application of RF classifiers for power fault
detection. We delve into the principle of the algorithm, discuss parameter settings, and
present experimental results, including comparative experiments with other algorithms,
along with the evaluation of their performance.

4.1. Principle of the Algorithm

Random Forest is an ensemble learning algorithm that is widely used for classification
tasks. It is based on the idea of decision trees and combines multiple trees to make robust
predictions. The key principles of the Random Forest algorithm are as follows.

Decision trees: Random Forest is built upon decision trees, which are simple models
that partition data into subsets based on feature values. Each tree learns from a random
subset of the training data and features, making them less prone to overfitting [24].
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Bootstrap aggregating (bagging): Random Forest employs a technique known as
bagging, where multiple decision trees are trained independently on different subsets of
the training data with replacements. This diversity helps reduce variance and improve
overall accuracy.

Random feature selection: Another crucial aspect of Random Forest is the random
selection of a subset of features at each node of the tree. This randomness further reduces
the correlation among the individual trees and leads to better generalization.

Voting or averaging: In the classification task, Random Forest combines the predictions
of individual trees by either majority voting (for classification) or averaging (for regression),
resulting in a final prediction.

4.2. Parameter Settings

To effectively apply Random Forest to power fault detection, appropriate parameter
settings must be chosen. Some key parameters are listed below (Table 1).

Table 1. Parameters settings of random forest classifier.

Parameter Name Parameter Setting

n_estimators 100
criterion gini

max_depth 10
min_samples_split 2
min_samples_leaf 1

min_weight_fraction_leaf 0
max_features auto

max_leaf_nodes 50

4.3. Experimental Design

To assess the effectiveness of Random Forest in power fault detection, we conducted
experiments and compared its performance with other algorithms commonly used in this
domain, including Support Vector Machines (SVMs), k-Nearest Neighbor (KNN) and the
Bayesian classifier (BC). Due to the small sample size, a four-fold cross-validation technique
was employed to maximize data utilization and mitigate overfitting. The performance of
each algorithm was evaluated using various metrics such as the accuracy, precision, recall,
F1-score, and confusion matrix (shown in Figures 4–7).

All simulation experiments were conducted in the Python-PyCharm Community,
Edition 2022, and the MATLAB 2022b environment on a computer featuring a 5.4 GHz
Intel (R) Core (TM) i9-13900 CPU, 16.0 GB RAM, and 64-bit Windows 11.

Figure 4. Confusion matrix of the RF model.
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Figure 5. Confusion matrix of the SVM model.

Figure 6. Confusion matrix of the KNN model.

Figure 7. Confusion matrix of the BC model.

4.4. Results

We obtained 66 sets of fault data after simulation using a power fault model. We used
30% of the data as a test set and the rest as a training set. The results are as follows (Table 2).
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Table 2. Experimental results of four methods.

Method Accuracy Recall Precision F1-Score

RF 0.9 0.9 0.94 0.912

SVM 0.8 0.82 0.875 0.805

KNN 0.667 0.685 0.72 0.675

BC 0.75 0.77 0.85 0.737

Our experimental results indicate that Random Forest classifiers exhibit superior
performance in power fault detection compared to the alternative algorithms. In conclusion,
the application of Random Forest classifiers in power fault detection has shown promising
results, owing to its robustness, generalization capabilities, and ease of parameter tuning.

4.5. Statistical Analysis

In order to test whether the RF algorithm is statistically significantly different from
the other algorithms, we employed the Friedman test to assess the statistical significance.
Subsequently, Nemenyi’s follow-up test was conducted to determine significant differences
between algorithm pairs. Table 3 presents the results of Friedman’s test for the accuracy,
recall, precision, and F1-score metrics.

The p-values in Table 3 indicate significant differences (p < 0.05) among the algorithms
in terms of classification performance on the four data subsets. Based on this observed
significance, the Nemenyi follow-up test examines specific algorithm pairs. Figures 8–11
display Nemenyi test results, revealing that RF significantly outperforms other algorithms
in accuracy, recall, and the F1-score. Notably, RF exhibits superior performance compared
to SVMs and the other two algorithms across various metrics.

In conclusion, the statistical analyses confirm the superiority of the proposed RF
algorithm over alternative methods, demonstrating an enhanced classification performance.

Table 3. The Friedman’s test of the classification capability of all algorithms.

Accuracy Recall Precision F1-Score

χ2 11.09 12 10.79 9.29
df 3 3 3 3
p 0.0111 0.0073 0.0128 0.0255

Figure 8. Nemenyi test results of accuracy.
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Figure 9. Nemenyi test results of recall.

Figure 10. Nemenyi test results of precision.

Figure 11. Nemenyi test results of F1 score.
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5. Knowledge-Based Decision Making

In this chapter, we employed the transE algorithm, a knowledge reasoning technique,
on the power fault knowledge graph that was previously constructed. Through the training
process, we acquired embedded representations of diverse entities and relationships present
in the knowledge graph. These embedded representations encapsulate essential features and
semantics of the entities and relationships, enabling effective reasoning and analysis [25,26].

5.1. TransE Algorithm

The widely used transE [27] algorithm maps entities and relations to low-dimensional
vector representations, enabling semantic representation and inference in knowledge
graphs. Inspired by translation invariance in word vectors, transE represents the rela-
tionship between entities as the vector difference between them, resulting in a simple and
efficient algorithm. During model training, the algorithm learns certain semantic informa-
tion. Given a triad (h, r, t), the goal of transE is to make the vector h + r approximate the
vector t, representing the transfer of h to r. This relationship is depicted in the following
Figure 12.

Figure 12. TransE algorithm schematic diagram.

5.2. Knowledge Reasoning

To utilize the obtained embeddings, we use the scoring function, denoted as f (h, r, t),
which takes a fault type as the head entity [28]. The relationship, denoted as r, can be
selected from fault characteristics, suggested solutions, or historical cases, depending on
the analysis requirements. By inputting the fault type and relationship into the scoring
function, we obtain a score for each potential tail entity.

fr(r, t) = −
∥∥∥~h +~r −~t

∥∥∥
1/2

(1)

The selected tail based on the obtained scores entity offers abundant information
pertaining to the specific fault being investigated. By leveraging this approach, we enhance
the comprehensive understanding of power faults, enabling more effective fault diagnosis,
analysis, and decision making [29].

5.3. Result

After training with the transE algorithm, we obtained the embedding representations
of the power fault knowledge graph. While receiving the fault types passed by the Ran-
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dom Forest classifier, the scoring function calculates the scores for the possible outcomes
and takes the highest scoring outcome as the output. We will use MR, MRR, HITS@1,
and HITS@3 as evaluation metrics, and the following Table 4 displays the results of this
approach [30].

Table 4. Experimental results of transE.

Metric MR MRR HITS@3 HITS@10

Test sample 1.672 0.817 0.867 0.912

The results show that this method performs well. The model achieved a Mean Rank
(MR) of 1.672, signifying the model’s ability to rank correct answers higher within a list
of possibilities. Furthermore, the HITS@3 score of 0.867 reflects the model’s strong perfor-
mance in correctly predicting relationships, with the correct answer frequently ranking
within the top three. This is due to the fact that power fault knowledge graphs are mostly
one-to-one relationships well suited for transE.

6. Power Fault Diagnosis and Decision-Making Model

These diverse model’s results were integrated into a robust and all-encompassing
framework for fault classification, detection, and decision support within the intricate
domain of electric power systems. The primary dataset comprises power fault data, metic-
ulously collected and preprocessed, which are then subjected to an advanced machine
learning approach, namely the Random Forest classifier. This classification step serves as
a crucial initial gatekeeper, as it effectively discerns the specific category or nature of the
fault occurrence, allowing for precise diagnosis.

Subsequently, the identified fault type becomes the linchpin of a more elaborate
knowledge reasoning model. This model acts as an intellectual cornerstone, facilitating
operators and engineers to access many domain-specific insights and recommendations.
These insights include historical patterns, potential root causes, recommended mitigation
strategies, and even expert guidance on handling similar incidents. This dynamic fusion of
data-driven classification and knowledge-driven reasoning empowers decision makers to
make well-informed choices and respond swiftly to electrical power faults.

This comprehensive end-to-end solution optimizes the entire workflow, streamlining
the process from raw fault data to effective solutions. In doing so, it significantly elevates
the operational efficiency, reduces downtime, and ultimately contributes to the reliability
and sustainability of the electric power infrastructure.

7. Discussion and Limitations
7.1. Discussion

We propose a combined model. It enables automatic output of the corresponding fault
type and various information related to the fault based on the observed time-series voltage
data. One of the primary contributions of our research is the substantial improvement
in fault diagnosis accuracy. Our integrated model, which employs a Random Forest
classifier as a fault detection algorithm, has demonstrated a substantial enhancement in
the precision of fault identification. Through extensive testing and validation, we have
consistently achieved accuracy rates exceeding 90%, outperforming modern machine-
learning-based approaches.

Another important result is the successful incorporation of domain knowledge into
our fault diagnosis process. Our model’s knowledge base includes a comprehensive
repository of historical data, industry standards, and expert-generated rules. This ensures
that our system not only detects faults but also provides a more contextually relevant
understanding of the issues at hand. We believe this integration of domain knowledge sets
our approach apart from other purely data-driven methods and significantly contributes to
the interpretability and reliability of our results.
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Our method also excels in terms of interpretability, which is essential for power grid
operators who need to understand the reasoning behind fault diagnoses. The system
provides detailed explanations for its decisions, showing how it arrived at a particular
diagnosis. This transparency allows operators to trust and act upon the provided insights,
reducing the risk of human–machine miscommunication.

Furthermore, our solution’s scalability is a key feature. We have designed the system
architecture to be modular and flexible, allowing it to seamlessly incorporate improvements
in fault detection and knowledge-reasoning algorithms. As these algorithms evolve and
improve, our model’s accuracy and effectiveness will continue to increase. This scalability
ensures that our system can adapt to the evolving demands of the power industry, which is
characterized by an ever-expanding power grid and the constant need for efficient fault
diagnosis and handling. It also makes our solution future-proof, positioning it to play a
pivotal role in the ongoing transformation of the power sector.

7.2. Limitations

Limited by experimental conditions, the fault data in this paper are mainly from the
simulation of power system faults in the IEEE 14-bus system, and thus the data quality
is not high enough. However, due to the good robustness and generalization ability of
the Random Forest classifier, the performance would be maintained if trained with better
quality data. In addition, we have only explored the voltage data observed under the six
basic fault types, and although this essentially covers most fault situations, other fault
types, such as complex faults caused by combinations of several basic fault types, still exist.
There are limitations under some certain situations.

8. Conclusions

In conclusion, our study has introduced a novel combined model that leverages the
synergy between knowledge graphs and machine learning algorithms, achieving a higher
level of integration and automation compared to prior research efforts. This combined
model integrates two specialized sub-models for fault detection and knowledge reasoning,
both of which have demonstrated a strong performance.

The key contributions of our research lie in providing end-to-end solutions for the
classification, diagnosis, and handling of most basic fault types. As a modular model, it
excels in terms of modularity, specialization, and flexibility, allowing for easy adaptability
to various fault scenarios.

While our model showcases advantages in interpretability and scalability, there is
room for improvement. Future research directions include enhancing the quality and
scale of our dataset, improving the knowledge reasoning model to accommodate complex
relationships, refining the fault detection algorithm for greater accuracy, and extending
the model’s capabilities to diagnose and handle more complex fault types. Addressing
these areas in future work will further bolster the model’s performance and expand its
applicability to a broader range of fault scenarios, contributing to the ongoing advancement
of fault detection and handling in power systems.
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Abbreviations
The following abbreviations are used in this manuscript:

LL fault Line-to-Line fault
LG fault Single Line-to-Ground fault
LLG fault Double Line-to-Ground fault
LLL fault Three-phase short circuit fault
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