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Abstract: We analyze the comparative performance of predicting the transition from normal to
abnormal vibration states, simulating the motor’s condition before a drone crash, by proposing a
concatenated vibration prediction model (CVPM) based on recurrent neural network (RNN) tech-
niques. Subsequently, using the proposed CVPM, the prediction performances of six RNN techniques:
long short-term memory (LSTM), attention-LSTM (Attn.-LSTM), bidirectional-LSTM (Bi-LSTM), gate
recurrent unit (GRU), attention-GRU (Attn.-GRU), and bidirectional-GRU (Bi-GRU), are analyzed
comparatively. In order to assess the prediction accuracy of these RNN techniques in predicting
concatenated vibrations, both normal and abnormal vibration data are collected from the motors
connected to the drone’s propellers. Consequently, a concatenated vibration dataset is generated
by combining 50% of normal vibration data with 50% of abnormal vibration data. This dataset is
then used to compare and analyze vibration prediction performance and simulation runtime across
the six RNN techniques. The goal of this analysis is to comparatively analyze the performances of
the six RNN techniques for vibration prediction. According to the simulation results, it is observed
that Attn.-LSTM and Attn.-GRU, incorporating the attention mechanism technique to focus on in-
formation highly relevant to the prediction target through unidirectional learning, demonstrate the
most promising predictive performance among the six RNN techniques. This implies that employing
the attention mechanism enhances the concentration of relevant information, resulting in superior
predictive accuracy compared to the other RNN techniques.

Keywords: recurrent neural network (RNN); time series concatenated vibration; vibration
prediction; long short-term memory (LSTM); gated recurrent unit (GRU); attention mechanism;
bidirectional RNN

1. Introduction

Unmanned drones have recently gained prominence as a core technology of the
fourth industrial revolution. Drones find extensive applications in diverse fields, including
transportation [1–4], search and rescue operations [5–11], and agriculture [12–17]. Moreover,
research is ongoing to effectively control drones in the applications mentioned above [18,19].
According to the ‘Drone Market Analysis’ by Drone Industry Insights, released in 2022, the
size of the drone market in 2022 is approximately $30.6 billion, and it is expected to grow
to about $55.8 billion by 2030 with an average annual growth rate of 7.8% [20].

However, drone crashes can lead to significant incidents, such as fires caused by battery
explosions or even accidents resulting in human casualties. According to a drone safety
survey released by the Korea Consumer Agency, the trend of safety incidents involving
drones is on the rise as the purchase of drones for leisure increases, with drone crashes
accounting for approximately 20% of the reported incidents [21]. Therefore, research has
been conducted to detect anomalies by training and predicting time series vibration data
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using recurrent neural network (RNN). Table 1 below illustrates previous studies where
RNN techniques are employed to train and predict time series vibration data.

Table 1. Previous research on RNN-based predictions of time series vibration data.

Purpose Studies Models Evaluation Criteria

Prediction of spindle rotation error Liang et al. [22] Bi-LSTM Accuracy

Prediction of bearing life Han et al. [23] LSTM MSE, RMSE, and MAE

Prediction of turbine condition Adlen et al. [24] LSTM, GRU, etc. RMSE, MAE, and MAPE

Fault detection of gear Li et al. [25] GRU, CNN Accuracy, loss, and training time

Fault detection of quadcopter Zhang et al. [26] LSTM Accuracy

Fault detection of bearings and gearboxes Ruslan et al. [27] RNN and CNN Accuracy

Fault detection of motor

Xiao et al. [28] LSTM, RNN, etc. Accuracy
Huang et al. [29] LSTM, GRU, etc. Accuracy and loss
Wang et al. [30] LSTM, GRU, etc. RMSE, MAPE, and MSE
Wang et al. [31] LSTM Accuracy

Prediction of vibration

ElSaid et al. [32] LSTM MSE, MAE
Zhu et al. [33] GRU and ANN RMSE
Yang et al. [34] RNN, LSTM, etc. MAE, MSE, RMSE, etc.

Hong [35] LSTM, GRU, etc. Accuracy and sim. runtime
Lee et al. [36] LSTM, GRU, etc. Accuracy and sim. runtime

As shown in Table 1, research has been conducted in various fields using RNN
techniques to train and predict vibrations. Furthermore, a previous study [36] forecasted
both normal and abnormal drone vibrations individually using six RNN techniques: long
short-term memory (LSTM), attention-LSTM (Attn.-LSTM), bidirectional-LSTM (Bi-LSTM),
gate recurrent unit (GRU), attention-GRU (Attn.-GRU), and bidirectional-GRU (Bi-GRU).
However, the previous studies had limitations, as they predicted normal and abnormal
vibrations separately without considering the transition from normal to abnormal vibrations
in real-world scenarios when the motor of a drone is damaged.

Therefore, in this study, an RNN-based concatenated vibration prediction model
(CVPM) is proposed to comparatively analyze the performance of predicting concate-
nated vibrations transitioning from normal to abnormal states. Furthermore, six RNN
models—LSTM, Bi-LSTM, Attn.-LSTM, GRU, Attn.-GRU, and Bi-GRU—are applied to
assess the comparative prediction accuracy and simulation runtime of the concatenated
vibrations using identical simulation parameters, including the optimizer and the number
of hidden units. Subsequently, the vibration prediction accuracy of the six RNN tech-
niques is analyzed in relation to simulation runtime using the proposed CVPM. The major
contributions of this study are summarized as follows:

1. Since previous studies focused on researching normal and abnormal vibrations sepa-
rately, the CVPM is proposed to analyze the predictive performance of the six RNN
techniques for concatenated vibrations. These concatenated vibrations represent the
transition from normal to abnormal states reflecting the sudden damage to the motor.

2. This study involves a comparative analysis of the prediction efficiency of the six
RNN techniques, examining not only the prediction accuracy but also the simulation
runtime. The initiative that we took to examine the simulation runtime for each of
the six RNN techniques utilized in the CVPM, Attn.-LSTM, bi-LSTM, Attn.-GRU, and
Bi-GRU techniques, is one of the major contributions of our study.

3. Using the proposed CVPM, we conducted an analysis of the vibration prediction
performance by progressively increasing the training segment of the concatenated
vibrations from 40% to 90% in increments of 10%. These simulations allowed us to
identify the training data segments where the prediction accuracy values of the six
RNN techniques converged.



Electronics 2023, 12, 4778 3 of 21

The remainder of this paper is organized as follows: Section 2 reviews previous re-
search related to the prediction of time-series vibrations using various RNN techniques. In
Section 3, the proposed CVPM is described, along with the description of the synthesized
concatenated vibration dataset utilized to analyze the predictive performance of the six
RNN techniques. Section 4 provides an insight into the techniques employed to predict
concatenated vibrations, including LSTM, GRU, attention mechanism, and bidirectional
techniques. Section 5 conducts a comprehensive analysis, comparing vibration prediction
accuracy, simulation runtime, and the relationship between simulation runtime and predic-
tive accuracy for the six RNN techniques. Finally, Section 6 summarizes the conclusions
and describes future research.

2. Related Work

In recent years, machine learning algorithms have become popular due to the rapid
development of software and hardware. As a result, research on predicting vibrations using
machine learning and deep learning has been actively conducted. This section introduces
studies related to fault detection and vibration prediction, highlighting their importance in
Industry 4.0.

Wang et al. [31] introduce a fault diagnosis method for miniature vibration motors.
This method combines wavelet packet decomposition with an improved three-layer LSTM
network to enhance accuracy. ElSaid et al. [32] conducted a study on predicting excess
vibration events in aircraft engines, a crucial aspect of the aviation industry. They utilized
LSTM for accurate predictions, which yielded promising results with low error rates.
Wang et al. [30] introduce a model for predicting and analyzing vibration severity in steam
turbine rotor systems. This model combines sequence prediction with GRU and GRU-
Seq2Seq to address the gradient disappearance problem, outperforming back-propagation
(BP) and LSTM-Seq2Seq models. Hong [35] applied LSTM and GRU models to forecast
vibrations based on time series motor data, comparing their accuracy and simulation
runtime efficiency. This research indicates that GRU forecasts vibrations faster than LSTM.

Additionally, research has been conducted on predicting vibrations using LSTM,
support vector machines (SVMs), artificial neural network (ANN), and RNN techniques.
Xiao et al. [28] introduce a fault diagnosis method for three-phase asynchronous motors
using RNNs. Experimental tests on six motors under different fault conditions demon-
strate that this approach outperforms other methods, including logistic regression (LR),
SVM, multi-layer perceptron (MLP), and basic RNN, in terms of fault diagnosis accu-
racy. Zhu et al. [33] applied the variational mode decomposition (VMD) technique to
predict vibrations using SVM, ANN, and GRU techniques and conducted a comparative
analysis of their performance. The results show that among these methods leveraging
VMD, VMD-GRU demonstrated the most accurate predictive performance. Furthermore,
Zhang et al. [26] introduced an LSTM-based fault detection and identification (FDI) method
for quadcopter blades based on airframe vibration signals. This method outperforming
the Back Propagation (BP) neural network-based FDI model, especially when dealing with
larger volumes of vibration data.

Furthermore, studies have been conducted to predict performance by combining
RNN and convolutional neural network (CNN) technologies. Li et al. [25] proposed a
method that combines a CNN trained with acoustic emission signals and a GRU network
trained with vibration signals, resulting in highly accurate gear pitting fault diagnosis
with over 98% accuracy. The combination of CNN and GRU effectively leverages the
advantages of both networks, demonstrating superior performance compared to using
CNN or GRU individually.

Research has been conducted using Bidirectional RNN technology, which simul-
taneously processes input data in both forward and backward directions, considering
information from both directions, to predict vibrations. Liang et al. [22] proposed a method
to predict spindle rotation error that involves three key steps: data preprocessing, train-
ing a Bi-LSTM classification network, and predicting spindle rotation error. This method
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demonstrates the effectiveness of this predictive approach. Adlen et al. [24] conducted
research using LSTM, Bi-LSTM, and GRU to predict the condition of wind turbine opera-
tions based on vibration time series data. In this study, Bayesian optimization was used
to fine-tune the training parameters. The results demonstrate that these models achieved
more accurate predictions of wind turbine conditions compared to models trained with
conventional parameters.

Additionally, studies predicting vibrations were conducted using Autoencoder and
RNN techniques. Han et al. [23] used LSTM techniques to predict the remaining useful
life (RUL) of bearings through an approach that involves two models: degradation state
model and RUL prediction model. This approach utilizes a stacked autoencoder (SAE)
to extract health indications (HIs) from selected features in the degradation state model
and employs an LSTM for RUL prediction with standard deviation input and HI training
labels. Huang et al. [29] introduced a two-stage machine learning architecture for accurate
motor fault prediction based solely on motor vibration time-domain signals, avoiding
complex preprocessing. In the first stage, they use the RNN-based Variational Encoder
(VAE) method to reduce dimension and improve prediction accuracy. The second stage
employs Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA)
for further dimension reduction, enabling clear visualization and detection of different
fault modes. This approach simplifies fault detection, reduces computational costs, and
enhances classification accuracy.

A study predicting vibrations was conducted using RNN and Attention techniques
together. Yang et al. [34] introduces Informer into time series forecasting of motor bearing
vibration. Through random search for model parameter optimization, Informer successfully
minimizes error accumulation, improving forecasting accuracy. Lee and Hong [36] analyzed
that RNN models with attention mechanisms are the most suitable for predicting time
series normal and abnormal vibration data, addressing that future research will focus on
predicting vibrations in near real-time with coexisting normal and abnormal vibrations.

To sum up, most existing studies utilize RNN techniques to predict time series normal
and abnormal vibrations separately. Therefore, the previous studies lack consideration of
the transition of the vibration states from normal to abnormal when the actual motor is
damaged. Hence, research predicting vibrations that reflect the transition from normal to
abnormal vibration states is highly required.

3. Methodology
3.1. Proposed Concatenated Vibration Prediction Model

In this subsection, the proposed CVPM designed for forecasting concatenated vibra-
tions using six distinct RNN techniques is described. The goal of the proposed CVPM
is to comparatively analyze the prediction accuracy and simulation runtime of the six
RNN techniques.

Figure 1 shows the flowchart of the proposed CVPM. According to Figure 1, it starts
by collecting both normal and abnormal vibration data from the motors connected to the
drone’s propellers. Then, it generates concatenated vibration data by merging 50% of
the normal vibration data with 50% of the abnormal vibration data. This concatenated
vibration data represents the transition from the normal to abnormal vibration. Then, the
concatenated vibration data is divided into training and testing datasets, with percentages
ranging from 40% to 90%. The training data consists of 40%, 50%, 60%, 70%, 80%, and 90%
of the concatenated vibration data, while the remaining portions, 60%, 50%, 40%, 30%, 20%,
and 10%, form the testing dataset.

Subsequently, the proposed CVPM is employed to train on the segmented concate-
nated vibration data from 40%, 50%, 60%, 70%, 80%, and 90% segments using six different
RNN techniques and to predict respectively the remaining 60%, 50%, 40%, 30%, 20%, and
10% segments. Finally, to assess predictive accuracy, the evaluation involves comparing
and analyzing the coefficient of determination, R2 values, among the predictions of the
six RNN techniques and the corresponding testing dataset. This assessment is conducted
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alongside an examination of the simulation runtimes for the six RNN techniques. By
comparing R2 values and simulation runtimes, the performance of each RNN technique in
predicting concatenated vibrations is comprehensively analyzed. Subsequently, the most
suitable RNN technique for concatenated vibration prediction is determined through this
comparative analysis.
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3.2. Generation of Concatenated Vibration Data

This section describes the methodology for collecting both normal and abnormal
vibration data from the motors connected to an actual drone’s propellers. Subsequently, the
process of generating concatenated vibration data is explained, entailing the combination of
50% of the normal vibration data with 50% of the abnormal vibration data. This generation
of the concatenated vibration dataset effectively models the transition from normal to
abnormal vibrations.

Figure 2 shows the configuration for collecting time series vibration data using an
accelerometer attached to a motor. Subsequently, vibration data within the 1 kHz frequency
band is acquired over a duration of 100 milliseconds through an acceleration sensor affixed
to the drone’s motor.
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Figure 3a,b show the normal motor and the abnormal motor with damaged rotors,
respectively. The motor in Figure 3 has a rated speed of 180 Kv, a maximum output power
of 1474.6 W, and a maximum torque of 1.992 N·m. In order to collect vibration data from the
normal motor and damaged motors, the rotation rate of the motors is set at 1200 revolutions
per minute (RPM). Furthermore, the abnormal vibration data collected from the damaged
motor were obtained after the vibrations had progressed to the advanced stage.
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The collected normal vibration data and abnormal vibration data undergo min—max
normalization, as represented by Equation (1), resulting in values between 0 and 1.

xnorm =
x−min(x)

max(x)−min(x)
(1)

where x and xnorm represent an individual vibration value from the collected vibration
data and the normalized vibration value, respectively. Figure 4 (below) illustrates the
waveforms of the normalized normal and abnormal vibration data.
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According to Figure 4, the vibration waveform of the normal motor shows consistent
wavelengths and amplitudes, while the waveform of the abnormal vibration data appears
irregular with varying wavelengths and amplitudes compared to the normal vibration
waveform. The abnormal vibration also contains more residual vibrations. Furthermore,
since the abrupt transition from normal vibrations to abnormal vibrations due to the
sudden damage to the motor is assumed, the vibration used for prediction is generated by
concatenating normal and abnormal vibrations.

Figure 5 illustrates the waveform of the concatenated vibrations, created by concate-
nating 50% of normal vibration data with 50% of abnormal vibration data. By using the
50:50 ratio of normal and abnormal vibrations, as illustrated in Figure 5, the proposed
CVPM can simulate predictions covering various vibration scenarios. This includes cases
with normal vibrations only and the ones with a combination of normal and abnormal vi-
brations. The proposed CVPM achieves these scenarios by employing segments comprising
40%, 50%, 60%, 70%, 80%, and 90% of the vibration data for the learning segment.
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4. RNN

This section describes the usage of LSTM and GRU to predict the vibration, the
attention mechanism applied to Attn.-LSTM and Attn.-GRU, and the bidirectional method
applied to Bi-LSTM and Bi-GRU.

4.1. LSTM

RNN is a neural network model with a recurrent structure, capable of time series
prediction by leveraging the characteristic where the output of the previous time step
influences the output of the current time step. Nevertheless, conventional RNNs encounter
the challenge of long-term dependency, resulting in information loss as the input sequence
length grows. For example, when information from earlier time steps holds significant
importance, the issue of long-term dependencies can have severe repercussions.

LSTM is a specialized type of RNN architecture designed to address the vanishing
gradient problem and to capture long-term dependencies in sequential data [37]. LSTM
networks are equipped with memory cells that can store information for extended periods,
enabling them to effectively retain and utilize relevant information from previous time steps
in a sequence. The distinct design of LSTM allows it to alleviate the issues of short-term
memory limitations that traditional RNNs face. By allowing the network to train when to
store, read, or erase information, LSTM can capture intricate dependencies and patterns in
various types of sequential data, such as time series, natural language, and speech.

In the architecture of an LSTM cell, there are three essential gates: forget gate, input
gate, and output gate. These gates play a crucial role in managing the flow of information
through the cell, which is essential for capturing long-term dependencies in sequential data.
Figure 6 below shows the architecture of LSTM.
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In Figure 6, C,
∼
C, h, t, and x refer to the cell state, candidate values to be added to

the cell state, the output value, the time step, and the input value, respectively. Moreover,
f, i, and o represent the forget gate, the input gate, and the output gate, correspondingly.
Equations (2)–(7) below represent the expressions for the variables that constitute the LSTM.

ft = σ
(

W f · [ht−1, xt] + b f

)
, (2)

it = σ(Wi · [ht−1, xt] + bi), (3)

ot = σ(Wo · [ht−1, xt] + bo), (4)

∼
Ct = tanh(WC · [ht−1, xt] + bC), (5)

Ct = ft � Ct−1 + it �
∼
Ct, (6)

ht = ot � tanh(Ct) (7)

Equation (2), Equation (3), and Equation (4) represent the formulations of the forget
gate, the input gate, and the output gate, respectively. Equations (5)–(7) elucidate the LSTM
cell’s process of determining the cell state and hidden state. In Equation (2), Equation (3),
Equation (4), and Equation (5), the symbols W and b represent the trainable weight matrix
and the bias vector, respectively.

Equation (2) represents the output of the forget gate, which determines the information
to be forgotten in the cell state. This gate plays a crucial role in deciding what information
should be retained or discarded within the cell state. The forget gate receives two inputs:
the input for the hidden state from the previous time step, ht−1, and the input for the
current time step, xt.

Equation (3) represents the output of the current time step’s input gate, which deter-
mines the information to be newly added to the cell state at the current time step. The value
of the input gate at the current time step is calculated through a neural network operation
involving the previous time step’s hidden state, ht−1, and the current time step’s input, xt,
as inputs.

Equation (4) represents the output gate’s output, which influences the calculation
of the current time step’s hidden state, ht. The current time step’s output gate value is
determined by the previous time step’s hidden state, ht−1, and the current time step’s input,
xt, as inputs to the neural network operation.

Equation (5),
∼
Ct, represents the candidate cell state at the current time step, t. This

candidate cell state is calculated based on the input value at the current time step, xt, and
the previous time step’s hidden state, ht−1. WC denotes the trainable weight matrix, which
determines how to combine the previous time step’s hidden state, ht−1, and the current
time step’s input, xt. [ht−1, xt] represents the vector obtained by concatenating the previous
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time step’s hidden state and the current time step’s input. LSTM employs this mechanism
to selectively add and update information, enabling it to capture long-term dependencies
in the sequential data effectively.

Equation (6), Ct, represents the cell state at the current time step, storing information
learned by the network and retaining valuable information for the current time step. ft
denotes the forget gate at the current time step, t. The forget gate determines how much of
the previous cell state, Ct−1, to retain or to forget. it represents the input gate at the current

time step, t. The input gate determines how much of the new information,
∼
Ct, to add to the

current cell state.
∼
Ct represents the candidate cell state at the current time step, calculated

based on the current input and the previous hidden state, representing new information
that can be added to the current cell state. Therefore, the current cell state, Ct, is updated
by combining what should be forgotten from the previous cell state, denoted as ft � Ct−1,

with the new information to be included, represented as it �
∼
Ct.

Equation (7) represents the process of calculating the hidden state, ht, at the current
time step, t, in LSTM. This equation determines which part of the cell state, Ct, at the
current time step, t, as decided by the output gate, ot, will be used and compresses this
information using the hyperbolic tangent function to calculate the hidden state, ht, at the
current time step. Through this process, LSTM updates the hidden state at the current time
step, combining the previous information with the new information to capture long-term
dependencies in the sequential data.

4.2. GRU

GRU is a technique designed to simplify the structure of LSTM in order to reduce
computational time [38]. GRU offers a streamlined architecture compared to traditional
LSTM while still retaining the ability to capture long-term dependencies in sequential data.
Figure 7 below illustrates the architecture of GRU.
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Figure 7. GRU architecture.

Figure 7 presents the architecture of GRU, equipped with gating mechanisms that
regulate the flow of information through the network. It comprises two gates: reset gate
and update gate. The reset gate determines the extent to which the previous hidden state is
combined with the new input, allowing the model to decide what information to discard
and what to keep, while the update gate controls how much of the previous hidden state
should be retained and how much of the new information should be added to the current
hidden state.

In Figure 7,
∼
h, h, t, and x denote the candidate output value, the output value, the time

step, and the input value, respectively. The variables r and z correspond to the reset gate
and the update gate, respectively. Furthermore, Equations (8) and (9) below represent the
formulas for the reset gate and the update gate, while Equations (10) and (11) describe how
the output value of the GRU cell is determined.

rt = σ(Wr · [ht−1, xt]), (8)
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zt = σ(Wz · [ht−1, xt]), (9)

∼
ht = tanh(W · [rt � ht−1, xt]) (10)

ht = (1− zt)� ht−1 + zt �
∼
ht (11)

Equation (8) represents the output of the current time step’s reset gate, which deter-
mines the strength of incorporating the previous time step’s hidden state, ht−1, into the
current time step’s output with a trainable weight matrix, Wr. The current time step’s reset
gate value is calculated based on the previous time step’s hidden state and the current
time step’s input, xt, through a neural network operation. Since the reset gate’s activation
function is a sigmoid function, the reset gate has values between 0 and 1.

Equation (9) depicts the process of computing the update gate in GRU. zt represents
the value of the update gate at the current time step, t, and the update gate is determined
by the previous time step, ht−1, and the current time step’s input, xt. σ denotes the sigmoid
activation function, which compresses the input values into the range between 0 and
1. Therefore, Equation (9) represents a convolution operation processed by the sigmoid
function. Wz represents a trainable weight matrix. This matrix plays a role in determining
how to combine the input values, [ht−1, xt].

Equation (10) represents the candidate value to be added from the previous time step
to the current time step. It uses the hyperbolic tangent function as its activation function and
involves element-wise multiplication between the previous time step’s hidden state, ht−1,
and the current time step’s reset gate value, rt, along with the neural network operation’s
result, based on the current time step’s input, xt, with a trainable weight matrix, W.

Equation (11) represents the hidden state for the current time step. According to
Equation (11), element-wise multiplication is performed between the value obtained by
subtracting the value of the current time step’s update gate, zt, from 1, and the previous
time step’s hidden state value, ht−1. Additionally, element-wise multiplication is carried

out with the value to be added for the current time step,
∼
ht, and the update gate’s value.

As a result, the ratio between the information to be forgotten from the previous time step
and the information to be added from the current time step is determined, thus influencing
the calculation of the hidden state for the current time step.

4.3. Attention Mechanism

The attention mechanism is a pivotal component in neural network architectures,
devised to enhance the processing of sequential data by selectively focusing on relevant
information. The attention mechanism enables the network to dynamically allocate varying
degrees of attention to different parts of the input sequence, effectively adapting its pro-
cessing based on the context and importance of each element [39]. Figure 8 below shows
the architecture of attention mechanism.

In Figure 8, c, ei, h, M,
∼
s , x, and ŷ represent the attention value, the set of attention

scores, the hidden state, the length of the input sequence, the input of the output layer, the
input, and the predicted value, respectively.

ei = sTWchi (12)

αi = softmax(ei) (13)

c =
M

∑
i=1

αihi (14)

s = tanh(Wc[c; s]) (15)
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ŷ = softmax
(
Wys + by

)
(16)
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Equation (12), Equation (15), and Equation (16) represent the ith attention score, the
ith attention distribution, the attention value, and the input and prediction values of the
output layer, respectively.

Equation (12) calculates the ith attention score by multiplying the transpose of the
decoder’s hidden state, sT , with a trainable weight matrix, Wc, and the ith hidden state of
the encoder, hi.

Equation (13) calculates the ith element that makes up the attention distribution. The
Softmax function is applied to the attention scores in Equation (13) to calculate an attention
distribution, which is a probability distribution with a total sum of 1. Each element of the
attention distribution signifies the importance of each respective encoder’s hidden state.

Equation (14) calculates the attention value by summing the products of the ith
attention distribution and the corresponding hidden state. Therefore, the attention value
signifies the importance of the encoder’s hidden states.

Equation (15) updates the hidden state, denoted as
∼
s , representing the updated

hidden state candidate, indicating how new information is incorporated into the current
hidden state.

Equation (16) represents the final step in the attention mechanism, where the predicted
output, ŷ, is computed. Wy denotes the trainable weight matrix, which is applied to the

updated hidden state candidate,
∼
s , determining its contribution to generating predictions.

∼
s represents the updated hidden state candidate, computed in Equation (15), encapsulating
the model’s current state, including the information processed up to this point. by stands

for the bias vector added to the product of Wy and
∼
s .

Therefore, the attention mechanism enhances prediction performance by assigning
varying degrees of importance to the constituent values of the input sequence, thus ele-
vating the weights of crucial information while attenuating the weights of less significant
details when calculating prediction values.

4.4. Bidirectional RNN Techniques

In a standard RNN, information flows only from the past to the present, which
means that the current time step’s prediction depends solely on past time steps. However,
the bidirectional RNN overcomes this limitation by introducing two separate hidden
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layers in both directions: one capturing information from past time steps in the forward
direction, and the other capturing information from future time steps in the backward
direction [40]. In this study, the Bi-LSTM and Bi-GRU models, which incorporate the
bidirectional technique, are employed and applied to the LSTM and GRU architectures.
Figure 9 below illustrates the process through which Bi-LSTM and Bi-GRU generate the
predicted values.
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In Figure 9, h, h′, t, y, and x represent the forward hidden state, backward hidden
state, time step, output, and input respectively. As illustrated in Figure 9, the application of
the bidirectional technique to LSTM and GRU introduces two RNN layers, each dedicated
to learning information from the forward and backward contexts. This stands in contrast
to the single LSTM and GRU models, which consider only unidirectional information.
Consequently, when forecasting time series data, bidirectional models leverage information
from both directions. Therefore, due to the bidirectional training process in Bi-LSTM and
Bi-GRU, both models take a longer training time compared to the conventional LSTM or
GRU models.

5. Simulation Results and Discussion

In this section, a comparative analysis of predictive accuracy and simulation runtime
among the six RNN techniques is conducted using the proposed CVPM.

5.1. Simulation Environment and Parameters

This section describes the simulation environment and parameters used to predict con-
catenated vibrations using the six RNN techniques. Table 2 below describes the simulation
environment.

Table 2. Simulation environment.

Parameter Specification

CPU Intel Xeon CPU @ 2.00 GHz
GPU Nvidia Tesla T4

Memory 26 GB
Simulation tools Google Colaboratory Pro, Python 3.10.12 and Tensorflow 2.12.0

In addition, Table 3 below provides an explanation of the parameters configured for
the simulation.

In Table 3, the number of hidden units is set to 32, the initial learning rate is set
to 0.0002, and the number of epochs is set to 10. These settings are chosen for a clear
observation of the performance variations when predicting concatenated vibrations using
the six RNN techniques. Additionally, the batch size is configured as 32, aligning with
the recommended range of 32 to 128 [41]. Furthermore, the adaptive moment estimation
(Adam) algorithm is used as an optimization algorithm to minimize training errors and
avoid local minima problems in the simulations [42].
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Table 3. Simulation parameters.

Parameter Specification

No. of hidden units 32
Initial learning rate 0.0002

No. of epochs 10
Minimum batch size 32

Optimizer Adam [42]
Iterations 50

5.2. Waveform of Predicted Vibrations

This section explains the predicted vibration waveforms when using the six RNN
techniques to train on 40%, 50%, 60%, 70%, 80%, and 90% of concatenated vibration
data and to predict the remaining 60%, 50%, 40%, 30%, 20%, and 10%, respectively. The
coefficient of determination, R2, for comparing the predictive accuracy of the six RNN
techniques in the proposed CVPM is calculated as follows:

R2 =
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − y)2 (17)

where n, y, ŷ, and y denote the total number of vibration data values, the actual vibration
values, the predicted vibration values, and the average vibration values, respectively.

Figure 10a–f represents the waveforms of the vibrations predicted using the six RNN
techniques, where each technique is used to train on 40%, 50%, 60%, 70%, 80%, and 90%
segments of concatenated vibration data and to predict the remaining 60%, 50%, 40%, 30%,
20%, and 10% segments.
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Figure 10a shows the predicted waveform of the vibrations after learning on 40%
training data using the six RNN techniques. Since the training segment contains only
normal vibration data in the 40% training segment, it is impossible to train abnormal
vibration. Therefore, the average R2 value of the predicted vibrations using the six RNN
techniques is 0.49, which is very low.
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According to Figure 10b, similar to the 40% training segment, the 50% training segment
cannot learn abnormal vibration data either. However, since more information about the
amplitudes and periods of vibrations is learned compared to the 40% training segment,
the average R2 value of the six RNN techniques is 0.75. This indicates an increase in
prediction accuracy of approximately 53.06% compared to the average R2 value of the 40%
training segment.

Figure 10c shows the predicted vibration waveform after learning 60% training seg-
ment, where 50% of normal vibration data and 10% of abnormal vibration data are trained.
Therefore, since both normal and abnormal vibrations are trained, the average R2 value
of the six RNN techniques is 0.88, representing an increase of approximately 79.59% com-
pared to the average R2 value in the 40% training segment. Furthermore, as observed in
Figure 10d, since 20% of abnormal vibration data is trained in the 70% training segment,
the average R2 value of the prediction accuracy of the six RNN techniques is 0.92. This R2

value represents an approximately 87.76% increase compared to the R2 value observed in
the 40% training segment.

Also, as shown in Figure 10d, since 20% of abnormal vibration data is trained in
the 70% training segment, the average R2 value of prediction accuracy of the six RNN
techniques is 0.92. This R2 value is an increase of approximately 87.76% compared to the R2

value in the 40% segment. Furthermore, according to the simulation results in Figure 10e,f,
where the abnormal vibration data is trained at 30% and 40%, respectively, it is observed
that the R2 values increased by approximately 85.71% and 93.88%, respectively, compared
to the R2 value of the 40% training segment.

In short, according to Figure 10, all of the six RNN techniques demonstrate incremental
improvement in prediction accuracy as the training segment size increases. In the next
section, the predicted and actual vibration values from the six RNN techniques will be
comparatively analyzed using scatter plots.

5.3. Comparison of Scatter Plots

In this section, the vibration prediction accuracy of the six RNN techniques is compar-
atively analyzed based on changes in the training segment using scatter plots.

Figure 11 shows the scatter plot of the predicted vibration data using the six RNN
techniques and the actual vibration data. According to Figure 11a,b, after the six RNN
techniques are trained on the 40% and 50% training segments, the predicted vibration
values notably differ from the actual vibration values. Specifically, the predicted vibration
accuracy using LSTM is significantly lower compared to the predicted vibration accuracy
from the other five RNN techniques. According to Figure 11c, the vibration results predicted
by the six RNN techniques gradually converge toward the actual concatenated vibration
value as the abnormal vibration data is trained from the 60% segment.

Additionally, as shown in Figure 11d–f, the predicted vibration values match closely
with the actual vibration values when predicting vibrations from the 70% training segment.
These simulation results are attributed to the inclusion of more abnormal vibration data
during training when the learning segments exceed 70%.
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5.4. Comparative Analysis of Concatenated Vibration Prediction Accuracy

In this section, the changes in R2 values of the six RNN techniques are analyzed as the
training data segment increases from 40% to 90%. Figure 12 below illustrates the R2 values
of the six RNN in relation to the changes in the training segment.
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According to Figure 12, it is observed that the R2 values predicted by the six RNN
techniques increase as the training segment increases from 40% to 90%. Furthermore,
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it is noted that the accuracy of the vibrations predicted by Attn.-LSTM and Attn.-GRU,
both utilizing the attention mechanism, is the highest among all the training segments,
surpassing the respective groups of LSTM and GRU.

Furthermore, in the 40% training data segment, the vibration prediction results ob-
tained using LSTM and GRU are similar to or lower than those obtained using Bi-LSTM
and Bi-GRU. However, as the training segment increases, the R2 values of LSTM and GRU
show higher accuracy compared to those of Bi-LSTM and Bi-GRU. Table 4 below presents
the R2 values for each training segment of the six RNN techniques.

Table 4. R2 values of six RNN techniques as the training segment changes.

Model
Size of Training Segment

Avg.
40% 50% 60% 70% 80% 90%

LSTM 0.04 0.66 0.91 0.93 0.93 0.94 0.74
Attn.-LSTM 0.77 0.9 0.95 0.96 0.95 0.96 0.92

Bi-LSTM 0.52 0.82 0.87 0.88 0.87 0.95 0.82
GRU 0.57 0.69 0.81 0.89 0.89 0.94 0.80

Attn.-GRU 0.69 0.83 0.94 0.97 0.95 0.96 0.89
Bi-GRU 0.36 0.60 0.77 0.89 0.85 0.95 0.74

Avg. 0.49 0.75 0.88 0.92 0.91 0.95 -
Change rate (%) - +53.06 +17.33 +4.55 −1.09 +4.40 -

According to Table 4, Attn.-LSTM and Attn.-GRU achieved the highest prediction
accuracy in all the training segments, while Bi-GRU indicated lower accuracy compared to
GRU. Moreover, in the 40% training segment, the prediction accuracy of LSTM and GRU is
similar to or lower than that of Bi-LSTM and Bi-GRU, but from the 60% training segment,
the prediction accuracy of LSTM and GRU is higher than that of Bi-LSTM and Bi-GRU.
These simulation results indicate that when the training segment is 40% and 50%, LSTM,
GRU, Bi-LSTM, and Bi-GRU face the common challenge of having a small training data
size and are unable to effectively learn from abnormal vibrations. However, within the
same training segment, Bi-LSTM and Bi-GRU learn more information about the vibration’s
amplitude and frequency compared to LSTM and GRU.

Nevertheless, starting from the 60% training segment, LSTM and GRU undergo
sufficient learning on amplitude and frequency information as well, similar to Bi-LSTM
and Bi-GRU techniques. Meanwhile, Bi-LSTM and Bi-GRU overlearn normal vibrations
excessively, which can act as interfering factors when predicting abnormal vibrations. As a
result, the prediction accuracy of Bi-LSTM and Bi-GRU becomes lower than that of LSTM
and GRU.

In the next section, we will conduct a detailed comparative analysis of the simulation
runtime required by the six RNN techniques in order to predict vibrations.

5.5. Comparison of Simulation Runtimes

In this section, the simulation runtimes required for the six RNN techniques to predict
concatenated vibrations are analyzed comparatively. Table 5 below presents the average
simulation runtimes for each training segment.

According to Table 5, the simulation runtimes of all six RNN techniques increase
with the training segment size. Furthermore, LSTM and GRU techniques indicate faster
simulation speeds compared to Attn.-LSTM, Bi-LSTM, Attn.-GRU, and Bi-GRU techniques
across all the training segments.

However, as evident from Figure 12 and Table 4, in the 40% training segment, LSTM
exhibits very fast simulation runtime but the lowest predictive accuracy among the six
RNN techniques. Therefore, it is important to compare simulation runtime and prediction
accuracy comprehensively. Therefore, in Section 5.6, a comparison and analysis of the
simulation runtime and predictive accuracy of the six RNN techniques are conducted to
analyze their prediction performance comprehensively.
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Table 5. Average simulation runtime (s) by training segment.

Model
Size of Training Segment

Avg.
40% 50% 60% 70% 80% 90%

LSTM 8.34 8.32 8.57 8.97 9.45 9.67 8.89
Attn.-LSTM 8.76 8.90 9.30 10.10 10.28 10.40 9.62

Bi-LSTM 11.06 11.08 11.61 12.32 12.58 13.4 12.01
GRU 8.10 8.48 8.65 8.82 9.33 9.44 8.80

Attn.-GRU 8.73 9.76 10.13 10.54 11.04 11.41 10.27
Bi-GRU 10.92 10.88 11.57 12.34 12.69 13.21 11.94

5.6. Comparative Analysis of Accuracy Efficiency

In this section, a comparative analysis is conducted by simultaneously evaluating the
simulation runtimes and prediction accuracy of the six RNN techniques. This assessment
aims to determine the RNN techniques that demonstrate the best performance in predicting
concatenated vibrations. Figure 13 below shows a comparison of concatenated vibration
prediction accuracy and simulation runtime of the six RNN techniques.
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In Figure 13, the bars represent the simulation runtime, and the circle, triangle, square,
diamond, star, and inverted triangle represent the R2 values of the 40%, 50%, 60%, 70%,
80%, and 90% training segment, respectively.

According to Figure 13, all six RNN techniques show an increase in simulation runtime
as the training segment extends from 40% to 90%. Furthermore, the R2 values increase with
the expansion of the training segment, converging at approximately 70%. Additionally,
among the converged R2 values, Attn.-LSTM and Attn.-GRU show the highest R2 values,
while Bi-LSTM and Bi-GRU show the lowest R2 values. In terms of simulation runtimes,
LSTM and GRU are the shortest while Bi-LSTM and Bi-GRU are the longest.

Table 6 below represents an analysis of the prediction accuracy improvement rates and
the simulation runtime changes of the remaining five RNN techniques relative to LSTM,
which presents the lowest average prediction accuracy.
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Table 6. Change rates in simulation runtime (s) and prediction accuracy (%) in comparison to LSTM.

Model

Size of Training Segment

40% 50% 60% 70% 80% 90%

Sim.
r.t. R2 Sim.

r.t. R2 Sim.
r.t. R2 Sim.

r.t. R2 Sim.
r.t. R2 Sim.

r.t. R2

Attn.-LSTM +5.13 +1681.40 +6.99 +36.47 +8.55 +4.61 +12.63 +2.79 +8.83 +2.27 +7.45 +1.49
Bi-LSTM +32.70 +1097.67 +33.09 +24.92 +35.48 −4.17 +37.40 −5.57 +33.10 −6.04 +38.40 +0.64

GRU −2.81 +1220.93 +1.86 +4.41 +0.90 −10.65 −1.61 −4.18 −1.26 −4.21 −2.44 −0.64
Attn.-GRU +4.71 +1506.98 +17.24 +25.84 +18.16 +3.40 +17.56 +3.64 +16.80 +2.81 +17.93 +2.34

Bi-GRU +31.01 +730.23 +30.77 −8.51 +35.01 −15.15 +37.64 −4.61 +34.25 −8.63 +36.59 +0.85

According to Table 6, within the 40% training segment, the R2 values for Attn.-LSTM,
Bi-LSTM, GRU, Attn.-GRU, and Bi-GRU exhibit a minimum accuracy increase of approx-
imately 730% compared to LSTM. Furthermore, Attn.-LSTM, Attn.-GRU, Bi-LSTM, and
Bi-GRU exhibit longer simulation runtimes compared to LSTM and GRU across all the
training segments due to the incorporation of additional attention mechanisms and bidirec-
tional methods applied to the LSTM and GRU models. However, as shown in Table 6, both
Attn.-LSTM and Attn.-GRU exhibit an increase in vibration prediction accuracy compared
to LSTM across all the training segments. In contrast, it is observed that the vibration
prediction accuracy of Bi-LSTM and Bi-GRU is slightly lower than that of LSTM in the 60%,
70%, and 80% training segments. Whereas LSTM and GRU are unidirectional, because
Bi-LSTM and Bi-GRU are bidirectional, they tend to learn abnormal vibrations more, which
act as distractors while predicting vibrations in both directions.

However, the average R2 values for the entire training segments of Bi-LSTM and Bi-
GRU increased compared to the R2 values of LSTM. Therefore, in Table 7, the prediction
accuracy and simulation runtime of LSTM are compared with the other five RNN techniques.

Table 7. Change rates in average simulation runtime (s) and prediction accuracy (R2) compared
to LSTM.

Model Avg. Sim. Runtime Avg. R2

Attn.-LSTM +8.26 +288.17
Bi-LSTM +35.03 +184.58

GRU −0.89 +200.94
Attn.-GRU +15.40 +257.50

Bi-GRU +34.21 +115.70

Table 7 presents the change rates in average simulation runtimes and average R2

values for the five RNN techniques compared to those of LSTM. According to the findings
in Table 7, Attn.-LSTM shows an 8.26% increase in simulation runtime compared to LSTM,
along with a 288.17% accuracy improvement. Similarly, Attn.-GRU exhibits a 15.40%
average increase in simulation runtime compared to LSTM, with an accompanying 257.50%
accuracy enhancement.

Furthermore, it is observed that Attn.-LSTM and Attn.-GRU show smaller increases
in simulation runtimes compared to Bi-LSTM and Bi-GRU, and yet they achieved a more
substantial increase in accuracy. Hence, Attn.-LSTM and Attn.-GRU exhibit high predic-
tion accuracy in comparison to their shorter simulation runtimes. The lower prediction
accuracy of Bi-LSTM and Bi-GRU in longer simulation runtimes can be attributed to the
following reasons.

Attn.-LSTM and Attn.-GRU, with their attention mechanisms designed to focus on
information highly correlated with the prediction target in the training data, achieve a
higher prediction accuracy when there is a low proportion of abnormal vibrations in the
prediction segment. This is due to their ability to concentrate on training information
relevant to abnormal vibrations, resulting in high prediction accuracy despite shorter
simulation runtimes.
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However, Bi-LSTM and Bi-GRU, which employ bidirectional learning based on LSTM
and GRU, not only transmit information from the previous time steps to the following
ones, but also learn from the backward time steps. This bidirectional learning leads to an
excessive focus on learning from normal vibrations that act as distractors when predicting
abnormal vibrations within the prediction segment. Consequently, while attempting to
predict abnormal vibrations, Bi-LSTM and Bi-GRU may experience significant increases in
simulation runtime and subsequently demonstrate lower prediction accuracy.

Consequently, based on the simulation results, it is established that among the six
RNN techniques employed for concatenated vibration data prediction, Attn.-LSTM and
Attn.-GRU are the most suitable RNN techniques, while Bi-LSTM and Bi-GRU exhibit the
least suitability.

6. Conclusions

In this study, a CVPM is proposed for predicting concatenated vibrations, and a
comparative analysis of vibration prediction accuracy and simulation runtime is conducted
among the six RNN techniques: LSTM, Attn.-LSTM, Bi-LSTM, GRU, Attn.-GRU, and Bi-
GRU. The concatenated vibration data used in this study are collected from the motors
connected to the drone’s propellers, including both normal and abnormal vibration data.
Then, the concatenated vibration dataset is created by merging 50% of normal vibration
data with 50% of abnormal vibration data. Subsequently, this vibration dataset is utilized
to comprehensively analyze the prediction accuracy and simulation runtime of the six
different RNN techniques using the proposed CVPM.

According to the simulation results, it is observed that as the training segment increase,
the predictive accuracies and simulation runtimes also increase for all the RNN techniques,
including LSTM, Attn.-LSTM, Bi-LSTM, GRU, Attn.-GRU, and Bi-GRU. Additionally, when
predicting concatenated vibrations, Attn.-LSTM and Attn.-GRU, which utilize the attention
mechanism, exhibit the highest predictive accuracy relative to simulation runtime. On the
other hand, the Bi-LSTM and Bi-GRU models, which employ the bidirectional technique,
exhibit the lowest predictive accuracy relative to simulation runtime. Therefore, it is deter-
mined that Attn.-LSTM and Attn.-GRU are the most suitable RNN models for predicting
concatenated vibrations.

In future work, we plan to predict vibrations transitioning smoothly from normal to
abnormal states by incorporating the early and advanced stages during the transition from
normal to abnormal vibrations, applied to an actual vibration prediction system.
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