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Abstract: The flexible mobility feature of unmanned aerial vehicles (UAVs) leads to frequent han-
dovers and serious inter-cell interference problems in UAV-assisted cellular networks. Establishing a
cell-free UAV (CF-UAV) network without cell boundaries effectively alleviates frequent handovers
and interference problems and has been an important topic of 6G research. However, in existing
CF-UAV networks, a large amount of backhaul data increases the computational pressure on the
central processing unit (CPU), which also increases system delay. Meanwhile, the mobility of UAVs
also leads to time-varying channel conditions. Therefore, designing dynamic resource allocation
schemes with the help of edge computing can effectively alleviate this problem. Thus, aiming at
partial network breakdown in an urban-micro (UMi) environment, an urban-micro CF-UAV (UMCF-
UAV) network architecture is proposed in this paper. A delay minimization problem and a dynamic
task offloading (DTO) strategy that jointly optimizes access point (AP) selection and task offloading
is proposed to reduce system delay in this paper. Considering the coupling of various resources
and the non-convex feature of the proposed problem, a dynamic resource cooperative allocation
(DRCA) algorithm based on deep reinforcement learning (DRL) to flexibly deploy AP selection and
task offloading of UAVs between the edge and locally is proposed to solve the problem. Simulation
results show fast convergence behavior of the proposed algorithm compared with classical reinforce-
ment learning. Decreased system delay is obtained by the proposed algorithm compared with other
baseline resource allocation schemes, with the maximize improvement being 53%.

Keywords: unmanned aerial vehicle (UAV); 6G communication; cell-free network; deep reinforcement
learning; edge computing; resource allocation

1. Introduction

In recent years, there have been frequent natural disasters around the world, such
as the earthquake that affected central Mexico in 2017 and the wildfires in Washington
State in 2020, which can have a very serious impact if they occur in densely populated
urban environments. The infrastructure of traditional ground networks is easily damaged
by disasters [1], which leads to the failure of mobile phones that can be used to transmit
information to the outside world and, thus, increases the difficulty of rescue [2]. One solu-
tion is to use satellite networks, but satellite communication costs are extremely high and
have a high system delay, while an air base station tethered to a balloon lacks mobility [3].
In order to cope with emergency scenarios, it is an effective response measure to build a
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flexible ground-to-air network by using unmanned aerial vehicles (UAVs) [1–3]. However,
in traditional cellular networks, the flexible mobility of UAVs leads to frequent handovers
and inter-cell interference issues [4]. The emergence of cell-free networks without cells and
cell boundaries effectively reduces this problem and has been an important topic of future
6G research [5]. A cell-free network is a distributed multiple-input multiple-output (MIMO)
system with a large number of access points (APs). All APs are connected to the central
processing unit (CPU) through the backhaul link for data transmission pre-processing and
signal detection, and multiple APs simultaneously provide services to a user in the same
time–frequency resources block [6]. A cell-free UAV (CF-UAV) network can be constructed
to reduce the problem of frequent handovers and inter-cell interference of UAVs in tradi-
tional cellular-based ground-to-air networks. However, all APs need to communicate with
the CPU, which leads to high backhaul link overhead, high CPU computation pressure,
and high system delay. To solve this problem, it is a feasible solution to equip edge servers
on the AP side to alleviate the CPU computational pressure in CF-UAV networks through
edge computing [7]. Further, for a CF-UAV network, the channel between the UAV and the
AP changes with the mobility of the UAV in each time slot. Such channel time variability
causes time-varying computing and communication resource allocation demands, which
is a challenge in urban emergency scenarios. The urban-micro (UMi) scenario is the most
sensitive scenario compared with other urban scenarios, and delay is the most critical
performance index in this scenario [8]. Therefore, it is necessary to design an efficient AP
selection and task offloading scheme to reduce the system delay of CF-UAV networks in a
UMi environment.

1.1. Related Works and Motivations

Existing studies have made some progress on cell-free networks and resource allo-
cation problems. In ref. [9], the authors studied the impact of different CPU deployment
methods on the resource allocation of cell-free networks. Ref. [10] proposed a cell-free
network architecture based on network slicing and carried out a resource allocation scheme.
Ref. [11] proposed a directed acyclic graph-based algorithm to solve the task offloading
problem in cell-free networks. In ref. [12], the authors proposed an integrated sensing
and communication system to solve the resource allocation problem in cell-free networks.
Ref. [13] used cell-free networks to build a federated learning architecture and reduced up-
link training time through power control. Refs. [14,15] focused on optimizing AP selection
for cell-free networks through machine learning.

Compared with a ground network, a ground-to-air network has higher-dimensional
resources due to the introduction of UAVs, and on their own, the resource management
measures of the ground network cannot cope with the high-dimensional and dynamic
resources brought by UAVs. Therefore, academia and industry have studied many resource
allocation problems in UAV-assisted networks. Ref. [16] investigates a UAV-enabled wire-
less communication system with energy harvesting to optimize UAV path planning and
energy. In ref. [17], a cache-enabled UAV network was studied, and the authors jointly opti-
mized user association, spectrum allocation, and content caching. Ref. [18] applied a UAV
network to an intelligent reflective surface to improve the energy efficiency of the system
by optimizing the UAV trajectories. Ref. [19] adopted a continuous convex approximation
algorithm to conduct joint optimization of UAV trajectories, power control, and user asso-
ciations. Ref. [20] combined mobile edge computing and network function virtualization
technology to optimize the system delay in UAV-assisted industrial internet scenarios.

In order to reduce the frequent handovers and inter-cell interference problems caused
by the mobile characteristics of UAVs, the CF-UAV network came into being. In refs. [21–25],
the authors considered a UAV-assisted cell-free network and optimized the resources in the
network. In ref. [21], the authors adopted block optimization and quadratic transformations
for resource optimization in the special case of hardware impairments in CF-UAV networks.
In ref. [22], a dynamic AP selection strategy based on average power strength was proposed
in CF-UAV networks. Ref. [23] optimized network resources through UAV deployment in
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CF-UAV networks. Ref. [24] proposed three UAV trajectory design schemes to improve the
spectral efficiency. Ref. [25] studied resource allocation in CF-UAV networks through the
combination of a gradient-based algorithm and a Gibbs sampling algorithm.

In recent years, there has been a significant increase in the number of mobile devices,
which generates a large amount of data [26]. On the one hand, the increase in data volume
causes additional computing burden on the CPU of the network, and a large amount of
data is transmitted to the CPU through the backhaul link, which also has certain privacy
risks [27]. Therefore, edge computing can effectively alleviate this problem, and users
can offload data to a nearby edge server for calculation, reducing the communication
overhead and security risks generated by sending data back to the CPU. Ref. [28] provides
an overview of practical distributed edge learning techniques and their interplay with
advanced communication optimization designs Refs. [29,30] combined cell-free networks
with edge computing. User tasks were offloaded to edge servers to solve the joint commu-
nication and computational resource allocation problem and reduce CPU computational
pressure. In ref. [31], a UAV was used for mobile edge computing, which was combined
with DRL to optimize task offloading in 5G-supporting software-defined networks. On
the other hand, the increasing number of mobile devices brings more diverse and complex
resources, which leads to the difficulty of communication and computing resource alloca-
tion. In order to solve complex optimization problems with multiple resources, artificial
intelligence algorithms based on machine learning are gradually being applied to resource
allocation problems [32,33].

Deep reinforcement learning (DRL) is one of the most typical representatives of
machine learning algorithms. With the advantage of dealing with continuous states, DRL
is very suitable for solving UAV resource allocation problems with time-variance and
high-dimensionality [34]. Many authors have used DRL for resource allocation studies in
UAV networks. In ref. [35], a heterogeneous UAV communication network was constructed
in an emergency scenario, and a resource allocation algorithm based on DRL was adopted
to optimize energy efficiency. Refs. [36,37] both applied DRL to the trajectory control of
UAVs to achieve joint optimization of computing resources and user associations and to
reduce energy consumption. Refs. [38,39] proposed a computational offloading strategy
based on DRL to solve the problem of the resource dimensional curse in UAV-assisted
communication networks. Ref. [40] applied DRL to CF-UAV networks and proposed a DRL
algorithm based on a soft actor–critic to optimize UAV deployment and power allocation.
Ref. [41] proposed a UAV-assisted cell-free multi-group broadcast network architecture. In
order to solve the coupling between resources, an optimization algorithm based on DRL
was used to effectively handle the video transmission from UAVs to virtual reality users.
However, there are relatively few studies on resource allocation for CF-UAV networks
in urban emergency scenarios. Therefore, it is necessary to study a resource allocation
strategy to cope with emergency scenarios in a UMi environment and use the advantages
of advanced DRL to solve the coupling problem between optimized variables.

Therefore, aiming at the background of local network breakdown caused by natural
disasters or data congestion in an urban environment, an urban-micro CF-UAV network
(UMCF-UAV) is proposed in this paper. We consider the importance of reducing com-
munication delay in UMi emergency scenarios. Therefore, an optimization problem to
minimize the system delay is formulated, and a dynamic task offloading (DTO) strategy
with joint AP selection is proposed to reduce the system delay in the UMCF-UAV network.
Since the variables in the optimization problem are tightly coupled in the unit time slot,
an advanced dynamic resource cooperative allocation (DRCA) algorithm based on DRL
is proposed to solve the optimization problem. The experimental results show that the
proposed algorithm achieves the best performance compared with the classical Q-learning,
random allocation, and equal allocation strategies.

1.2. Contributions and Organization

The main contributions of this paper can be summarized as follows:
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• A UMCF-UAV network adapted to a UMi disaster emergency environment is proposed
in this paper. The different channel states of LoS and NLoS in the ground-to-air
communication model are fully considered in this paper. The minimum mean square
error estimation (MMSE) is used to derive the closed-form expression of the uplink
transmission rate that can be achieved by UAVs in the proposed network.

• In this paper, edge computing is used to reduce the computing pressure on the CPU
in the UMCF-UAV network. The optimization problem of delay minimization is
proposed. In order to reduce the system delay, a DTO strategy based on a UMi
emergency scenario to jointly optimize AP selection is proposed in this paper. The
proposed strategy comprehensively considers the impacts of various network factors
on task offloading.

• A DRL-based DRCA algorithm is proposed in this paper to solve this non-convex
problem with tightly coupled variables. Compared with the baseline algorithm, the
algorithm proposed in this paper approximates the global optimal solution obtained
by traversal search, which effectively reduces the delay.

The structure of this paper is as follows: Section 2 introduces the system model and
channel modeling of the network. Section 3 introduces the channel estimation and the
transmission process of the uplink and downlink. Section 4 proposes the optimization
problem of this paper. Section 5 introduces the DRL-based DRCA algorithm. Section 6
gives the parameter settings and simulation results. Section 7 concludes the paper.

Symbol description: in this paper, vectors and matrices are represented by bold italic
lowercase letters a and bold regular uppercase letters A, respectively, superscript a∗ repre-
sents a conjugate, aH and AH represent a conjugate transpose, ‖‖ represents a Euclidean
norm, E{} represents an expectation operator, , is used as a definition expression, and
finally, a ∼ CN

(
0, σ2) denotes a circularly symmetric complex Gaussian random variable a

with zero mean and variance σ2.

2. System Model

In this section, we focus on the system model and channel modeling method of the
network, including the realistic environment applicable to the system model and the specific
mathematical definition of each part of the channel gain.

2.1. System Description

As shown in Figure 1, the proposed network system contains a set of APs M =
{1, 2, . . . , M} and UAVs N = {1, 2, . . . , N}, where M>N, and all APs and UAVs are
equipped with a single antenna and are randomly distributed in the service area. Each
AP is equipped with an edge server, and all APs can be connected to the CPU through
the backhaul link in the same time–frequency resource blocks. All APs can serve all users
at the same time, and users in the network include ground users (GUs) and UAVs. We
assume that the UAV has a certain computing capacity and can perform simple calculations.
The GUs in the waiting area need to transmit tasks to UAVs through wireless data links,
and UAVs need to offload task data to the available APs in the service area. For ease of
presentation, we define the waiting area as follows.

Definition 1. The “waiting area” is the area of local network congestion or paralysis due to
emergencies or natural disasters in the UMi scenario. APs in the waiting area cannot provide
network services for GUs.

Transmission between an AP and the user adopts the form of TDD, so there is reci-
procity between the uplink channel and the downlink channel: the uplink channel and the
downlink channel can adopt the same channel gain. We assume that the UAV has enough
energy supply to ensure all the work needs in the cycle. Thus, the energy consumption of
the UAV is ignored in this paper [20].
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Figure 1. The proposed framework of UMCF-UAV network.

2.2. Channel Model

In the channel model, we use gmn to represent the channel gain between the m-th AP
and the n-th UAV, where βmn represents the large-scale fading between the m-th AP and
the n-th UAV, and hmn represents the small-scale fading between the m-th AP and the n-th
UAV. As a result, gmn is given by

gmn =
√

βmnhmn. (1)

We assume that hmn ∼ CN (0, 1), and in each channel, hmn is independently and
identically distributed (i.i.d.); large-scale fading βmn can be defined as follows

βmn = PLmn10
σshzmn

10 , (2)

where 10
σshzmn

10 represents shadow fading, σsh represents the shadow fading standard devia-
tion, zmn ∼ N(0, 1), and PLmn represents path loss, which is related to the distance from
the AP to the UAV. Since the UMi network contains obstacles such as tall buildings, and
considering the line-of-sight (LoS) link characteristics of the UAV itself [42,43], path loss is
defined as 3GPP TR.36.777 [21] according to link probability

PLmn =

 max
{

PL
′
mn, 30.9 +

(
22.25− 0.5log10(H)

)
log10

(
d3D

mn
)
+ 20log10( fc)

}
, LoS,

max
{

PLLOS
mn , 32.4 +

(
43.2− 7.6log10(H)

)
log10

(
d3D

mn
)
+ 20log10( fc)

}
, NLoS,

(3)

where fc represents the central frequency, PLLOS
mn represents the LoS link pass loss, and

PL
′
mn represents the free space path loss, defined as PL

′
mn = d0

H2+‖qUAV
n −qAP

m ‖2 , where qUAV
n

represents the two-dimensional coordinates of the n-th UAV on the plane (Xn, Yn). The
variable qAP

m represents the two-dimensional coordinates of the m-th AP in the plane
(Xm, Ym), H represents the height of the UAV, d0 represents the reference distance, and
d3D

mn represents the three-dimensional space distance from the m-th AP to the n-th UAV.

Further, d3D
mn =

√
(Xn − Xm)

2 + (Yn −Ym)
2 + H2. We define the standard deviation of

shadow fading as the following expression

σsh =

{
max{5exp(−0.01H), 2}, LoS,

8 , NLoS.
(4)
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LoS link probability is expressed as

PLOS =

{
1 , d2D

mn ≤ d,
d

d2D
mn

+
(

1− d
d2D

mn

)
exp

(
−d2D

mn
v

)
, d2D

mn > d,
(5)

where d2D
mn represents the two-dimensional distance between the m-th AP and the n-th UAV, d2D

mn =√
(Xn − Xm)

2 + (Yn −Ym)
2, and v and d are variables determined by the height of the UAV.

These are defined as v = 233.98log10 (H)− 0.95 and d = max
{

294.05log10 (H)− 432.94, 18
}

,
and the probability of a NLoS link is PNLOS = 1− PLOS. It can be seen that PLOS in Equation (5)
gradually approaches 1 as the height H of the UAV increases. By substituting Equations (3) and

(4) into Equation (2), we can derive two components βLOS
mn = PLLOS

mn 10
σLOS
sh zmn

10 and βNLOS
mn =

PLNLOS
mn 10

σNLOS
sh zmn

10 under the probability distributions of LoS and NLoS, respectively. Equation (2)
for large-scale fading is further rewritten as a weighted sum of two components

βmn = βLOS
mn PLOS + βNLOS

mn PNLOS; (6)

large-scale fading βmn changes more slowly than small-scale fading hmn, which belongs to slow
fading. Therefore, it is considered that in unit timeslot t, the small-scale fading of each channel is an
independent and uniformly distributed variable as mentioned above, while large-scale fading can
be regarded as a constant.

3. Data Transmission Process

In this section, we focus on the data transmission process and derive the closed-form
expression for the transmission rate. The transmission process in the unit timeslot t includes:
uplink channel estimation, downlink data transmission, and uplink data transmission. In
the uplink channel estimation stage, all UAVs send pilot sequences to the AP, and the AP
estimates the channel between each UAV. In the downlink data transmission stage, the
downlink data are pre-coded, and transmitted power is allocated according to the uplink
estimated channel; channel estimation is not carried out on the downlink alone because the
downlink does not send pilot frequencies but relies on channel hardening, which makes
the channel gain close to its expected value and a definite constant [6]. All APs do not
share instantaneous channel state information (CSI) during data transmission, so conjugate
beamforming technology is used for downlink transmission, while matching filtering
technology is used for uplink reception. Note that we fully introduce the whole process of
data transmission in this section, but the problem studied in this paper is the computing
offloading delay of UAVs. Therefore, this paper focus on data transmission from UAVs to
APs: that is, the uplink in the proposed network. We introduce downlink transmission
only for formula derivation and focus on uplink data transmission optimization in the later
computations.

3.1. Channel Estimation

Let τc be the length of the coherence interval (in symbol), which is equal to the product
of the coherence time and the coherence bandwidth. Let τp be the duration of uplink
pilot training, τp < τc, and define √τpϕn ∈ Cτp×1 as the pilot sequence sent by each UAV,
satisfying ‖ϕn‖

2 = 1. Where n = 1, . . . , N, the pilot signal ypm ∈ C1×τp received at the m-th
AP of the channel estimation stage can be expressed as

ypm =
√

τpρp

N

∑
n=1

gmnϕH
n + wpm, (7)

where ρp represents the transmit power of each pilot symbol, and wpm ∈ C1×τp is an
additive white Gaussian noise vector, the elements of which are random variables that
follow the independent and identically distributed CN

(
0, σ2).
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Based on the received pilot signal, the ideal estimate of channel gmn by the m-th AP
can be expressed as a projection along the direction of the pilot vector ϕn,

y̌mn = ypmϕn =
√

τpρpgmn +
√

τpρp

N

∑
i 6=n

gmiϕ
H
i ϕn + wpmϕn; (8)

the second term in Equation (8) represents the influence caused by pilot contamination. We
assume the pilot to be orthogonal to itself: namely, ‖ϕn‖

2 = 1. In this paper, we also assume
the influence caused by pilot contamination: namely, ϕH

i ϕn 6= 0(i 6= n), so the second term
cannot be ignored. Equation (8) only shows the ideal estimation method, but due to the
existence of noise, the ideal estimation is not accurate. MMSE can be used to calibrate the
estimation results, and the MMSE estimated value of the channel ĝmn is obtained as follows

ĝmn =
E{gmny̌∗mn}
E{y̌mny̌∗mn}

y̌mn =

√
τpρpβmn

τpρp
N
∑

i=1
βmi
∣∣ϕH

i ϕn
∣∣2 + σ2

y̌mn; (9)

each AP independently estimates the channel of each UAV, and the APs do not share the
channel estimation information with each other.

3.2. Downlink Data Transmission

Since channel estimation is performed at each AP, all APs take the channel estimate
ĝmn of the uplink channel as the true value of the channel. The information of the network
is encoded as symbol qdn and adopts conjugate beamforming to transmit information. The
signal transmitted from the m-th AP can be expressed as follows

xm =
√

ρd

N

∑
n=1

√
ηDL

mn ĝ∗mnqdn, (10)

where qdn is the symbol that is sent to the n-th UAV and satisfies E
{
|qdn|2

}
= 1, ρd indicates

the downlink average transmitting power of each AP, ηDL
mn indicates the power coefficient

sent from the m-th AP to the n-th UAV. For all APs, the power coefficient should meet the
following constraints

E
{
|xm|2

}
< ρd, (11)

Equation (12) can be derived from Equation (11)

N

∑
n=1

ηDL
mnE

{
|ĝmn|2

}
< 1, (12)

where

γmn , E
{
|ĝmn|2

}
=

τpρpβ2
mn

τpρp
N
∑

i=1
βmi
∣∣ϕH

i ϕn
∣∣2 + σ2

. (13)

After the m-th AP sends the downlink signal Equation (10) and passes through the
real channel gmn, the received signal at the n-th UAV can be expressed as

rdn =
M

∑
m=1

gmnxm + wdn =
√

ρd

M

∑
m=1

N

∑
i=1

√
ηDL

mi gmn ĝ∗miqdi + wdn, (14)

where wdn is the additive Gaussian white noise obeying CN
(
0, σ2) at the n-th UAV.
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3.3. Uplink Data Transmission

In uplink data transmission, each UAV encodes the task data into a symbol qun,

satisfying E
{
|qun|2

}
= 1. The symbol is then allocated a transmit amplitude value

√
ηUL

n

to generate a baseband signal for wireless transmissions. The signal sent by the n-th UAV
can be defined as

φn =
√

ηUL
n qun, (15)

where ηUL
n is the emission power coefficient of the n-th UAV and satisfies 0 < ηUL

n < 1. The
UAV transmission signal is transmitted to the m-th AP through the real channel gmn, and
the received signal at the m-th AP is as follows

ym =
√

ρu

N

∑
n=1

gmnφn + wum, (16)

where ρu is the average uplink transmit power of each UAV, and wum is the additive white
Gaussian noise at the m-th AP subject to CN

(
0, σ2). Since the uplink signal transmission

adopts the receiving mode of matching the filter at the m-th AP, the signal of Equation (16)
is multiplied by the conjugate estimated channel at the AP to obtain the maximum output
signal-to-noise ratio (SNR). Then, the result of matching the filter at each AP, ĝ∗mnym, is
transmitted to the CPU for decoding to obtain the sent signal. The CPU receives

rum =
M

∑
m=1

ĝ∗mnym =
√

ρu

M

∑
m=1

N

∑
i=1

ĝ∗mngmiφi +
M

∑
m=1

ĝ∗mnwum; (17)

when the CPU receives Equation (17), it decodes qun.
In a time slot t, each AP sends downlink data to the served UAV, indicating its

remaining computing capacity, and then the UAV needs to assign the task data offloaded
to each AP after confirming the association information locally. The data offloading rate is
decided by the uplink’s achievable rate. Then, Equation (17) can be rewritten as

rum =
√

ρuE
{

M

∑
m=1

√
ηUL

n ĝ∗mngmn

}
qun

+
√

ρu

(
M

∑
m=1

√
ηUL

n ĝ∗mngmn −E
{

M

∑
m=1

√
ηUL

n ĝ∗mngmn

})
qun

+
√

ρu

N

∑
i 6=n

(
M

∑
m=1

√
ηUL

i ĝ∗mngmi

)
qui +

M

∑
m=1

ĝ∗mnwum;

(18)

we split and rename each item in Equation (18) as follows

DSn =
√

ρuE
{

M

∑
m=1

√
ηUL

n ĝ∗mngmn

}
, (19)

BUn =
√

ρu

(
M

∑
m=1

√
ηUL

n ĝ∗mngmn −E
{

M

∑
m=1

√
ηUL

n ĝ∗mngmn

})
, (20)

UIni =
√

ρu

M

∑
m=1

√
ηUL

i ĝ∗mngmi, (21)

Nn =
M

∑
m=1

ĝ∗mnwum, (22)

the above Equation (19) represents the strength of the expected signal, Equation (20) is the
uncertainty of beamforming, Equation (21) is the inter-user interference caused by the i-th
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UAV, and Equation (22) is the additive noise interference at the m-th AP. We can take the
addition and sum of the three interference terms Equations (20)–(22) as “effective noise”,
so it can be deduced that the achievable uplink transmission rate of the n-th UAV in the
worst case considering all interference effects can be expressed by the Shannon formula as
follows

RUL
n =

τu

τc
Blog2

1 +
|DSn|2

E
{
|BUn|2

}
+

N
∑

i 6=n
E
{
|UIni|2

}
+E

{
|Nn|2

}
, (23)

where B represents the channel bandwidth. Then, we further derive the uplink’s closed-
form achievable rate under the proposed network according to Equation (23).

Theorem 1. The achievable uplink transmission rate of the n-th UAV in the UMCF-UAV network
is given by

RUL
n =

τu

τc
Blog2

1 +
ρuηUL

n

(
M
∑

m=1
γmn

)2

ρu
N
∑

i 6=n
ηUL

i

(
M
∑

m=1
γmn

βmi
βmn

)2∣∣ϕH
i ϕn

∣∣2 + ρu
N
∑

i=1
ηUL

i

M
∑

m=1
γmnβmi + σ2

M
∑

m=1
γmn

. (24)

Proof of Theorem 1. See Appendix A.

4. Problem Description

In this section, we focus on the proposed optimization problem. Firstly, we model
the needed data and propose a computational model. Then, we analyze and propose the
optimization problem. Finally, we give the complete process of the proposed DTO strategy
in the UMCF-UAV network.

4.1. Computational Model

As shown in Figure 2, the whole communication cycle L is divided into T communica-
tion time slots t. The system delay considered in this paper is only for the task offloading
process during uplink transmission and ignores the channel estimation and downlink
transmission delay. Further, we consider that all APs are connected to the CPU by backhaul
links with infinite capacity, and each AP is equipped with an edge server locally. Therefore,
the backhaul link delay between AP and CPU and the transmission delay between AP and
edge server are not considered in this paper. The delay of the system can be divided into
three parts: offloading delay, edge computing delay, and local computing delay. In one
time slot t, the local computing of the UAV is synchronized with the task transfer, and the
servers perform edge computing when the task is offloaded to the servers. Each server
transmits task data through its own wireless link with the UAV, and the time delay in each
link is different. Finally, the system delay to be optimized is equal to the link corresponding
to the server with the highest delay in the time slot t, and our goal is to gradually reduce
the delay of the entire system by reducing the maximum link delay for each time slot t.
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Time slot 1 Time slot t Time slot T… … … …
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Offloading delay

Edge computing
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…
 

Uplink channel 
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Downlink data 

transmission

Uplink data 

transmission

Figure 2. Time slot structure for UMCF-UAV network.

4.1.1. Offloading Delay

The offloading delay in the system is defined as the time taken to transfer the task
from the n-th UAV to the m-th AP in unit time slot t, which can be expressed as follows

lo f f load = µmn
cmKnDn

RUL
n

, (25)

where Dn is the sum of the GUs’ tasks carried by the UAV in time slot t, Kn is the ratio of
tasks that the n-th UAV decides to offload to the edge APs and satisfies Kn ∈ [0, 1], cm is the
ratio of tasks that the m-th AP gets from the n-th UAV and satisfies cm ∈ [0, 1]. The term
µmn∀m ∈ M is a binary variable that represents AP selection and is used to decide whether
to transmit the task to be offloaded to the target AP and is defined as

µmn =

{
1, select this AP as the server and compute the offloading task,
0, this AP is not selected as the server.

4.1.2. Edge Computing Delay

The edge computing delay in the system is defined as the time required for the edge
server on the m-th AP side to compute the task offloaded from the UAV in a unit time slot t.
It can be expressed as

ledge =
cmKnDnωAP

f AP
m

, (26)

where ωAP indicates the number of CPU cycles required by the AP to process each unit
byte and is measured in cycles/bit, and f AP

m indicates the computing capacity of the edge
server on the m-th AP side in cycles/s.

4.1.3. Local Computing Delay

The local computation delay in the system is defined as the time required for the
n-th UAV to compute the remaining tasks locally in unit time slot t and can be expressed
as follows

llocal =
(1− Kn)DnωUAV

f UAV
n

, (27)

where (1− Kn)Dn indicates the number of tasks remaining at the UAV that need to be
computed locally, The term ωUAV indicates the number of CPU cycles required by the
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UAV to process each unit byte and is measured in cycles per bit, and f UAV
n indicates the

computing capacity of the n-th UAV in cycles/s.

4.2. Problem Formulation

This paper jointly optimizes AP selection and task offloading in order to reduce
the system delay of a UMCF-UAV network, in which the impact of multi-dimensional
resources such as computing capacity, UAV coordinates, and channel environment on task
offloading are considered in the resource allocation computation. By optimizing the system
delay within each time slot t, the delay of the whole communication cycle is thus reduced.
Therefore, Equations (25)–(27) are rewritten as an expression related to time slot t. The
optimization problem is specified as follows

min
µmn(t),cm(t),Kn(t),qUAV

n (t)

T

∑
t=1

M

∑
m=1

µmn(t)max
{

llocal(t), ledge(t) + lo f f load(t)
}

(28a)

s.t. µmn(t) ∈ {0, 1}, ∀m ∈ {1, . . . , M}, ∀t ∈ {1, . . . , T}, (28b)

0 ≤
M

∑
m=1

µmn(t) ≤ M, ∀n ∈ {1, . . . , N}, (28c)

0 ≤ cm(t) ≤ 1, ∀m ∈ {1, . . . , M}, (28d)

0 ≤ Kn(t) ≤ 1, ∀n ∈ {1, . . . , N}, (28e)

M

∑
m=1

cm(t) ∈ {0, 1}, ∀m ∈ {1, . . . , M}, (28f)

qUAV
n (t) ∈

{
(Xn(t), Yn(t))

∣∣xn(t) ∈
[
0, Xupper

]
, yn(t) ∈

[
0, Yupper

]}
(28g)

where constraints (28b) and (28c) guarantee that all UAVs can select any number of APs
within slot t. Constraint (28d) represents the size of the tasks received by each AP. Constraint
(28e) represents the size of task offloading by each UAV. Constraint (28f) guarantees the right
that the UAV can perform local offloading. The constraint (28g) represents the coordinate
range of the UAV, where Xupper and Yupper are the upper bounds of the horizontal and
vertical coordinates of the UAV. The UAV can remain unchanged for several consecutive
time slots or can change its deployment position.

4.3. DTO Strategy Model

Now we express the task offloading strategy for jointly optimizing AP selection. We con-
sider that the UAV formulates an offloading strategy at each time slot. We define the set L =
{L1, . . .Lt, . . .LT} to represent the strategy set, whereLt = {Kn(t), c1(t), . . . cm(t), . . . cM(t)}
represent the DTO strategy at time slot t. Specifically, the UAV does not perform task offload-
ing and all tasks are completed locally when Kn(t) = 0. The UAV performs task offloading
and the size of offloaded tasks is Kn(t) when Kn(t) 6= 0. The UAV does not select the m-th
AP when Kn(t) 6= 0 and cm(t) = 0. The UAV selects the m-th AP and offloads the task to
the m-th AP by the value of cm(t) when Kn(t) 6= 0 and cm(t) 6= 0. The elements in Lt satisfy
Kn(t) ∈ [0, 1],∀n ∈ N and cm(t) ∈ [0, 1], ∀m ∈ M. We define the UMCF-UAV network in-
formation λ = {λu, λd} and the transmission rate setR =

{
RUL

1 (t), . . . RUL
n (t), . . . RUL

N (N)
}

,
where λu and λd represent the uplink and downlink network information, respectively. The
specific value of Lt depends on the combination of λ and R and satisfies the optimization
Equation (28a).

As shown in Figure 3, a complete process of the proposed DTO strategy in the UMCF-
UAV network can be divided into the following steps.
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• Step 1. Downlink network information acquisition: GUs in the waiting area generate
tasks and transfer all tasks to the UAV. Meanwhile, the UAV sends pilot signals to APs
for channel estimation. The AP encodes λd as symbol qdn, where
λd =

{
f AP
m , ĝmn, ωAP, qAP

m
}

, ∀m ∈ M, ∀n ∈ N . The AP sends the network infor-
mation λd to the UAV through the downlink wireless link.

• Step 2. AP selection and task offloading: The UAV obtains λu locally and calculates
R based on the information, where λu =

{
f UAV
n , Dn, ωUAV , qUAV

n , ηUL
n
}

, ∀m ∈ M,
∀n ∈ N . The DTO strategy Lt in the current time slot t is generated locally by
combining λd for downlink transmission. The Lt and task are encoded as qun and sent
to the selected AP in the strategy.

• Step 3. Task computing and uplink transmission: The AP transfers the received tasks
to the edge server for task computing and uploads the computed available resource
allocation data to the CPU to detect the symbols.

• Step 4. Update network information: The CPU receives the uplink data and updates
λ. The AP sends the data of the available resource allocation result and the downlink
network information λ

′
d at the next time slot t + 1 to the UAV over the wireless link.

Then, the UAV sends the data of task processing results back to the GUs in the waiting
area and starts a new round of task offloading.

Terminal Layer

Edge Layer

GU

AP 1 

Server 1 Server 2

Server 3 Server 4

AP 2 

AP 3 AP 4 

CPU Central Layer

Step2. 

AP selection and 

task offloading

Task data

Task

Step3. 

Edge 

computing

UAV

Step3. 

Local computing
Step1. 

Task transfer

Step4. 

Result transfer

Task

GU

GU

Task

Step1. 

Channel 

estimation

Step1. 

Downlink data 

transmission

Step4. 

Signal detection

Step4. 

Update network 

information

Figure 3. The process of the proposed DTO strategy in UMCF-UAV network.

This paper assumes that all UAVs have the same f UAV
n . As can be seen from

Equations (25)–(27), llocal is only determined by the DTO offload strategy Lt. Besides
the offload strategy, RUL

n and f AP
m are also the factors that determine lo f f load and ledge. There-

fore, reducing delay is not a simple choice of maximizing RUL
n or f AP

m . For example, the
UAV may offload an uncertain size of tasks at the highest rate to the edge server on the AP
side with very low computing capacity. Such task assignment does not reduce the system
delay because there is no mathematical relationship between RUL

n and f AP
m . However, RUL

n ,
f AP
m and the offloading strategy affect the system delay together. As a result, both the

numerator and the denominator of the formula in Equation (28a) affect the solution of the
optimization problem.

In order to solve the non-convex optimization problem, we design a DTO offloading
strategy to reduce the system delay. We consider that the optimization variables involved
in the strategy are tightly coupled, which makes the optimization problem impossible to be
solved with traditional linear programming. In order to implement the proposed strategy,
we propose a DRL-based DRCA algorithm.
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5. Algorithm Description

In order to solve the coupled and non-convex problem, this paper first introduces
the theoretical framework of the DRCA algorithm; then, it defines the state space, action
space, and reward function of the DRCA algorithm; and finally, it introduces the process of
training the DRCA algorithm.

For the optimization problem presented in this paper, the UAV provides services to
the GUs and performs task offloading with the AP. Throughout the resource allocation
process, UAVs are interacting with the external environment as agents. In each time slot t,
the UAV receives a state st ∈ S from the external environment. For this state st, the UAV
makes an action at ∈ A by making decision π, and then, the action causes the environment
to change. The environment changes to the next state st+1, and a reward r(st, at) is fed back
to the UAV to inform the UAV of the quality of the action selection. This process can be
seen as a Markov decision process (MDP). The DRCA algorithm is developed to solve the
MDP problem in the proposed algorithm. By introducing a neural network as a Q network
to replace the Q-table in Q-learning, the proposed algorithm can process high-dimensional
data such as pictures or videos. We define the Q value as Q(st, at, w), where w represents
the network weight in the Q network. In order to solve the bootstrapping phenomenon
of updating the current time st with the next time st+1 data in traditional reinforcement
learning, two neural networks are introduced in DRCA to compute Qeval and Qtarget, which
are called the main network and the target network, respectively. The structure of the
two networks is exactly the same, and the difference is only in the weight w. The Q value
update formula in DRCA is as follows

Qeval = Q(st, at, w), (29)

Qtarget = rt + γmax
a∈A

Q
(
st+1, a, w−

)
, (30)

Q(st, at, w) = Q(st, at, w) + α

[
rt + γmax

a∈A
Q
(
st+1, a, w−

)
−Q(st, at, w)

]
, (31)

where w− represents the network weight in the target network.
The complete DRCA is shown in Figure 4. First, the agent obtains the state st by

interacting with the environment and chooses the action at to execute according to the
ε-based greedy policy; this affects the environment, making the state change to the next
moment state st+1, and provides the reward rt at the same time. The environment forms
a four-element array of the four items of data obtained from this interaction and stores
them in an experience pool. The agent then repeats this process to fill the experience pool.
Secondly, the current quaternal array is input into the main network each time to predict
Qeval . When the accumulated experience in the experience pool reaches a certain amount,
part of the array is taken out to form a batch, which is input into the target network, and
Qtarget is computed according to Equation (30). Then, the difference between Qeval and
Qtarget is computed, and the network weight of the main network is updated by gradient
descent. Finally, the network weights of the main network are directly assigned to the
target network every once in a while so as to update the weights of the target network.
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Figure 4. The proposed DRCA structure.

In the proposed DRCA algorithm, the environment, state space, action space, and
reward function are defined as follows

Environment: The role of the environment in the algorithm is to interact with the agent
and provide the state information that the algorithm needs. For the proposed optimization
problem, we define the environment as the proposed UMCF-UAV network, and the agent
is the UAV.

State Space: The state space design starts from the description of the environment. In
the UMCF-UAV network proposed in this paper, the state space is defined as

S =


D1(t), . . . Dn(t), . . . DN(t),

g11(t), . . . gmn(t), . . . gMN(t),
ηUL

1 (t), . . . ηUL
n (t), . . . ηUL

N (t),
f AP
1 (t), . . . f AP

m (t), . . . f AP
M (t)

, (32)

where Dn(t) represents the total size of pending tasks carried by the n-th UAV from GUs
in time slot t; gmn(t) represents the channel gain between the m-th AP and the n-th UAV
in slot t. The term ηUL

n (t) represents the power coefficient of the n-th UAV at time slot t,
and f AP

m (t) represents the remaining computing capacity of the edge server on the m-th
AP side at time slot t. The composition of the state space mainly depends on the network
information parameters λ in the DTO strategy. The agent acquires state information before
the beginning of each time slot and updates it at the end.

Action Space: The design of the action space is related to the behavior of the agent,
which is the behavior that the UAV can make in the network. In the UMCF-UAV network
assisted by the UAV proposed in this paper, the action space is defined as

A =


µ11(t), . . . µmn(t), . . . µMN(t),

c1(t), . . . , cm(t), . . . cM(t),
K1(t), . . . Kn(t), . . . KN(t),

qUAV
1 (t), . . . qUAV

n (t), . . . qUAV
N (t)

, (33)

where µmn(t) indicates whether the n-th UAV chooses the m-th AP as the AP-selected
variable for offloading the target in time slot t, Kn(t) represents the ratio of tasks that the
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n-th UAV decides to offload to the edge APs at time slot t, cm(t) represents the ratio of
tasks that the m-th AP gets from the n-th UAV at time slot t, and qUAV

n (t) represents the
coordinates of the n-th UAV at time slot t. The action space depends on the strategy set L
in the DTO strategy, and the agent makes a selection based on the state information at each
time slot.

Reward Function: The choice of reward function depends on the goal of optimization.
For the optimization problem proposed in this paper, its reward function can be defined
as follows

Reward =

{
−1, if ldelay(t) ≥ slot t,
e−10ldelay(t), if ldelay(t) < slot t.

(34)

In the command, ldelay(t) = µmn(t)max
{

llocal(t), ledge(t) + lo f f load(t)
}

indicates the net-

work delay of the system at time t. If the delay exceeds the current time slot t, computing
and offloading cannot be completed in the current time slot. This will affect the next time
slot t+1, which will cause an additional data burden for task offloading at the next moment.
The increase in network delay will also reduce the experience of users in the waiting area,
and it is not conducive to life safety of people in emergency situations. When the time
delay is less than the current time slot t, we prefer the time delay to be as low as possible
so as to obtain a higher reward. Therefore, an exponential function with e as the base is
designed as the reward function. It can be seen that the reward at this time is inversely
proportional to the increase of the delay, with the highest reward being 1 and the lowest
infinite approaching 0.

The training procedure of the proposed DRCA algorithm can be seen in Algorithm 1.
Firstly, in the initialization stage, the network parameters, including channel gain, power
coefficient, and AP residual computing capacity, are initialized to build the UMCF-UAV
network and obtain the initial network state s1. Then, at the beginning of each training, the
current state st is updated to the initial state s1. For each time slot t, the UAV relies on the
greedy policy to randomly select the action, execute the selected action in the constructed
UMCF-UAV network, and calculate the network delay ldelay in the system after the action is
executed. The reward value rt of the UMCF-UAV network feedback is computed according
to Equation (34), and the current network state is changed to the next instant state st+1.
The UAV encapsulates the results of this round of interaction with the environment into
a transition (st, at, rt, st+1), which is used to compute Qeval in each time and also stores
this information in the experience pool. The agent selects a part of the transition from
which to form a batch of capacity B and enters the target network to compute Qtarget when
the experience pool is full. The loss function δt = Q(st, at, w)− rt + γmax

a∈A
Q(st+1, a, w−)

is computed based on the difference between Qtarget and Qeval . The Stochastic gradient
descent (SGD) method is adopted to update the weight of the main network in each time
slot, which is as follows

w = w− αδt
∂Q(st, at, w)

∂w
. (35)

The state st+1 is updated at the next moment to the initial state s1 = st+1 in the next round
of interaction, ending the current round of interaction, and after several interactions, the
UAV updates the weight of its target network through the following Equation (36)

w− = w. (36)

The next action choice of UAVs after each iteration will be closer to the high reward
choice, and the UAVs can select the best AP selection and task offloading scheme after the
model converges.
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Algorithm 1 DRCA Algorithm

1: Randomly initialize all AP positions qAP
m

2: Initialize action space A, number of actions A, number of states S
3: Initialize replay memory D with memory capacity J , batch size B, learning rate α,

decay factor γ, epsilon ε
4: Initialize main network Qeval with weight w, target network Qtarget with weight w−

5: for each episode do
6: Reset simulation parameters of the UMCF-UAV system and obtain initial observa-

tion s1
7: for each time slot t do
8: Let st = s1
9: With ε-greedy policy to choose action at

10: Normalization each AP’s f AP
m (t)

11: for each UAV do
12: Choose a task offloading ratio and AP selection based on gmn, f AP

m (t), Dn
from at

13: Compute RUL
n with ηUL

n and qUAV
n based on Equation (24)

14: Compute system delay ldelay based on Equations (25)–(27) and rt based on
Equation (34)

15: if the m-AP is selected then
16: Reduce f AP

m (t) to f AP
m (t + 1) with probability

17: else
18: Keep or increase f AP

m (t) to f AP
m (t + 1) with probability

19: end if
20: Update f AP

m (t) = f AP
m (t + 1) and reset ηUL

n ,qUAV
n ,Dn

21: end for
22: Observe system delay ldelay, reward rt and next state st+1
23: if the capacity of replay memory has reached J then
24: Randomly sample a batch size B of transition (st, at, rt, st+1) from replay

memory D
25: Eliminate the first transition (st, at, rt, st+1) from replay memory
26: else
27: Store transition (st, at, rt, st+1) into replay memory D
28: end if
29: Send batch to target network Qtarget, compute Qtarget based on Equation (30)
30: Compute loss function with δt = Q(st, at, w)− rt + γmax

a∈A
Q(st+1, a, w−)

31: Update weight w of main network Qeval by SGD based on Equation (35)
32: Update observation s1 = st+1
33: end for
34: end for

In this paper, the GUs of the waiting area transmit task data to the UAV, and the task
is computed and offloaded by the UAV and the AP in the service area. According to the
DRCA algorithm proposed in this paper, the UAV determines its selected APs, the size
of tasks that need to be offloaded to the AP, and the size of tasks that need to be left for
local computing. The goal of the proposed algorithm is to reduce the delay of the proposed
UMCF-UAV network. We define a network with N UAVs and M APs where each UAV is
required to perform its own randomly selected action for a single episode. The selection
of the AP and task offloading does not require traversing all 2M − 1 possibilities, so the
complexity to execute the offloading strategy in each episode is O(N) and is executed only
once. In Algorithm 1, the number of episodes is defined by P and the number of time slot
iterations in each episode is defined as T . Therefore, the algorithm complexity of DRCA
can be expressed as O(NPT ).
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6. Numerical Results

In this section, we evaluate and discuss the simulation results of the DRCA algorithm
based on DRL. First, parameters used in the simulation are given and explained in Table 1.
Second, the delay performance of the proposed UMCF-UAV network is compared with
the traditional UAV-assisted cellular network, and the DTO strategy adopted in the DRCA
algorithm is compared with other allocation methods. Finally, DRCA simulation results are
compared with classical Q-learning and traversal system method (TSM) algorithms.

Table 1. Simulation parameters.

Parameter Value

fc 1.9 GHz
d0 1 m
B 20 MHz
ρp 100 mW
ρd 200 mW
ρu 100 mW
H 100 m
σ2 1 dB
t 0.1 ms

ωAP 800 cycles/bit
ωUAV 800 cycles/bit

α 0.001
γ 0.9
ε 0.995
J 1000
B 64

6.1. Parameter Setting

A circular area with a radius of 1000 m is considered in the proposed system model, a
total of M = 4 APs and N = 2 UAVs are configured for different comparisons, and all APs are
randomly distributed in this area. The total length of the coherence interval in the system is
set as τc = 200 symbols, which includes the uplink pilot estimation length τp = 25 symbols,
the downlink data transmission length τd = 75 symbols, and the uplink data transmission
length τu = τc − τp − τd. We assume that an emergency situation has occurred at this time
and the UAV has received the offloaded tasks from the GUs in the waiting area. Therefore,
what the UAV needs to do is to select the appropriate offloading target from all APs in the
network and reduce the system delay in this process. The parameters used in the rest of
the simulation are listed in Table 1.

6.2. Simulation Results and Analysis

Figure 5 shows the changes in rewards of the system at different learning rates. It
can be seen that the algorithm can converge at α = 0.01 and α = 0.001. However, the
convergence speed of the algorithm with α = 0.001 is significantly faster than that with
α = 0.01. And a higher learning rate of α = 0.1 has not yet reached convergence. This is
because the high learning rate produces a large learning step, which leads to the inability
to find the optimal solution quickly. When α = 0.00001, the algorithm fails to converge
because the learning rate is too low, making the algorithm remain in the exploratory phase.
Therefore, according to the simulation results, α = 0.001 has a good convergence speed,
and we use it in the following simulation.
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Figure 5. Comparison of DRCA algorithms under different learning rates.

As shown in Figure 6, we apply the same optimization problem and the proposed
algorithm in both the traditional UAV-assisted cellular network and the UMCF-UAV
network. It can be seen from the Figure 6 that the UMCF-UAV network has a significant
gap in system delay compared with the traditional UAV-assisted cellular network; this
is mainly reflected in the initial stage of training, where the performance of the UMCF-
UAV network is already 83% higher than that of the traditional UAV-assisted cellular
network. And the performance advantage of the UMCF-UAV network is maintained from
the beginning of training to the end of training. However, under the compensation of the
DRCA algorithm proposed in this paper, it is obvious that the traditional UAV-assisted
cellular network also quickly converges to a lower level. It can be seen from Figure 6 that
the UMCF-UAV network converges to 0.1 ms after 5000 episodes, while the traditional
UAV-assisted cellular network converges only to 0.19 ms after 20,000 episodes, which
indicates the performance advantage of the UMCF-UAV network and proves the feasibility
of our proposed network.

Figure 6. System delay comparison between UMCF-UAV network and UAV-assisted cellular network
under DRCA algorithm.
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As shown in Figure 7, in order to verify the performance of the edge server, AP
selection and task offloading of 50 episodes of single training were randomly selected. The
simulation results show that based on the proposed offloading strategy, the edge server
added at the AP side can offload part of the tasks and reduce the computational pressure
on the CPU.
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Figure 7. Task offloading of the AP side edge server in 50 random episodes.

In Figure 8, the proposed DTO scheme is compared with random allocation (RA),
equal allocation (EA), and ideal local (IL) computing. Among them, RA indicates that tasks
are offloaded to all APs in an area with random probability, EA indicates that tasks are
equally offloaded to all APs in an area, and IL indicates that there is no edge offloading and
all tasks are finished locally with strong computing power, which eliminates transmission
delays. Therefore, IL is an ideal task offload assignment mode that cannot be implemented.
As can be seen from Figure 8, the EA scheme is the worst case in the proposed network
because the UAV equally allocates the same size of tasks to all APs with different remaining
computing capacities, which may cause some APs to overload and waste the computing
resources of other APs that still have computing capacity, and the overload of some APs
affects resource allocation in the next moment. With the extension of time, the computing
capacity of APs in the network will be polarized. As a result, the APs with the lowest
computing capacity always determine the system delay of the network. However, due to
the RA scheme adopting random assignment of tasks, it will also lead to the similar results
of EA. In some situations, such as in the initial state, the computing capacity matches the
task size; thus, the network delay under the RA scheme is better than EA in the initial
training. But as the training cycles increase, the delay also starts to increase, and the gap
between RA and EA schemes gradually narrows. The IL scheme is an ideal scenario: we
assume that the UAV computing task is not limited by power and the flight life cycle; at
this time, the UAV becomes a mobile base station, eliminating the network delay of data
transmission. In fact, due to the energy consumption and the flight life cycle of UAVs,
the ideal situation is difficult to achieve, so we take IL as a lower bound of the delay
and as a reference scheme. As shown in Figure 8, the proposed scheme improves the
delay optimization by 53% compared with the EA scheme and 47% compared with the RA
scheme, and it is closest to the ideal IL scheme among all schemes.
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Figure 8. Comparison of system delay generated by different task offloading schemes under DRCA al-
gorithm.

As shown in Figure 9, we compared the proposed DTO strategy with RA and EA at
several training times, and the results show that the proposed DTO strategy can obtain
lower system delay than RA and EA after each training, which indicates that the stability
of the proposed offloading strategy is better than that of the two baseline strategies EA and
RA. This is because the proposed strategy takes into account AP selection and multiple
dynamic resource information within the network in each training, while the EA and RA
strategies only consider the task data size and the number of APs.
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Figure 9. Comparison of the proposed DTO strategy with other RA and EA offloading strategies
under multiple training.

As shown in Figure 10, in order to measure the efficiency of the DTO strategy in
processing edge tasks, we compare the delay changes of the three strategies with different
task sizes. It can be seen from Figure 10 that the system delay of all three strategies improves
as the size of offloading tasks increases. However, compared with the RA and EA strategies,
the proposed DTO strategy increases slowly and is always lower than the other two baseline
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strategies under the same task size. This is because the proposed strategy jointly optimizes
AP selection and improves the adaptability of the strategy to environmental changes.
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Figure 10. Comparison of the proposed DTO strategy with RA and EA offloading strategies under
different task sizes.

Finally, we compare the performance of the proposed DRCA algorithm with classical
Q-learning and TSM in Figure 11. It can be clearly seen from Figure 11 that the proposed
scheme is superior to the traditional reinforcement learning Q-learning. The reason is that
the input involved in the resource allocation of the network proposed in this paper is a
high-dimensional variable. Q-learning uses a Q-table, which has more difficultly meeting
the needs of high-dimensional variables. The proposed DRCA algorithm is based on
the DRL algorithm, which uses neural network to deal with such problems and achieves
better performance. However, when using the algorithm based on DRL, only the local
optimal solution can be obtained, and the global optimal solution cannot be guaranteed. In
order to further prove the performance of the proposed algorithm, we include a number
of small-scale UAVs and use the TSM to verify the performance from the perspective of
experiments. At each training moment, TSM traverses all possible decisions made by UAVs
at that moment, computes the delay in turn, and compares and selects the minimum value.
Therefore, TSM is a method to directly search for the global optimal solution. By taking the
optimal TSM results as reference, the lowest delay gap between Q-learning and TSM in
Figure 11 is 0.16 ms after 30,000 episodes, while the delay gap between the DRCA algorithm
and TSM at the same time is only 0.015 ms, which reduces the delay by 90.63% compared
with Q-learning. It can be seen that compared with Q-learning, the local optimal solution
computed by the DRCA algorithm in this paper can approximate the global optimal result
of TSM.

Figure 12 shows the comparison of the convergence performance of the DRCA and
Q-learning algorithms. It can be obviously seen that DRCA has faster convergence speed
and higher reward values than Q-learning: the reason is that the introduction of a neural
network in the DRCA algorithm shortens the time required for convergence compared
with Q-learning’s table lookup.
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Figure 11. System delay comparison between DRCA algorithm, Q-learning, and TSM.

Figure 12. Comparison of convergence of DRCA algorithm to Q-learning.

As shown in Figure 13, in order to further explain the performance advantages of the
proposed DRCA algorithm compared with Q-learning, we compare the delay variation of
the two algorithms with different numbers of UAVs and APs. It can be seen that as the
number of APs in the network increases, the performance of both algorithms is improved,
and the delay is further reduced. This is because the increase in APs brings more computing
resources to the network, which reduces the computational pressure on the edge servers at
each AP side. Meanwhile, the time delay of the two algorithms gradually improves with
the increasing number of UAVs. This is because UAVs can be regarded as aerial users in the
system, and the increasing number of UAVs brings more computational burden to the edge.
As can be seen from Figure 13, the DRCA algorithm is always superior to the Q-learning
algorithm and obtains lower system delay when the number of APs and UAVs is fixed.
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Figure 13. Comparison of the DRCA algorithm and Q-learning with different numbers of APs
and UAVs.

7. Conclusions

Aiming at the emergency scenario of network interruption in a UMi environment, a
UMCF-UAV network architecture is proposed in this paper. In the UMCF-UAV network,
edge servers are introduced to reduce CPU computing pressure and system delay, and
a dynamic resource allocation scheme of AP selection and task offloading is proposed
to minimize the transmission delay of the system. In order to solve the proposed non-
convex problem with tightly coupled optimization variables, we converted the problem
into an MDP problem and proposed a dynamic resource cooperative allocation algorithm.
The proposed algorithm has been compared with traditional Q-learning: the comparison
results show that the proposed algorithm has lower delay and faster convergence than
the Q-learning algorithm. Further, the resource allocation scheme proposed in this paper
is compared with different resource allocation schemes such as RA, EA, and IL, and the
results show that the proposed algorithm has the best performance. In order to further
verify the performance of the algorithm, a small number of UAVs are used to compare with
the optimal performance obtained based on the TSM algorithm in this paper. Simulation
results show that the proposed algorithm is close to the optimal bounds of TSM.
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Appendix A. Proof of Theorem 1

In order to derive the closed-form expression of the uplink rate, we need to compute

|DSn|2, E
{
|BUn|2

}
, E
{
|UIni|2

}
, and E

{
|Nn|2

}
.
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Appendix A.1. Compute |DSn|2

The error of the channel estimate is defined as εmn , gmn− ĝmn, which is the difference
between the actual channel gain and the estimated channel value. Substituting the error
εmn into Equation (19) yields

DSn =
√

ρuE
{

M

∑
m=1

√
ηUL

n ĝ∗mn(εmn + ĝmn)

}

=
√

ρu

M

∑
m=1

√
ηUL

n E{ĝ∗mnεmn}+
√

ηUL
n E{ĝ∗mn ĝmn}.

(A1)

According to the nature of MMSE estimation, we know that the error cannot be
reduced by improving the estimation when the best estimate point is reached. Therefore,
εmn and ĝmn are independent of each other, and E{ĝ∗mnεmn} = 0, so Equation (19) can be
further simplified by

DSn =
√

ρu

M

∑
m=1

√
ηUL

n E{ĝ∗mn ĝmn} =
√

ρu

M

∑
m=1

√
ηUL

n E
{
|ĝmn|2

}
=
√

ρu

M

∑
m=1

√
ηUL

n γmn, (A2)

|DSn|2 = ρuηUL
n

(
M

∑
m=1

γmn

)2

. (A3)

Appendix A.2. Compute E
{
|BUn|2

}

E
{
|BUn|2

}
= E


∣∣∣∣∣√ρu

(
M

∑
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√
ηUL

n ĝ∗mngmn −E
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ηUL

n ĝ∗mngmn
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2


(a)⇒ ρu

M

∑
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ηUL
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(
E
{
|ĝ∗mngmn|2

}
− |E{ĝ∗mngmn}|2

)
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ηUL
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(
E
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ηUL
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(b)⇒ ρu
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∑
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ηUL
n

(
γmn(βmn − γmn) + 2γ2

mn − γ2
mn

)
= ρuηUL
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∑
m=1

γmnβmn,

(A4)

where (a) is derived from E
{
(X−EX)2

}
= E

{
X2 − 2X ∗EX + (EX)2

}
= EX2 − 2EX ∗

EX+E
{
(EX)2

}
= EX2− (EX)2, and (b) is based on E

{
|ĝmn|4

}
= 2γ2

mn and E
{
|εmn|2

}
=

βmn − γmn.

Appendix A.3. Compute E
{
|UIni|2

}

E
{
|UIni|2

}
= E
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M

∑
m=1

√
ηUL

i ĝ∗mngmi

∣∣∣∣∣
2
. (A5)
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We simplify Equation (9) as follows

ĝmn =

√
τpρpβmn

τpρp
N
∑

i=1
βmi
∣∣ϕH

i ϕn
∣∣2 + σ2

y̌mn = cmny̌mn; (A6)

substituting Equations (8) and (A6) into Equation (A5), we have

E
{
|UIni|2

}
= E
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(d)⇒ ρuτpρp(ξ1 + ξ2) + ρuηUL
i

M

∑
m=1

c2
mnβmi.

(A7)

In the above derivation (c), based on the derivation of the mathematical expectation formula,
when X and Y are independent random variables, E

{
|X + Y|2

}
= E

{
|X|2

}
+E

{
|Y|2

}
, and

(d) relies on us to define the channel gain gmi =
√

βmihmi and
∼
wpm = w∗pmϕ∗n ∼ CN

(
0, σ2),

where ξ1 and ξ2 are given by

ξ1 , ηUL
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Compute ξ1 first,
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In the same way, the complete square expansion of ξ2 can be obtained

ξ2 = ηUL
i

M

∑
m=1
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∑
n′ 6=i
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mnβmiβmn′

∣∣∣ϕT
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substituting Equations (A10) and (A11) into Equation (A7), we have

E
{
|UIni|2

}
= ρuηUL

i

(
M

∑
m=1

γmn
βmi
βmn

)2∣∣∣ϕH
i ϕn
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Appendix A.4. Compute E
{
|Nn|2

}

E
{
|Nn|2

}
= E
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Substituting Equations (A3), (A4), (A12) and (A13) into Equation (23), we have Equation (24).
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