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Abstract: An energy hub (EH) provides an effective solution to the management of local integrated
energy systems (IES), supporting the optimal dispatch and mutual conversion of distributed energy
resources (DER) in multi-energy forms. However, the intrinsic stochasticity of renewable generation
intensifies fluctuations in the system’s energy production when integrated into large-scale grids and
increases peak-to-valley differences in large-scale grid integration, leading to a significant reduction
in the stability of the power grid. A distributed privacy-preserving energy scheduling method based
on multi-agent deep reinforcement learning is presented for the EH cluster with renewable energy
generation. Firstly, each EH is treated as an agent, transforming the energy scheduling problem into a
Markov decision process. Secondly, the objective function is defined as minimizing the total economic
cost while considering carbon trading costs, guiding the agents to make low-carbon decisions. Lastly,
differential privacy protection is applied to sensitive data within the EH, where noise is introduced
using energy storage systems to maintain the same gas and electricity purchases while blurring the
original data. The experimental simulation results demonstrate that the agents are able to train and
learn from environmental information, generating real-time optimized strategies to effectively handle
the uncertainty of renewable energy. Furthermore, after the noise injection, the validity of the original
data is compromised while ensuring the protection of sensitive information.

Keywords: privacy preservation; reinforcement learning; integrated energy system; distributed
optimization; optimization algorithm

1. Introduction

Energy hubs (EH) are characterized by the capability of integrating distributed re-
newable energy sources (RES), thereby facilitating a reduction in fossil fuel consumption
and mitigation of carbon emissions [1–3]. However, due to the intrinsic stochasticity
and variability in renewable energy, large-scale integration of wind and solar generation
will widen the system’s peak-to-valley difference. Additionally, extensive displacement
of traditional fossil-fuel-based generators will result in a lack of system flexibility, thus
driving substantial curtailment of RES [4–6]. Apart from the impacts of intermittent and
uncertain RES, the stochastic nature of user loads, the diversity among energy sources,
and the inter-dependencies among different energy forms also pose significant challenges
regarding optimizing and managing energy systems [7,8]. In this context, model-based
optimization approaches, e.g., mixed-integer linear programming (MILP) [9], dynamic pro-
gramming [10,11], model predictive control (MPC), etc., have been widely used to address
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such complex energy system scheduling problems. For instance, the authors in [12] em-
ployed MILP to optimize equipment selection and capacity configuration to minimize the
annual economic cost. In [13], a two-stage MILP approach was employed to model the EH
system, while Benders decomposition was utilized to solve the MILP problem. The authors
in [14] applied dynamic programming methods to assess the performance of integrated
electricity and heat networks by implementing decomposed electrical–hydraulic–thermal
calculations for power flow. In [15], a weighted model predictive control energy scheduling
regime was presented to enhance the resilience of EH clusters against contingencies. These
optimization algorithms often rely on precise mathematical models and full information of
parameters. However, due to the high complexity of EHs, establishing accurate models is
challenging; meanwhile, the computational complexity of these algorithms grows expo-
nentially with the increase in decision variables, limiting their applicability to large-scale
EH optimization and scheduling problems. In this context, machine-learning (ML)-based
algorithms are gaining popularity in recent years due to their low dependency on model
accuracy and decent computational performance, and they have been applied in various
fields, such as communication [16,17], bio-science [18,19], and energy [20,21]. As a type
of commonly used ML approach, reinforcement learning (RL) has been widely used in
energy system dispatch problems [22,23]. Through the interaction between agents and the
environment, it learns the optimal action policy by trial and error to maximize cumulative
rewards [24,25]. In the optimization and scheduling of EHs, RL can be employed to learn
the dynamic characteristics of the system and the complex relationships between energy
demand and supply, enabling autonomous decision making and optimization scheduling.
In [26], the proximal policy optimization algorithm was used to address the dynamic
scheduling problem of EHs in uncertain environments. However, this algorithm faces
difficulties in convergence when dealing with non-stationary problems. In [27], the deep
deterministic policy gradient (DDPG) method was applied to solve the EH energy manage-
ment problem based on the Stackelberg game model, which can handle high-dimensional
state and action spaces. However, it is unable to address large-scale EH cluster cooperation
issues. In [28], a multi-agent deep-deterministic-policy-gradient (MADDPG)-based RL al-
gorithm for optimizing EH clusters was employed to address the uncertainty of renewable
energy generation. Compared to single-agent algorithms, the training process of this model
exhibits improved stability and converging performance for tackling the interactions among
multiple agents. Through the above analysis, existing energy scheduling methods, such
as MILP, DDPG, and MADDPG, exhibit different characteristics in various aspects. MILP
(mixed-integer linear programming)-based centralized optimization has been widely uti-
lized in energy system scheduling problems; it is based on physical models and can provide
the optimal solution. However, it requires full information from users, which is unrealistic
when numerous end-user-side DERs are involved, as in our manuscript. Additionally, it
highly depends on the accuracy of the mathematical model and is more computationally
expensive to solve problems with a large number of users, thus being unsuitable for real-
time scheduling [29,30]. RL-based algorithms such as DDPG-RL (deep deterministic policy
gradient RL) are suitable for continuous state and action spaces, showing good adapt-
ability to high-dimensional problems without the need for an accurate physical model,
thus enabling offline training for energy system scheduling models and online application.
Although showing good performance in handling continuous problems, DDPG is not
suitable for multi-agent collaborative scenarios, which is the case in this paper [31,32].
Multi-agent deep reinforcement learning (MADRL) involves deep reinforcement learning
in a multi-agent environment. As one of the commonly used MADRL methods, MADDPG
employs centralized learning and decentralized execution, designed to address learning
and decision making in multi-agent cases [33,34]. MADDPG is well-suited for multi-agent
collaboration and adversarial scenarios, exhibiting strong adaptability with lax require-
ments for model precision in collaborative environments [16,35]. Despite the effectiveness
of MADDPG algorithms in dealing with energy hub (EH) cluster scheduling problems
in complex environments, they require access to sensitive information from subsystems,
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which may pose potential risks of privacy leakage [36,37]. In this context, investigating
how to ensure the accuracy and real-time performance of distributed subsystem scheduling
while protecting data privacy warrants further exploration.

With the increasing number and variety of devices connected to the EH, a considerable
amount of electricity consumption data is generated during the process of optimization
scheduling [38]. These data may contain sensitive or private information from devices and
users, posing significant security risks. Therefore, addressing privacy and security con-
cerns in the optimization scheduling process is of utmost importance. In the data analysis
and processing stage, commonly used privacy protection methods include homomorphic
encryption (HE) [39,40] and differential privacy (DP) techniques. HE enables data analysis
and processing while preserving the confidentiality of plaintext data [41]. In [42], HE algo-
rithms have been applied to address privacy protection challenges in distributed energy
management frameworks. However, HE algorithms suffer from high computational com-
plexity, leading to higher resource utilization, degraded system performance, and higher
costs. On the other hand, DP methods involve simple operations, such as data perturbation
and noise injection [43]. These techniques are more suitable for privacy protection tasks in
large-scale EH clusters, particularly under limited computational capabilities and resource
constraints. However, excessive introduction of noise, while it greatly enhances the privacy
protection of sensitive data, can lead to a decline in the performance of the EH network
and instability in control [44]. Therefore, the trade-off between privacy protection and the
performance of energy system dispatch is significant.

Based on the aforementioned discussions, algorithms combining DP and MADDPG
(denoted by DP-MADDPG) are worth investigating for solving EH cluster scheduling
problems with data privacy protection. Different from approaches that combine MADDPG
and HE, which require more computational resources, thus squeezing communication and
computation resource allocation for other tasks within the system, DP-MADDPG exhibits
low computational complexity, requiring lower computational resources but achieving
decent privacy protection performance, especially in scenarios involving multiple agents.
The comparisons of different algorithms are demonstrated in Table 1. In [45], DP-MADDPG
has been applied to address the issue of optimal power scheduling for microgrids with
data privacy protection. However, it does not consider the complex interactions between
different energy carriers in multi-energy systems. In this paper, we extend the utilization
of this approach to a heat–electricity–gas system in EHs, aiming to effectively solve the
optimization problem in EH clusters.

Table 1. Comparative analysis of different energy scheduling methods.

Feature
Algorithm MILP DDPG MADDPG HE-MADDPG DP-MADDPG

Lax requirement
for model accuracy X X X X

Adaptability
to multi-agents X X X

Advantage in
convergence speed X X X

Privacy protection X X
Xindicates the algorithm is characterised by the corresponding feature.

The main contributions of this paper are summarized as follows:

(1) The DP-MADDPG algorithm is adopted for distributed management of the EH cluster
system. Each agent independently controls the operation of its local system and
adjusts its local policy based on real-time observations and reward signals, enhancing
the robustness and reliability of the scheduling decisions. Furthermore, through
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collaboration among multiple agents, the method addresses complex scheduling
issues and improves the energy utilization efficiency of the system.

(2) Data privacy concerns are effectively addressed using the presented method. This
method dynamically introduces noise interference and utilizes an energy storage
system (ESS) to attenuate noise, ensuring the preservation of external transaction
data while perturbing internal network data. Additionally, an effective evaluation
mechanism for EH privacy protection is established to mitigate the impact of data
correlation on evaluation results, enabling intelligent agents to generate noise data
that satisfy the constraint conditions within a reasonable range.

The rest of this paper is organized as follows. Section 2 presents the model structure
and equipment type for EH clusters. EH’s optimal scheduling approach is detailed in
Section 3. In Section 4, simulation results are presented to show the performance of the
proposed approach, whilst the conclusion is drawn in Section 5.

2. Integrated Energy System Structure and Equipment Model
2.1. Integrated Energy System Structure

Figure 1 illustrates that EH comprises power grids, district heating networks, and gas
networks. Through the utilization of diverse energy conversion and storage devices,
EH facilitates the mutual supplementation and efficient utilization of energy resources
among these networks, meeting diverse load requirements. Additionally, EH mitigates the
challenge of inadequate electricity generation resulting from the unpredictable fluctuations
of renewable energy sources by procuring energy from the distribution grid and natural
gas networks.

Figure 1. The framework of EH.

2.2. Model of Devices

(1) Combined heat and power (CHP): CHP is an efficient energy utilization system that
achieves integrated utilization of energy by simultaneously generating electricity and
heat through the combustion of natural gas. The model can be described as follows:

PCHP
n,i,t = ηCHP

e × GCHP
n,i,t (1)
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HCHP
n,i,t = ηCHP

h × GCHP
n,i,t (2)

(2) Electric boiler (EB): EB is a device that converts electrical energy into thermal energy,
used to meet the heat network’s load requirements when CHP is not operational.

HEB
i,t = ηEB × PEB

i,t (3)

(3) Power to Gas (P2G): P2G is an energy conversion technology. By converting surplus
electricity into natural gas, P2G systems can store energy in the natural gas grid to
meet peak energy demands or periods when renewable energy generation falls short.
This helps alleviate the challenges posed by the intermittency and fluctuations in
renewable energy sources. The model is as follows:

GP2G
i,t = ηP2G × PP2G

i,t (4)

(4) Energy storage model: Energy storage unit system is utilized for balancing load and
supply in a network. The output model can be described as follows:

EX
i,t+1 = (1− αES

x )EX
i,t + (PX,ch

i,t ηch
x −

PX,dis
i,t

ηdis
x

∆t), (5)

where x denotes the type of energy storage and e, h, and g denote the grid, heat,
and gas networks, respectively.

It should be emphasized that network losses also have significant impacts on the
decisions of economic energy dispatch. Since the networks for different energy carriers are
not explicitly modeled in this paper, the impacts of network losses are considered in the
energy prices.

2.3. Constraints

(1) Energy Balance Constraint: The power balance constraint of the entire integrated
energy system is expressed as

Pnet
i,t + PPV

i,t + PWT
i,t +

N

∑
n=1

PCHP
n,i,t − PEB

i,t − PP2G
i,t + Pe,dis

i,t − Pe,ch
i,t = Le

i,t (6)

N

∑
n=1

HCHP
n,i,t + HEB

i,t + Ph,dis
i,t − Ph,ch

i,t = Lh
i,t (7)

Gnet
i,t + GP2G

i,t −
N

∑
n=1

GCHP
n,i,t = Lg

i,t (8)

(2) Equipment Operating Constraints: For P2G, CHP, and EB devices, power constraints
and ramp constraints must be adhered to during operation as follows:

PP2G
min ≤ PP2G

i,j ≤ PP2G
max (9)

|∆PP2G
i,t | ≤ PP2G

ramp (10)

PEB
min ≤ PEB

i,j ≤ PEB
max (11)

|∆PEB
i,t | ≤ PP2G

ramp (12)

GCHP
min ≤ GCHP

i,j ≤ GCHP
max (13)
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|∆GCHP
n,i,t | ≤ GCHP

ramp (14)

(3) Energy Storage Device Constraints: The capacity constraints and ramp constraints
to be satisfied by energy storage devices on different networks are expressed as the
following equations:

EX
min ≤ EX

i,j ≤ EX
max (15)

IX,ch
i,t + IX,dis

i,t ≤ 1 (16)

PX,ch
min IX,ch

i,t ≤ PX,ch
i,t ≤ PX,ch

max IX,ch
i,t (17)

PX,dis
min IX,dis

i,t ≤ PX,dis
i,t ≤ PX,dis

max IX,dis
i,t , (18)

where the non-negative integer IX,ch
i,t and IX,dis

i,t are introduced to ensure that charging
and discharging behaviors do not occur simultaneously.

In this paper, we are focused on the scenario of energy hubs, covering a couple energy
conversion infrastructures, e.g., combined heat and power (CHP), electric boilers, electrolyz-
ers, various forms of storage, which enable the interchange of energy forms between heat,
electricity, and hydrogen and natural gas. However, some of the energy infrastructures are
geographically specific and highly rely on regulatory environments; for example, CHP is
commonly used in regions at high latitude but barely seen in southern areas. Under the
carbon neutrality target, policies are coming up to facilitate the displacement of gas boilers
by electric heaters (heat pumps or electric boilers), but there is still a long way to go before
large-scale heating system electrification. Regarding P2G devices, affordability and secu-
rity issues still highly restrict the their large-scale deployment, which highly depends on
technology advancement and political incentives. However, the decarbonisation pathway
proposed by different countries may vary tremendously, which drives the preference of one
type of energy infrastructure and suppresses the development of another. To this end, it is
important to stress that the scenarios in this paper are not omni-applicable under different
conditions; however, the proposed method provides meaningful insight regarding solv-
ing economic energy dispatch across multi-agents; the types of resources and application
scenarios can be changed accordingly.

2.4. Carbon Trading Cost Model

Ignoring the carbon emissions from renewable power generators and energy storage,
devices participating in carbon trading are CHP and P2G devices. For each carbon emission
source, if the actual carbon emissions exceed the allocated carbon quota obtained for free,
the excess portion needs to be purchased in the carbon trading market. The remaining
quota can be sold. Therefore, the carbon trading cost model can be established as follows:

CCO2
i,t = CCHP

i,t + CP2G
i,t (19)

(1) CHP Carbon Trading Cost: CHP units are one of the main carbon emission sources in
the energy system. Assuming that the total carbon emission intensity and quota are
proportional to the actual output, the carbon-related cost can be calculated as follows:

CCHP
i,t = πCO2

t (ECHP − eCHP)
N

∑
n=1

(PCHP
n,i,t + HCHP

n,i,t ) (20)

(2) P2G Carbon Trading Cost: The P2G unit can capture CO2 from power plants or biogas.
As shown in Equation (21), the conversion process of P2G can be divided into two
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steps: electrolytic hydrogen production and methanation, where the volume of CO2
consumed in this process is equal to the volume of CH4 produced.{

2H2O −→ 2H2 + O2
4H2 + CO2 −→ CH4 + 2H2O

(21)

Therefore, the output of the P2G unit can be converted into an equivalent volume of
CH4, allowing us to further determine the reduction in carbon emission intensity achieved
by the P2G unit.

EP2G = ρCO2 VCO2 = ρCO2
GP2G

i,t

αCH4
(22)

In this context, ρCO2 = 1.977 kg/m3 represents the gas density of CO2, and αCH4

denotes the calorific value of natural gas CH4, which takes the value of 9.87 kWh/m3.
Since the P2G unit is not a carbon emission source, its carbon quota is set to zero. Thus,
the calculation of carbon trading costs can be represented as follows:

CP2G
i,t = −πCO2

t EP2GGP2G
i,t (23)

2.5. Objective Function

Minimizing the total operating cost of the integrated energy system is chosen as the
objective function, which includes costs associated with external energy procurement,
equipment operation, and maintenance, as well as carbon trading. The specific calculation
method is as follows:

Cbuy
i,t = πe

t Pnet
i,t + π

g
t Cnet

i,t (24)

Coper
i,t = πCHP

N

∑
n=1

(PCHP
n,i,t + HCHP

n,i,t ) + πEBHEB
i,t + πES

t (Px,ch
i,t + Px,dis

i,t ) + πP2GGP2G
i,t (25)

Based on the above discussion, the optimization scheduling problem described in this
paper can be formulated as follows:

min
M

∑
i=1

(Cbuy
i,t + Coper

i,t + CCO2
i,t )

s.t.(1)− (25)

(26)

3. A Real-Time Optimal Energy Scheduling Method for EH Based on Distributed
Deep Reinforcement Learning

In this section, each complete and independent EH is regarded as an agent respon-
sible for controlling energy dispatch operations within the system. The optimization of
dispatch problems is formulated as a Markov decision process (MDP), and the global
optimal decision is obtained through experience sharing and collaborative training. Due
to the fluctuation and uncertainty in renewable energy output and load demand in the
environment of EH, as well as the involvement of multiple variables, such as different
energy sources, loads, devices, and markets, the combination of state space and action
space exhibits explosive growth. To address these challenges, the MADDPG algorithm is
adopted, which excels in handling complex tasks with high-dimensional state and action
spaces while employing an adaptive strategy to cope with environmental uncertainties.

3.1. MADDPG Algorithm

Traditional algorithms like deep Q-learning and DDPG often encounter issues such
as unstable training and convergence difficulties when dealing with non-stationarity in
multi-agent environments. To address these challenges, the MADDPG algorithm has
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been developed as a deep RL approach based on the deterministic policy gradient (DPG)
and actor–critic framework, specifically designed for multi-agent settings. In MADDPG,
each individual agent maintains its own actor and critic network, responsible for learning
policies and evaluating policy value functions, respectively. During the training process,
agents interact with the environment, selecting actions based on their actor networks and
receiving rewards and subsequent states [46–48]. The experiences of the agents are stored in
a shared experience replay buffer. When updating network parameters, agents sample data
from the experience replay buffer, calculate gradients, and update their respective network
parameters accordingly. Furthermore, MADDPG incorporates techniques such as target
networks and random sampling from the experience replay buffer to enhance training
stability. These mechanisms contribute to the effectiveness of MADDPG in addressing
the optimization problem of energy scheduling. Detailed descriptions of the algorithm’s
design and practical applications will be provided in the subsequent section.

3.2. Parameter Space

In traditional reinforcement learning, the MDP describes the interactive process be-
tween a single agent and the environment, where the agent selects actions based on the
current state and evaluates the quality of its behavior through reward signals. MADDPG
can be regarded as an extension of MDP for multi-agent scenarios. Thus, a reinforce-
ment learning model for integrated energy systems can be represented by three essential
components: the state space Si , action space Ai, and reward space Ri of agent i.

(1) State space: At time slot t, the state space of an EH cluster primarily encompasses the
renewable energy generation (including wind power and photovoltaic generation)
within each agent’s region, the load of the three energy networks, the gas consumption
of CHP units, the electricity consumption of EB and P2G devices, the electricity price,
gas price, and the charging and discharging actions of energy storage systems. It can
be defined as follows:

si,t = {t, GCHP
n,i,t , PCHP

i,t , PWT
i,t , Le

i,t, Lh
i,t, Lg

i,t, PEB
i,t , PP2G

i,t , πe
t , π

g
t } (27)

with si,t ∈ Si.
(2) Action space: The action space variables mainly include controllable energy conver-

sion devices and energy storage devices, which can be indicated as follows:

ai,t = {∆PCHP
n,i,t , ∆PP2G

i,t , ∆PEB
i,t , Pe,dis

i,t /Pe,ch
i,t } (28)

with ai,t ∈ Ai.
(3) Reward function: The reward of agent i on given state si, t, and action at i can be

described as

ri,t =

{
γ(Cbuy

i,t + Coper
i,t + CCO2

i,t ), λ = 0
−ζλ, otherwise.

(29)

where the λ is an integer parameter, indicating the number that does not satisfy
(6)–(18) at time slot t.

(4) Algorithm chart: The optimal energy scheduling process for EH cluster based on
MADDPG is shown in Algorithm 1.

The essence of this approach is to search the optimal solution in the feasibility re-
gion defined by the optimization problem. Instead of using the traditional MILP method,
which can be computationally prohibitive for real-time application, we turn to the MAD-
DPG method for offline training. To achieve this, we first established the integrated
heat–electricity–gas system model, where the operational characteristics of various energy
conversion components and their interactions are specifically taken into account. Then, we
formulated the EH economic dispatch optimization problem, which serves as the environ-
ment of the MADDPG model. The reward of the model includes two parts: (1) the revenue
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gain (the objective of the optimization problem), and (2) the constraint violation penalty.
Note that the coefficient of the constraint violation penalty is set very large so that, once
an action violates a constraint, the reward will be particularly bad. In this way, this model
learns offline to search the solutions with the highest reward, which can be interpreted as
taking the actions that can lead to the highest revenue without violating physical constraints
of the energy system. Given real-time EH operational conditions (environment parame-
ters), the trained model tends to provide a decent decision for economic energy dispatch.

Algorithm 1: Distributed Energy Management by MADDPG.

Input: GCHP
n,i,t , PPV

i,t , PWT
i,t , Le

i,t, Lh
i,t, Lg

i,t, PEB
i,t , PP2G

i,t , πe
t , π

g
t

Output: ∆PCHP
n,i,t , ∆PP2G

i,t , ∆PEB
i,t , Pe,dis

i,t /Pe,ch
i,t

1 for episode = 1 toH do
2 Initialize GCHP

n,i,t , PEB
i,t , PP2G

i,t , Eh
i,t, Ee

i,t
3 for stept = 1 to T do
4 Each agent obtains environmental parameters.
5 Actor network output action ∆GCHP

n,i,t , ∆PP2G
i,t , ∆PEB

i,t , Pe,dis
i,t /Pe,ch

i,t
6 According to (6)–(18), and calculate the ri,t value by Equation (29).
7 Update the state si,t+∆t.
8 if episode ≥ H′ then
9 Agent learns by extracting historical data from a pool of experience

10 end
11 Store [si,t, ai,t, si,t+∆t, ri,t] into the experience pool
12 end
13 end

3.3. EH Privacy Protection Based on Differential Privacy

In the utilization of reinforcement learning for training optimization scheduling mod-
els, the interaction between agents and the environment gives rise to security risks asso-
ciated with data privacy breaches. Particularly, when agents engage in data transactions
with external power and gas grids, the internal parameters of the agents become more
susceptible to leakage. In order to safeguard data privacy in EH, we adopt an efficient
and computationally simple approach known as local differential privacy [49–54]. This
approach not only allows for quantifying the strength of privacy protection but also enables
the application of the noise addition process at each EH node. By individually adding
noise to the local privacy information of each agent, the probability of privacy leakage is
greatly reduced.

Algorithm Chart

The optimal energy scheduling process for EH cluster based on MADDPG is shown in
Algorithm 1.

We employ the Laplace mechanism to add noise to the data as a privacy-preserving
measure, and each agent is responsible for controlling this noise addition process. Specifi-
cally, a local privacy dataset of agent i is first introduced and expressed as

Di,t = {GCHP
n,i,t , PPV

i,t , PWT
i,t , Le

i,t, Lh
i,t, Lg

i,t, PEB
i,t , PP2G

i,t , Pe,dis
i,t /Pe,ch

i,t , Ph,dis
i,t /Ph,ch

i,t } (30)

Secondly, the dataset would be mapped into xi,t = f (Di,t) ∈ Rd and used to generate
the Laplace noise Lapn(

∆ f
ε ) to construct DP vector denoted as

yi,t = f (Di,t) + (Lap1(
∆ f
ε
), . . . , Lapd(

∆ f
ε
))T , (31)

where ∆ f and ε are the sensitivity and privacy budget of function f , respectively.
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The privacy protection efficiency of agent i is assessed by computing the discrep-
ancy between the original privacy information xi,t and the perturbation information yi,t.
The formula is defined as follows:

σi,t =

√
(xi,t − yi,t)TS−1

i,t (xi,t − yi,t)

‖xi,t‖2
(32)

where Si,t is denoted as the covariance matrix. Simultaneously, by incorporating the
constraints (6)–(18), the agent is guided to select noise addition actions that not only satisfy
the constraints but also achieve the desired level of privacy protection effectiveness.

Due to the negative impact of introducing external noise on the stability, security,
and reliability of energy networks, utilizing internal ESS within the EH to provide the
required additional energy for noise addition can mitigate this effect. By transforming
the source of noise to be internal to the network, the impact of introducing noise can be
effectively managed. This enables flexible adjustment and control of noise introduction
according to the specific requirements and operational states of the network. Additionally,
the ESS plays a role in energy balancing within the network, ensuring that sensitive data
within the EH are perturbed without affecting energy transactions between the EH and
external sources. Consequently, the added noise can be defined as

∑ Lapn(
∆ f
ε
) = ∑

k∈K
EX,noise

ik,t , (33)

where the energy obtained through the ESS and used as noise EX,noise
ik,t follows the Laplace

distribution with the following probability density function,

f (x|µ, λ) =
1

2λ
e−
|x−µ|

λ , (34)

where µ usually takes 0, and λ = ∆ f /ε.

4. Case Studies

The presented optimization scheduling model is applied to a cluster comprising four
distributed EHs. Each EH can achieve a supply–demand balance through electricity and
gas procurement operations. Time-of-use pricing is adopted for electricity and gas procure-
ment/sales from the grid, with differentiated prices during different time intervals, as depicted
in Figure 2. The operational parameters of the EH’s devices are provided in Table 1.

Figure 2. Electricity and gas prices.



Electronics 2023, 12, 4763 11 of 22

4.1. Analysis of Optimized Schedule Results

To address the aforementioned cluster, this paper establishes an EH cluster optimiza-
tion scheduling model based on the DP-MADDPG algorithm and conducts simulation
experiments in the Python 3.7 environment to validate the proposed methodology’s effec-
tiveness. The DP-MADDPG algorithm’s specific parameters are outlined in Tables 2 and 3.
The model consists of four agents, and Agent-4 is chosen as a case study for the experimen-
tal analysis. In this paper, all the models are trained for 2500 episodes. By summing up the
rewards obtained by each agent across 24 time steps in every round, the total reward for
each iteration is calculated, and the data are averaged every 50 cycles. The convergence of
the reward value for Agent-4 and the total reward value are illustrated in Figure 3.

Table 2. Energy conversion devices and energy storage unit parameters.

PCHP
n,i PCHP

max /PCHP
min [kW] PCHP

ramp [kW] Initial PCHP
n,i [kW] ηCHP

h /ηCHP
e

PCHP
1,i 150/0 60 45 0.5/0.4

PCHP
2,i 110/0 45 36 0.5/0.4

PEB
max/PEB

min [kW] PEB
ramp [kW] Initial PEB

n,i [kW] ηEB
e

PEB
i 100/0 15 45 0.9025

PP2G
max /PP2G

min [kW] PP2G
ramp [kW] Initial PP2G

n,i [kW] ηP2G
e

PP2G
i 150/0 24 56 0.83

ESS EX
max/EX

min [kWh] Initial EX
i [kWh] αES

x ηch
x /ηdis

x

Ee
i 1000/−1000 0 0.01 0.95/0.95

Eh
i 800/−800 0 0.01 0.95/0.95

Table 3. Model-specific parameter settings.

Parameters Critic Actor

Learning rate 0.0001 0.001

Soft update coefficient 0.01 0.01

Number of layers of neural network 2 2

Number of neural per layer 64 64

Activation function of hidden layer Relu Relu

Activation function of output layer / Tanh

Number of episodes 10,000 10,000

The number of times per episode 24 24

Size of experience replay unit 100,000 100,000

Based on the graph, it can be observed that, during the initial stages of training, when
the action networks are in the exploration phase, the reward values are initially low and
exhibit significant fluctuations. However, as the intelligent agents begin to learn from
historical data extracted from the experience replay buffer, the reward values gradually
show a clear upward trend. Around 500 episodes, the bonus value curve stabilizes and
stays at a higher level. Eventually, the total reward value converges to around −4000.
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Figure 3. The curve of reward value.

Figure 4 demonstrates the comparisons between DP-MADDPG, MADDPG, and DDPG.
As can be observed, DP+MADDPG and MADDPG show good converging performance,
while DDPG fails to converge within 2500 episodes. Regarding the converged reward,
MADDPG is higher than DP-MADDPG since the introduction of data privacy protec-
tion incurs increased operational costs (compromising the solution accuracy). Therefore,
the trade-off between privacy protection level and the economy of energy system dispatch
is critical.

Figure 4. Comparison of different algorithms.

4.2. Optimization Results Analysis

After offline training of the MADDPG algorithm networks using historical data,
the trained networks are saved for dynamic economic scheduling of the system. Consid-
ering that different intelligent agents have distinct reward evaluation criteria during the
training process, this section presents three different energy network models. After com-
pleting the training, the power output and exchange power variations in each device within
a single period are depicted in the corresponding curves in Figure 5.

From 0–7 h, the CHP unit is inactive, and the EB device is utilized to provide heat to the
heating network, meeting the heat load requirements. The P2G device consumes electricity
to supply gas to the gas network, satisfying the gas load and selling excess natural gas for
economic benefits. Due to the fluctuation and uncertainty in renewable energy generation,
photovoltaic generation is zero during the night, and wind power cannot meet the demands
of the grid and other electrical devices. The agent compensates for this power deficit by
purchasing electricity from the main grid. Additionally, due to the low electricity prices,
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the energy storage system on the grid adopts a strategy of storing electricity to cope with
peak power demands, achieving efficient utilization and optimization of energy resources.

From 8–23 h, the CHP unit starts operating. Due to the high electricity prices, the P2G
strategy of converting electricity to gas for the gas network is discontinued, and direct
purchase of natural gas is adopted instead. As the electricity and heat demands of the grid
and heating network differ, the CHP unit considers the actual conditions of both networks
when generating electricity and heat. Therefore, an energy storage system is implemented
in the heating network to balance the surplus or deficit of heat. With the involvement of the
CHP unit and PV generation, the agent significantly reduces its electricity purchases during
periods of high electricity prices compared to the 0–7 h period. Furthermore, the electricity
supply curve aligns well with the load demand curve, allowing the energy storage system
to operate near its optimal level.

Figure 5. The power changes in each network of the EH.
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4.3. Privacy Protection Results Analysis

In order to safeguard sensitive information in the power grid from leakage and identi-
fication, the privacy data of each round (including gas supply quantities for CHP devices,
power-to-gas conversion quantities for P2G, power consumption quantities for EB, load
data for the power grid, heating network, and gas network, wind and solar energy gen-
eration quantities, and the rate of change of ESS in the power grid and heating network)
are protected using differential privacy techniques. The privacy data are perturbed us-
ing the Laplace mechanism, and constraints are applied to ensure that the added noise
remains within reasonable bounds and does not exceed the power limits of the respective
units. The specific transformations are illustrated in Figure 6, which presents the data for
1097 rounds. It can be seen from the figure that, after noise addition, the original data are
blurred and distorted, making it impossible to infer and reconstruct specific information.

While maintaining constant gas and electricity consumption, the privacy data are
perturbed, and the introduced noise is appropriately translated to the relevant networks
based on their coupling relationships. Moreover, an ESS is separately deployed in the power
grid, heating network, and gas network, serving as a provider of noise. The variations in
energy storage provided by these units are depicted in Figure 7.

Figure 6. Comparison of original data and synthetic data for a single episode.
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Figure 7. Power changes in noise-canceling energy storage devices.

4.4. Sensitivity Studies
4.4.1. Sensitivities on the Level of Renewable Energy Sources

Considering the stochastic nature of renewable energy generation, it is crucial to assess
how well the proposed method handles the inherent uncertainties in renewable energy
production. This section provides a comprehensive analysis of the method’s performance
under various levels of renewable energy integration. Specifically, four scenarios are
selected, including 50% RES, 100% RES, 150% RES, and 200% RES integration. Note that
RES data of the previous case studies are used as the benchmark and denoted by 100% RES.

As illustrated in Figure 8, the proposed method shows similar convergence trends for
all scenarios, indicating its robustness to the integration of intermittent RES. Based on the
results, the converged reward increases with enhancement in RES penetration, which is
intuitive since RES is characterized by zero marginal cost, thus reducing the operation costs
incurred by fossil fuel consumption.

It should be emphasized that increasing/decreasing the amount of renewable energy
generation is equivalent to decreasing/increasing the amount of loads since the net elec-
tricity load is equal to actual load minus renewable energy generation. Therefore, we can
also interpret from the results that the proposed method shows good robustness in dealing
with different levels of loads.

Figure 8. Different levels of renewable energy sources.

4.4.2. Sensitivities on the Number of Agents

In this section, we test four scenarios associated with 1 EH, 2 EHs, 4 EHs, and 8 EHs
to observe how many episodes it takes to converge and the computational time. The simu-



Electronics 2023, 12, 4763 16 of 22

lation is performed on a computer with 2-core 3.50 GHz processor and 32 GB RAM, using
Python as a tool.

As illustrated in Figure 9, the rewards for all the tested scenarios converge well, where
fewer episodes are needed to achieve convergence with the increase in agent amounts.
However, the computational time for a single episode increases when more EHs are
considered due to the involvement of more variables. Table 4 shows the computational
parameters of all the scenarios. Additionally, the converged reward reduces with the
increase in EH numbers due to growth in energy consumption of more users.

Table 4. Comparative analysis of different numbers of EHs.

Number of EHs Computational Time [s] Average Reward

1 2916 −1830.68

2 4752 −2750.65

4 8424 −5128.89

8 11,232 −9288.73

Figure 9. The training process of the proposed algorithm.

Based on these results, it can be concluded that the proposed method can effectively
handle the coordination of multiple EBs. It should be emphasized that the MADDPG
algorithm has an inherent advantage in solving multi-agent problems; therefore, theoreti-
cally, it is capable of handling a problem with many more agents with appropriate model
parameter settings.

4.4.3. Sensitivities on Privacy Protection Levels

In this section, we will investigate how different levels of privacy protection impact
the computational time and solution accuracy.

In this paper, the parameter epsilon is used to control the degree of noise added to
protect data privacy. Increasing the amount of noise added to the original data enhances
privacy protection but could lead to notable data distortion and heightened computational
overhead. The proposed method is dedicated to securing the privacy of data transmission
while concurrently optimizing distributed energy resource scheduling in energy hubs.
As demonstrated in Table 5, three key metrics, including discrepancy rate, denoted by
σ, computational time, and solution accuracy are used to assess the trade-off between
the efficacy of privacy protection and solution performance. High accuracy validates the
optimality of the energy dispatch decision made by the algorithm, while a high discrepancy
rate ensures the privacy protection efficiency. As can be observed in the table, a larger
amount of noises leads to greater discrepancy rates in privacy protection performance,
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indicating that more operational costs will be incurred as the consequence of privacy
protection. Meanwhile, an increase in computational time is also observed. Therefore,
selecting an appropriate epsilon value strikes a balance between privacy preservation and
decision accuracy. Determining the suitable amount of noise introduced depends on the
specific dataset and privacy requirements.

It should be stressed that, although noise injection reduces the solution accuracy,
the physical constraints will not be violated since we introduced the constraint violation
penalty, the coefficient of which is particularly large, thus ruling out any solutions located
out of the feasibility region of the optimization problem. Additionally, although noise
injection causes increased computational complexity, the convergence performance is not
essentially impacted.

Table 5. Comparative analysis of different amounts of noise introduced.

Algorithm Discrepancy Rate σ [%] Computational Time [s] Accuracy

MADDPG 0 1685 0.954

31.2 6242 0.923

DP-MADDPG 63.4 6351 0.902

90.8 6532 0.883

4.5. Discussion

In the long run, with high-penetration integration of renewable energy driven by
carbon neutrality targets, the traditional top-down provision of flexibility from centralized
generation units will be insufficient to support efficient accommodation of intermittent
and fluctuant wind/solar energy, particularly in the context of low-inertia power systems
caused by large-scale displacement of synchronous generators [55,56]. Therefore, it is
imperative to exploit the flexibility from DERs as a bottom-up complementary resort [57].

A promising application area for the proposed algorithm is virtual power plants
(VPPs), dedicated to arousing the untapped flexibility in DERs by coordinating the opera-
tion/response of DERs at the end-user side. VPPs typically involve several hundreds of kW-
or MW-magnitude resource aggregation, which can be well-addressed by our algorithm, as
illustrated in the case study. Regarding the number of participants (agents), the trained
model can effectively handle the coordination of from one to eight energy hubs, as demon-
strated, which matches the amount of participants of an average-size VPP in China [58].
Since the training is performed offline, the requirement of hardware and communication
delay is not strict. However, due to the involvement of diverse DERs, the control of the VPP
may require heterogeneous communication systems and protocols. Additionally, the bottle-
neck of large-scale VPP application is how to effectively incentivize end users to participate
in energy resource aggregation. Additionally, the hierarchical control framework of VPPs
highly relies on extensive deployment of sensors for data collection of end users, an efficient
algorithm to support the cloud-edge control mode, as well as massive computing power
for coordination across numerous end devices. More importantly, incentivizing energy
policies are crucial for the participation of end users to provide flexibility to the power
system through VPPs [59,60].

At present, the construction of VPPs is primarily restricted at the stage of pilot trials in
China [61]. Although there are some commercial VPPs in Western countries running with
good profitability, their scales and the amount/diversity of aggregated DERs are limited;
therefore, their dependence on a smart and computationally efficient control algorithm
to effectively coordinate the operation/response of numerous end users is not urgent.
However, with the extensive decommissioning of centralized synchronous gas/coal-fired
generation units in recent decades, relative policies are very likely to be mature to fully
support the exploitation of flexibilities at the end-user side; VPPs will then play a major
role in providing balancing and ancillary services for the power system, a large amount of
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heterogeneous DERs will be involved in the control framework of VPPs, and then the pro-
posed control algorithm will truly show its superiority in handling fast scheduling across
numerous and diversified resources [62]. However, it is important to emphasize that the
proposed algorithm should be regarded as a prototype, the performance of which is tested
on the integrated heat–electricity–gas system; however, the physical model/mathematical
formulations can be changed to adapt to new policies and emerging technologies without
essentially jeopardizing the performance of the algorithm.

5. Conclusions

This paper proposes an EH cluster optimization and scheduling method based on
the MADDPG algorithm, targeting EH cluster with multiple IESs. The optimal schedul-
ing problem of the EH cluster is transformed into a deep reinforcement learning model.
Each integrated energy system on the EH is treated as an agent, utilizing the capabilities
of MADDPG to handle complex tasks with high-dimensional states and action spaces.
Through collaborative training among multiple agents within the EH cluster, the method
learns cooperative strategies to maximize the performance and efficient utilization of the
overall energy system. Additionally, a differential privacy mechanism is introduced in the
model to protect sensitive privacy data during the optimization and scheduling process.
In each of the three energy networks, a storage system is introduced to serve as a provider
of noise, ensuring that the purchase quantities of gas and electricity in the integrated energy
system remain unaffected by the introduced noise. Finally, the proposed optimization and
scheduling model is applied to a cluster scheduling optimization problem consisting of
four EH. The experimental simulations demonstrate that the proposed method offers rea-
sonable optimization strategies for scheduling problems and exhibits good generalization
capabilities when facing uncertain fluctuations in renewable energy output.

In the future, we will explore multi-level optimization for the hierarchical control struc-
ture of VPPs, where multiple lower-level agents interact with the higher-level controller.
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Abbreviations
The following abbreviations are used in this manuscript:

DDPG Deep deterministic policy gradient
DRL Deep reinforcement learning
DP Differential privacy
EH Energy hub
ESS Energy storage system
HE Homomorphic encryption
IES Integrated energy system
MADDPG Multi-agent deep deterministic policy gradient
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MADRL Multi-agent deep reinforcement learning
MDP Markov decision process
MG Microgrid
MILP Mixed-integer linear programming
RL Reinforcement learning
Indices and Sets
n,N Index/set of CHP from 1 to N.
i,M Index/set of EH nodes from 1 to M.
t, T Index/set of time slots from 1 to T.
Si Set of the state for agent i from time 1 to t, i.e., {si,1, si,2, . . . , si,t}.
Ai Set of the action for agent i from time 1 to t, i.e., {ai,1, ai,2, . . . , ai,t}.
αES

e , αES
h , αES

g The self-discharge efficiency of electricity, heat, and gas networks.
αES

e , αES
h , αES

g The self-discharge efficiency of electricity, heat, and gas networks.
ηch

e , ηch
h , ηch

g The charge efficiency of electricity, heat, and gas networks.
ηdis

e , ηdis
h , ηdis

g The discharge efficiency of electricity, heat, and gas networks.
ηCHP

e The the gas-to-electricity conversion efficiencies.
Parameters
ηCHP

h The the gas-to-heat conversion efficiencies.
ηEB The the power-to-heat conversion efficiencies.
ηP2G The the power-to-gas conversion efficiencies.
πCO2

t The price of carbon trading.
CCHP The O&M costs for CHP.
CEB The O&M costs for EB.
CES The O&M costs for ES.
CP2G The O&M costs for P2G.
πe

t , π
g
t The price of electricity and gas at time t.

γ, λ The small/large positive value as a reward weight.
eCHP The carbon emission quota associated with the unit energy generated.
ECHP The carbon emission intensity associated with the unit energy generated.
Ex

min, Ex
max The lower/upper limits of the ESS’s power.

GCHP
min , GCHP

max The lower/upper bounds of gas consumption.
GCHP

ramp The maximum ramping power of the nth CHP.
PCHP

ramp The maximum ramping power of the P2G.
PEB

min, PEB
max The lower/upper limits of the EB’s power.

PEB
ramp The maximum ramping power of the EB.

PP2G
min , PP2G

max The lower/upper limits of the P2G’s power.
Px,ch

min , Px,dis
max The lower/upper limits of charging/discharging power.

Variables
Ex

i,t, EES
x,t The stored energy of ESS on networks at time t.

HCHP
n,i,t The heat output of the nth CHP in node i at time t.

HEB
i,t The thermal output of EB in node i.

GCHP
n,i,t The gas consumption of the nth CHP in node i at time t.

GP2G
i,t The gas output of P2G in node i.

∆GCHP
n,i,t The variation of GCHP

n,i,t from slot t to t + ∆t.
Gnet

i,t The exchanged power with the external gas network in node i at time t.
Le

i,t, Lh
i,t, Lg

i,t The values of electrical, thermal, and gas load at time t.
PCHP

n,i,t The power output of the nth CHP in node i at time t.
PEB

i,t The electric power input of EB in node i.
∆PEB

i,t The variation of PEB
i,t from slot t to t + ∆t.

PP2G
i,t The electric power input of P2G in node i.

∆PP2G
i,t The variation of PP2G

i,t from slot t to t + ∆t.

PPV
i,t

The power generation of the photoelectric power generation unit in node i
at time t.

PWT
i,t The power generation of the wind power generation unit in node i at time t.

Px,ch
i,t , Px,dis

i,t The charging/discharging power in node i at time t.
Pnet

i,t The exchanged power with the main grid in node i at time t.
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