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Abstract: Path planning plays a crucial role in the execution of pursuit tasks for multiple unmanned
ground vehicles (multi-UGVs). Although existing popular path-planning methods can achieve
the pursuit goals, they suffer from some drawbacks such as long computation time and excessive
path inflection points. To address these issues, this paper combines gradient descent and deep
reinforcement learning (DRL) to solve the problem of excessive path inflection points from a path-
smoothing perspective. In addition, the prioritized experience replay (PER) method is incorporated
to enhance the learning efficiency of DRL. By doing so, the proposed model integrates PER, gradient
descent, and a multiple-agent double deep Q-learning network (PER-GDMADDQN) to enable the
path planning and obstacle avoidance capabilities of multi-UGVs. Experimental results demonstrate
that the proposed PER-GDMADDQN yields superior performance in the pursuit problem of multi-
UGVs, where the training speed and smoothness of the proposed method outperform other popular
algorithms. As a result, the proposed method enables satisfactory path planning for multi-UGVs.

Keywords: path planning; pursuit; path smoothing; multi-unmanned ground vehicles; deep
reinforcement learning

1. Introduction

Multiple unmanned ground vehicles (multi-UGVs) are playing an increasingly im-
portant role in modern military operations [1]. Multi-UGV pursuit is a highly complex
and crucial endeavor in the domain of multi-agent cooperation, which involves multiple
modules such as perception, planning and decision, control, and communication. Among
these modules, the planning and decision module holds utmost significance as it serves
as the system’s brain and constitutes its most critical component. Thus, the planning and
decision module is crucial in guaranteeing the successful completion of the pursuit task.

At present, the artificial potential field method and leader-follower method are often
used to solve path planning for multi-UGV pursuit. Liu et al. [2] proposed a finite-time ring
formation control algorithm using the artificial potential field. This method can not only
prevent internal collisions in the process of rapid team formation but also solve the problem
of local optima. However, this method neglects the change of iteration speed, resulting in
weak practicality. Xu et al. [3] put forward an improved RRT∗ algorithm that can not only
preserve the global completeness and path optimality of the original RRT algorithm but
also significantly enhance the iteration speed and quality of generated paths for both two-
dimensional (2D) and three-dimensional (3D) path planning. By doing so, it successfully
tackles the issues associated with inefficient obstacle avoidance planning and long path
distances. However, it is important to note that the adaptability of this approach to dynamic
obstacles may decrease. Jiang et al. [4] proposed a cooperative method based on the virtual
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leader-follower strategy. This method used the temporal and spatial requirements of the
virtual leader to catch up with the target and design different trajectories for the followers.
The advantage of this algorithm is that the formation of unmanned vehicles is flexible and
the monitoring of targets has strict requirements. To ensure path optimality, rationality, and
continuity, Sang et al. [5] presented the multiple sub-target artificial potential field, which
achieved global optimality by utilizing an enhanced heuristic A* algorithm. However, this
method is tailored for homogenesis agents. Further investigation is required to explore its
applicability to heterogeneous agents.

One important aspect of conventional methods in path planning is their utilization of
biomimetics, such as Cat Swarm Optimization (CSO), Artificial Bee Colony (ABC), Grey
Wolf Optimizer (GWO), Artificial Fish Swarm Algorithm (AFSA), Fruit Fly Optimization
Algorithm (FOA), Shuffled Frog Leaping Algorithm (SFLA), Bacterial Foraging Optimiza-
tion Algorithm (BFOA), Invasive Weed Optimization (IWO), Ant Colony Optimization
(ACO), Firefly Algorithm (FA), and so on. Among these, the Salp Swarm Algorithm (SSA)
has gained attention as a powerful swarm intelligence algorithm and has been extensively
studied for its optimization capabilities. To address the issue of local optima stagnation,
Ding et al. [6] proposed a VC-SSA algorithm, which aims to strike a better balance between
local and global searches. Similarly, Wang et al. [7] introduced an OOSSA algorithm, which
incorporated dynamic learning strategies to enhance the overall performance of the SSA.
They also presented the Orthogonal Quasi-Opposition-Based Learning-Driven Dynamic
SSA (OBDSSA) algorithm [8] and the Adaptive Strategy-Based SSA (ABSSA) [9] algorithm,
which effectively enhanced the local exploration capabilities and solution accuracy.

Existing conventional methods exhibit various forms and good stability, but they
often fall into local optima. In order to solve this problem, deep reinforcement learning
has been proposed. Deep reinforcement learning can be divided into two categories:
policy-based (such as actor–critic and DDPG [10]) and value-based (such as DQN [11])
algorithms. Wu et al. [12] designed a method to generate a pursuit strategy based on DQN.
Xu et al. [13] proposed a method to chase targets using DQN, and combined the attenuation
mechanism to achieve good results in the dog sheep game. However, the reward function
setting in DQN relies on experience. To extract priority information, Li et al. [14] proposed
a mechanism based on a key-query-like graph neural network, which introduced the
message-dependent attention to determine the relative importance of features, to prioritize
critical information. However, this mechanism is designed for discrete environments,
which may cause problems in continuous environments. Fu et al. [15] proposed a fast
target-pursuit strategy based on the Multi-Agent Deterministic Policy Gradient Algorithm
(MADDPG), which made full use of global rewards and local rewards to effectively execute
the cooperative pursuit task. However, it did not consider obstacles in the environment,
which makes it difficult to apply to different environments.

Various methods are available to address the multi-UGV pursuit problem and deter-
mine an optimal path. Among these, a common approach is to use a centralized archi-
tecture [16], where a central computer module generates actions for all vehicles. These
methods offer faster computation and can easily identify the optimal path. For instance,
Joint Actor-Critic (JAC) [17] adopts a centralized actor and a centralized value function
(critic), treats the multi-agent environment as a single-agent environment and learns in
the joint observation–action space. However, the centralized methods are prone to the
“curse of dimensionality” whereby the computation cost and communication requirements
increase exponentially as the number of vehicles grows. For large group sizes, such as in
multi-UGV systems, these centralized methods are not suitable. Decentralized methods, on
the other hand, distribute the computational burden to individual vehicles [18], making
computation costs lightweight. These methods plan paths based on local observations,
making them preferable for large-scale vehicle systems. In the Independent Actor-Critic
(IAC) [19] approach, each agent learns a decentralized policy and critic locally to generate
a local experience at each timestep. Another architecture, called Centralized Training with
Decentralized Execution (CTDE) [20], learns decentralized policies in a centralized manner,
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which allows vehicles to access each other’s observations and unobservable extra-state
information during training. This architecture combines the benefits of centralized train-
ing with the advantages of decentralized execution to provide a comprehensive solution
for path planning in multi-UGV systems. The advantages and disadvantages of existing
common algorithms are shown in Table 1.

Table 1. Advantages and disadvantages of existing path planning algorithms.

Algorithm Literature
(Year) Architecture Advantages Limitations

RRT [21]
(2022) Centralized Compatible with static and

dynamic environments
Does not consider the evaluation

of pursuit effectiveness

Inverse ACO [22]
(2022) Decentralized

Achieves better area coverage
performance; overcomes the

defects of artificially set
feature points

Adaptive adjustment of model
parameters in different scenarios

Inverse step
method

[23]
(2021) Centralized

Strong overall robustness of the
system to boundary

perturbations, distance errors,
and angular errors

Collision avoidance needs to
be improved

Virtual
leader-follower

[24]
(2021) Centralized Achieves single-target and

multi-target pursuit Poor flexibility

Voronoi diagram [25]
(2019) Centralized

Reduces uncertainty across the
region and improves efficiency

of coordinated region search

Does not consider
communication constraints

across frames

DQN [26]
(2018) Centralized

Artificial potential field method
combined with deep

reinforcement learning

Does not consider multiple
escapees and captor

environments

MADDPG [27]
(2021) CTDE Reduced error between model

and real scenario

Simple scenario with low
number of pursuits

and obstacles
Reinforcement

learning
[28]

(2022) Centralized Decoupling of pursuit
algorithms

No consideration of terrain and
obstacles to communication

Deep learning [29]
(2021) Decentralized For non-integrity pursuits Need to train a network for

each escapee

This study aims to enhance the pursuit task in multi-UGV scenarios by leveraging DRL.
Here, the DRL offers favorable stability and rapid operation speed and is able to process
high-dimensional input data and effectively represent and learn from the data through
deep neural networks to enable adaptation to complex environments. To capitalize on the
advantages, we propose a DRL methodology using MADDQN, which is a natural choice
for CTDE due to its ability to leverage centralized training and incorporate additional
information inaccessible to decentralized policies [30]. To further improve the pursuit
task’s efficiency and effectiveness, the planned path is optimized through path smoothing
and enhancements by applying the Double Deep Q-Network (DDQN) to the multi-UGV
system. Additionally, gradient descent is introduced into the proposed structure to smooth
the data deposited into the experience replay during each training iteration, resulting in
an optimized trajectory sequence. To achieve faster training and testing speeds, as well
as improve stability, a PER-GDMADDQN method is proposed to combine the prioritized
experience replay mechanism with gradient descent, leading to enhanced training and
testing speeds while simultaneously improving stability. By employing MADDQN and
incorporating the prioritized experience replay mechanism and gradient descent, the
optimization can enable faster and more accurate path planning, obstacle avoidance, and
overall system stability in multi-UGV scenarios. The structure of the proposed multi-UGV
system is shown in Figure 1; firstly, the proposed algorithm obtains the state values from
the environment and inputs them into the neural network to obtain the action values of
the unmanned vehicle. Then, the state and action values are stored in the experience reply
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pool. Finally, the algorithm obtains an experience mini-batch from the experience replay to
train the neural network.
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Figure 1. Pursuit task in multi-UGV scenarios.

The contributions of this work can be summarized as follows:

(1) Expanding the traditional four-direction output actions to eight-direction output
actions, to improve the smoothness of path planning.

(2) Optimizing the structure of the DDQN algorithm by integrating gradient descent into
the sampling process and extending it to multi-UGV systems to solve the pursuit
problem.

(3) Using the prioritized experience replay mechanism to improve the network structure
and enhance speed.

The remainder of this paper is organized as follows. After reviewing the relevant
literature in Section 1, the kinematic model of UGV and the environment model are given
in Section 2. Section 3 presents the DDQN and prioritized experience replay. The proposed
method is described in detail in Section 4. The results and discussion are provided in
Section 5. Finally, conclusions and future work are presented in Section 6.

2. Materials and Methods
2.1. Problem Formulation

Multi-UGV pursuit scenarios can be described as multi-UGVs and a moving/stationary
target (human or other self-propelled weaponry) to be pursued in a finite two-dimensional
planar area. The task of the unmanned vehicles is to pursue the discovered target; the
schematic diagram of the pursuit scenario is shown in Figure 2. In addition, in order to
more closely match the actual environment of the battlefield, the following conditions are
assumed in this paper.

(1) Each vehicle obtains obstacle information through on-board LiDAR as well as cameras.
(2) The UGVs are equipped with vehicle-to-vehicle (v2v), which can share all vehicle

status and action information as well as obstacle information to ensure collaboration.
(3) All vehicles can communicate with the ground station in real time and obtain the

position and movement information of the target as obtained by the radar of the
ground station.

(4) The target can only sense the relative position of vehicles within a fixed distance Dt.
If beyond Dt, the information of vehicles cannot be obtained by the target. The speed
of the target is less than the maximum speed of the vehicles.
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Figure 2. Initial condition of a multi-UGV pursuit scenario.

Both the UGVs and the target can move in the scene. After the vehicles obtain the
location information of the target, they construct an encirclement around the target through
collaboration, to realize the pursuit task. After the target senses vehicles within the distance
Dt, it escapes from the vehicles according to a certain strategy. Let us assume that there are
four vehicles performing the pursuit task, and the successful pursuit is shown in Figure 3.
The vehicles are distributed around the target at equal angles to form an encircling circle to
prevent the target from escaping.
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2.2. Kinematic Model of UGV

The UGV‘s chassis is a four-wheeled Ackerman chassis modelled from a real experi-
mental vehicle and consists of a heading controller (steering gear) and a speed controller
(motor) that work independently. The speed control varies the torque and speed of the
engine so that the UAV moves forward and backward at a predetermined speed. The
heading control changes the steering angle of the front wheels so that the vehicle can follow
the planned path. The kinematic model of vehicles is expressed as .

xi.
yi.
ϕi

 =

cosϕi 0
sinϕi 0

0 1

[ui
ωi

]
(1)

where xi, yi, ϕi denote the horizontal coordinate, vertical coordinate, and heading angle of
the i-th vehicle, and ui, ωi denote the velocity and angular velocity. The position of vehicle
i at the next moment is P′i =

[
x′i , y′i

]
, the heading angle is ϕ′i, the heading angular velocity

is
.
ϕi, and the movement time interval is ∆t. Then, the state of vehicle i at the next moment

can be described as x′i
y′i
ϕ′i

 =

xi
yi
ϕi

+

 .
xi.
yi.
ϕi

∆t (2)
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The UGVs need to satisfy certain motion constraints, so the state and control quantity
of each vehicle need to meet {

ωmin ≤ ωi ≤ ωmax
amin ≤

.
ui ≤ amax

(3)

{
∆ϕmin ≤

.
ϕi∆t ≤ ∆ϕmax

∆umin ≤
.
ui∆t ≤ ∆umax

(4)

where ωmin is the maximum clockwise angular velocity, ωmin < 0; ωmax is the maximum
counterclockwise angular velocity, ωmax > 0; amin is the maximum acceleration in the
reverse direction, amin < 0; amax is the maximum acceleration in the forward direction,
amax > 0. ∆ϕmin is the maximum angle of clockwise motion, ∆ϕmin < 0; ∆ϕmax is the
maximum angle of counterclockwise motion, ∆ϕmax > 0. ∆umin is the maximum velocity in
the reverse direction, ∆umin < 0; ∆umax is the maximum velocity in the forward direction,
∆umax > 0.

In this paper, we consider multi-UGV pursuit in a 2D environment. In addition, the
map needs to be rasterized. In order to simplify the computing process and combine the
kinematic model, the vehicle and target can be regarded as mass points. Figure 4a shows
all possible actions of the vehicle. In the grid, the vehicle can drive in eight directions,
including front, back, left, right, left-front, left-back, right-front, and right-back. Since the
cell edge is l ≥ 2r + w (r is the minimum turning radius of the vehicle and w is the width of
the vehicle), the vehicle can normally drive to the left and right cells and stop at the center
position. Figure 4b shows the heading angles corresponding to each direction of the UGV.
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2.3. Environmental Model

Constructing the environment as a 2D map is the basis for multi-UAV pursuit path
planning. It mainly aims at the unknown environment or the environment where obstacles
move in real-time. For static and known environments, the subsequent planning can
directly skip this process.

When constructing a 2D map, the map is divided into M× N cells, all sides of which
are l (l ≥ 2r + w) in length. In order to simplify the obstacles and boundaries, the obstacles
are mapped to the corresponding cells (those less than one cell are calculated as one cell),
and the occupied cells are merged to facilitate the generation of passable paths by the
proposed algorithm. Figure 5 shows the map construction process used to create the
distance matrix and reward matrix. Figure 5a is the 2D map. Cells of side length l are
divided on the boundary and obstacles, corresponding to the cell map in Figure 5b.
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The simulation employs the Tkinter toolkit for constructing the environment model
and utilizes the Pytorch learning library for training purposes. For the experiment, an
environment model diagram with a cell size of 40 × 40 and a resolution of 20 pixels per cell
is constructed. The vehicles operate and make decisions within this environment model.
The number of cells in the environment corresponds to the number of states through which
the vehicles navigate, as depicted in Figure 6. In total, there are 1600 states. The vehicles
are visually represented by red circles in Figure 6, while the target is represented by a blue
circle. These circles are enclosed within a rectangle, and with each action executed, the
circles move one cell on the map. In Tkinter, the representation of rectangular coordinates
is based on the intersection coordinates of two diagonal lines, which eases the convenience
of position representation. The initial positions of the vehicles are set as (1, 36), (3, 34),
(5, 32), and (7, 30), with the target set at (34, 7). Passable areas are depicted as cells, while
the obstructed areas are depicted as black cells in Figure 6. By adjusting the coordinates,
the program allows for changes in the positions of the vehicles and the target on the map.
The environment interface enables the retrieval of the real-time positions of the vehicles,
which provides a visual depiction of the shortest path taken, to assist with the setup and
adjustment of the neural network parameters.
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3. Deep Reinforcement Learning

DRL mainly obtains experience through interaction with the external environment and
evaluation feedback and makes behavioral decisions according to system performance [31].
DRL can improve the performance of the system through repeated trials in dynamic
environments and provide qualitative or quantitative feedback via rewards and penalties
to understand the task and achieve the set goal. The planning algorithm based on DRL
integrates all the equipment and software in the multi-UGV system to identify the optimal
behavior to be taken by referring to the maximization of the reward output action in
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the given situation. Based on the DDQN algorithm, the proposed method interacts with
the environment through perception and action and takes the perceived environmental
information as input and the corresponding action generated by planning as output. Then,
the optimal trajectory sequence is formed to complete the pursuit task.

3.1. Q Functions

Q learning is a type of DRL algorithm based on Markov theory. The reward, action,
and strategy are considered simultaneously in the Markov chain; that is, the state transition
is executed by the action to form the Markov decision process. In order to better understand
the Markov decision process, this paper introduces the concept of return. The return Gt is
the sum of the reward discounts of each step in the steps, expressed as

Gt = rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · · (5)

The discount factor γ is an important mathematical parameter used to reintegrate
the return value. The value of γ is always set between 0 and 1: when γ = 0, Gt considers
only immediate rewards; when γ = 1, future rewards have the same status as immediate
rewards and have the same effect on returns.

The update of the state-value function is presented as

V(s) = E[Gt|st = s] = E
[
rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · ·

∣∣∣st = s
]

(6)

By rearranging the items in (6), the state-value function is equal to the sum of the
discount factor, the probability caused by the previous state and the product of the three
terms of the next state-value function, plus the immediate reward R(s) of the state, which
can be written as

V(s) = R(s) + γ∑s′∈s P
(
s′
∣∣s)V(s′) (7)

The action influence is added to the state-value function and the policy function is
established:

π(S) = ∑a∈A π(a|S)R(S, a) (8)

Pπ
(
S′
∣∣S) = ∑a∈A π(a|S)P

(
S′, a

)
(9)

After considering strategy π, the state-value function in (7) can be rewritten as

Vπ
k (s) = r(s, π(s)) + γ∑s′∈s p

(
s′
∣∣s, π(s)

)
Vπ

k−1
(
s′
)

(10)

The optimal q function can be written as

q*(s, a) = maxq(s, a) (11)

According to the q function in (11), the strategy should choose the highest q value to
obtain the future overall reward. In order to obtain the optimal value, the Bellman equation
must be satisfied. Therefore, (11) can be rewritten as

q*(s, a) = E
[

Rt+1 + γmaxq*(s′, a′
)]

(12)

(12) represents the optimal q value of a given state–action (s, a) which is equal to the
expected reward Rt+1 after taking the action plus the expectation of discount reward for the
(s′, a′) optimal policy. If the state space is relatively simple, a linear function approximator
can be used to find the q* value. However, in a complex environment, the performance
of the linear function approximator is far from sufficient. Generally, nonlinear function
approximators (such as neural networks) can be used to approximate the optimal q* value.
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3.2. Value Function Update

The multi-UGV system performs the task autonomously according to the training
dataset. Without sufficient training datasets, the vehicles can only learn from experience.
Since the system is limited to a specific mapping model, each vehicle must explore the same
environment several times in order to achieve optimal planning. Therefore, autonomous
vehicles operating in the environment must balance the utilization of old datasets with
the exploration of new data, so that each autonomous vehicle can learn to find a better
path. The utilization of old datasets means that each unmanned vehicle makes use of the
existing global environment and results and plans the path of each vehicle based on the
existing datasets. New data exploration aims to discover new conditions and features of
the environment and find a better path than the previously known optimal path. Using the
two updating methods, the multi-UGV system is able to perform optimal path planning,
even in an unknown environment [32].

The idea of Q-learning is to find the best action sequence, and the goal is to maximize
the return value (Gt) defined in (5). Combining (10) and (11), deterministic methods and
probabilistic rules can be used to complete the update. For deterministic scenarios, action a
needs to be performed, reward r is obtained in state s, and the value of Q(s, a) is updated
by adding Q(s, a) to the previous value. Thus, Q(s, a) can be written as

Q(st, at)← r + γmax
at+1

Q(st+1, at+1) (13)

The learning rate α is introduced, and the probability update rule can be calculated as

Q(st, at)← (1− α)Q(st, at) + α[r + γmaxQ(st+1, at+1)] (14)

Q(s, a) is updated in the neural network, and the learning rate α is utilized to control
the update rate and impact Q(s, a). Initially, a large learning rate α is employed to facilitate
updates during the early stages of training. Over time, the learning rate α gradually
decreases to minimize its influence on the update of Q(s, a). Specifically, an initial value of
0.03 is assigned to α, which subsequently decreases by a rate of 0.0002 per episode until
reaching 0.001. The rationale behind this design choice is grounded in the fact that Q(s, a)
in the neural network may occasionally contain noise or incorrect values. Whenever the
observed state–action value is determined to be optimal at a given time, it is necessary
to update Q(s, a). However, as training progresses and Q(s, a) values in the experience
replay become more accurate, extensive changes to the accurate Q(s, a) may lead to a
deterioration in training effectiveness. Consequently, the introduction of a gradually
decreasing factor α helps to modulate the impact of Q(s, a) updates over time and ensures
stable training progress.

In order to understand Q-learning more accurately, three parameters are very impor-
tant: one is the maximum number of episodes in the learning process; the second is the
random exploration value, which determines whether the algorithm can avoid entering
an infinite loop between actions during learning; and the third is the temporal difference
(TD) [33], which is used to evaluate the learning process and can be directly calculated
from the Q-learning expression in (14). The value of TD can be obtained by rewriting and
removing the learning rate component

TD(t)← r + γmax
at+1

Q(st+1, at+1)−Q(st, at) (15)

The sum of TD in each episode is the cumulative error expressed as

TDacc = ∑tmax
t=0 TD(t) (16)
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3.3. Double Deep Q-Learning

This paper focuses on DDQN [34]. This is because although DQN [35] is suitable
for planning tasks, it suffers from the issue of q-value overestimation. To address this
problem, DDQN employs two separate networks: the estimated network and the target
network. By separating the action-selection process from the generation of target q-values,
DDQN significantly reduces the q-value overestimation to not only facilitate faster training
but also enhance the stability of learning. The DDQN algorithm separates selection and
interpretation and simultaneously takes two Q functions as the target. The Q function is
shown as

Q(st, at) = rt + Q(st, at) = rt + γQ

(
st+1, argmax

at+1

Q(st+1, at+1; θ); θ−
)

(17)

3.4. Prioritized Experience Replay

DDQN utilizes random samples from an experience replay for training. In the original
DDQN, all samples are selected with the same probability. However, Dang et al. [36]
introduced the prioritized experience replay mechanism to address this limitation. This
mechanism assigns different weights to different samples, thereby altering the probability
of selecting samples during training. The weights are determined based on the performance
of the samples, giving higher weights to samples that exhibit good training results.

To implement this mechanism, a queue structure is used to store experiences at
the beginning of training. When the experience replay is full, newly generated samples
are compared with the existing samples in terms of weight. If the latest sample has
the minimum weight, it is discarded. On the other hand, the latest sample replaces
the sample with the minimum weight in the experience reply memory. By dynamically
updating the weights of the samples, prioritized experience replay ensures that samples
with higher weights have a greater probability of being selected during the training process.
This approach shifts the focus to determining the sample weights rather than treating all
samples equally.

In the DDQN algorithm, TD is the difference between the current q-value and the
target q-value, which represents the magnitude of the correction and can be used as an
important index to measure the sample weight. The specific formula for calculating TD is
shown in (15). The higher the value, the lower the number of samples. This means that the
corresponding sample occurs less and the accuracy of the sample needs to be improved.
Improving the priority of such samples to improve the utilization of these samples will
increase the DDQN learning speed significantly.

The sampling probability of a sample is defined as

p(j) =
Pα

j

∑i Pα
i

, α ∈ [0, 1] (18)

where Pj is the priority indicator, i.e., TD(t) in (15); α is the priority adjustment parameter
that ensures that all experiences have at least one chance of being drawn.

With the introduction of the prioritized experience replay, the DDQN favors samples
with higher TDs, which changes the probability distribution of the original samples but
generates errors that prevent the convergence of training. Therefore, it is necessary to
use importance sampling to update the sample weights during calculation of the weight
change, to correct the error; this is expressed as follows:

Wj =

(
1

MP(j)

)β

(19)

where M is the memory size and exponent β is the level of correction.
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4. Multi-UGV Pursuit Algorithm

In order to complete the task of multi-UGV pursuit, the path-planning algorithm
needs to read the map of the environment. Then, the optimal path to capture the target is
planned on the premise of avoiding obstacles and other vehicles. A DDQN-based algorithm
is proposed in this paper for multi-UGV pursuit by integrating the prioritized experience
replay and gradient descent to optimize the algorithmic framework, to accomplish the
pursuit task with faster speeds and smoother paths.

4.1. State Representation

The state information of UGVs mainly includes three components:

(1) The state information of the vehicle itself, including the position information, head-
ing angle, speed, and detection information of the vehicle to obstacles; this can be
expressed as

Ssel f
i =

[
xi, yi, ϕi, ui, xo0

i , yo0
i , . . . , xo(k−1)

i , yo(k−1)
i

]
(20)

where k is the number of obstacles, and xo(k−1)
i and yo(k−1)

i are the relative distances
of the obstacle k− 1 to vehicle i in the x and y directions, respectively.

(2) The target information, including the real-time velocity information and relative
position information of the target from the ground station; this is expressed as

Star
i =

[
utar, xtar

i , ytar
i
]

(21)

(3) The teammate information, including the speed information of other vehicles and the
relative distance information; this can be described as

Soth
i =

[
u0

i , x0
i , y0

i , . . . , ui−1
i , xi−1

i , yi−1
i , ui+1

i , xi+1
i , yi+1

i , . . . un−1
i , xn−1

i , yn−1
i

]
(22)

where n is the number of vehicles.

In summary, the state representation of vehicle i is

Si =
[
Ssel f

i , Star
i , Soth

i

]
(23)

4.2. Action Space

The action space is defined as the motion process in each direction in the state space,
i.e., each action represents a different direction of the motion performed, as shown in
Figure 4. The acceleration control and direction control of the vehicle are divided into eight
cases according to the action space, as shown in Table 2. The action space consists of a
1 × 2 array, denoted as Ai = {ai, ωi}, with ai denoting the acceleration and ωi denoting
the angular velocity of the i-th vehicle.

Table 2. Parameters for the action space.

Direction Acceleration (m/s2) Angular Velocity (rad/s)

Front 1.0 0
Left-front 0.5 0.5

Left 0 1.0
Left-back −0.5 0.5

Back −1.0 0
Right-back −0.5 −0.5

Right 0 −1.0
Right-front 0.5 −0.5
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4.3. Reward Function

(1) Reward matrix design

The reward matrix is obtained from the distance matrix. The distance matrix is shown
in Figure 7a. The value in the matrix is the distance between the cell and the end cell. The
red cell is the end point and the values in the cells in Figure 7a are the distances of the cells
to the end point. Figure 7b shows the reward matrix, where the values (in minus −) in the
matrix represent the reward from any place on the map to the end point.
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In addition, it is also necessary to consider the environment boundaries and the
obstacles in the environment. In these cases, the reward is actually a penalty to the
algorithm and it is clear that the vehicles should not move to the cell containing obstacles
and boundaries. Generally, the cells containing obstacles and boundaries are assigned a
value much lower than the reward (for example, −1000) in the reward matrix.

Once the reward matrix is generated, the neural network used in the learning process
can be constructed. The neural network contains the actions and states of all vehicles at
each moment.

(2) Reward mechanism design

The maximum number of training steps in a single episode is 3500, and the training
can be terminated if any of the following conditions are met:
1© The vehicle reaches a distance of 1 to the target and does not collide with boundaries

and obstacles.
2© The algorithm reaches 3500 steps and does not collide with the boundary and obstacles,

but also does not reach the vicinity of the target.
3© The vehicle collides with the boundary or obstacle, or collides with other vehicles

during travel.

According to the above conditions, the vehicle reward mechanism is designed as in
Table 3.

Table 3. Reward mechanism for training.

Action Reward Result

Vehicle collides with other vehicles/boundaries/obstacles −1000 value in the reward matrix Terminated
Vehicle in passable areas Value in the reward matrix Continue

Vehicle arrives at a distance of 1 from the target 1000 Terminated

4.4. Gradient-Descent-Based Path Smoothing

Path smoothing is very important in path planning; it aims to make the path length
shorter and the smoothness higher, so as to adapt to the passage of the unmanned vehicles.

Huang et al. [37] used the K-degree smoothing method to smooth the initial path; this
could make the UAVs reach the destination within an acceptable time interval; however, the
environment model was relatively simple and not suitable for a dynamic environment. To
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obtain a smooth path that satisfies constraints such as obstacle avoidance, minimized cost,
and dynamic feasibility, Dian et al. [38] constructed an optimization problem for smooth
path planning based on the length and the requirement of collision-free safety. By utilizing
a high-order continuous Bezier curve, the smooth-path-planning problem is transformed
into an optimization problem that searches the locations of control nodes of the Bezier curve.
This methodology enables the generation of a path that satisfies the specified constraints.
Song et al. [39] used the continuous high-order Bezier curve to replace continuous multiple
low-order Bessel curve segments. However, the adjustment of weight coefficients in the
continuous high-order curve mainly depended on experience, which makes it struggle to
achieve optimal convergence.

In this paper, the path generated by the gradient descent algorithm is smoothed. The
goal of the gradient descent is to improve the quality of the given feasible path σ generated
by the motion planner. The algorithm is divided into a split and merge, which approximates
the curve linearly by subdividing line segments at the higher error vertices and merging
adjacent segments whilst maintaining the error range.

Given a path σ and transition function Tr, the smoothing is mainly divided into two
stages; in the first stage, the path is deformed by moving and inserting the vertices to
increase the distance from the obstacle and sample enough vertices in the area close to the
obstacle; in the second stage, the vertices are removed from the path using cost-aware path
short-cutting, as shown in Figure 8.

(1) Gradient-based path deformation: this algorithm moves and inserts the vertices in
the obstacle distance field D through gradient descent, where the obstacle distance is
calculated as

D[p] = min
o∈O
‖o− p‖2 (24)

where p is the continuous vertex position and O is the coordinates set occupying the
cell. As long as the distance matrix to the obstacle cells has been precomputed, D[p]
can be determined in constant time by linear interpolation between the cells adjacent
to p.
The gradient
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D[p] =

(
D[p.x−ε,p.y]−D[p.x+ε,p.y]

2ε
D[p.x,p.y−ε]−D[p.x,p.y+ε]

2ε

)
(25)

where ε is a small constant and ε > 0.
Gradient descent moves the vertex p by −η
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Figure 8. Diagram of gradient descent algorithm.

(2) Cost-aware path short-cutting: Short-cutting is used to remove the vertices of unneces-
sary turns to prevent high arc length and large curvature. Firstly, it identifies a vertex
that cannot be passed directly (i.e., the path jumps directly from the previous to the
next point). A directed acyclic graph is then constructed for each pair of consecutive
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immovable vertices σ[a] and σ[b]; its vertex σ[a : b] is the vertex of the path segment
and its edge is the collision-free steering connection between these vertices. It finds
the best path from vertex σ[a] to vertex σ[b] and removes all vertices σ[a : b] in the
path segment σ*

ab that are not on the path. The cost-aware path short-cutting iterates
over the entire path until no more vertices can be removed or the maximum number
of rounds has been reached.

4.5. Pursuit Algorithm Flow

The planning architecture organization of multi-UGVs is shown in Figure 9. The
low-layer is based on the bicycle motion model, and the upper-layer is mainly based on
local and global path-planning modules. The function of local path planning is to plan local
alternative paths according to the obstacle information in the map, to avoid obstacles. The
top layer performs global path planning, which mainly plans the optimal path according to
the map information and the information of all unmanned vehicles. A PER-GDMADDQN
algorithm is proposed to plan the global optimal path of all unmanned vehicles.
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The basic processing flow of the proposed PER-GDMADDQN algorithm in this paper
is described as

1© create a rasterized map of the terrain to obtain a discrete description of the environment,
2© view the obstacle location and size and learn safe paths based on the proposed

algorithm, and
3© train the algorithm to find safe and feasible paths that can be passed to the local

path-planning layer.

The algorithm begins by interacting with the environment to obtain new states and
actions. The gradient descent method is then introduced into the planning results for
smoothing, and these results are packed into samples that are stored in the experience
replay. In the training process, the algorithm updates the target network parameters based
on the prioritized experience replay mechanism. This is performed via probabilistically
sampling from the experience replay according to the weights assigned to each sample.
The target network parameters are updated first, and then the two updated target networks
are combined to update the estimation value network. The TD is recalculated based on the
updated network and updated in the corresponding samples within the experience replay.

The algorithm begins by interacting with the environment to obtain new states and
actions. The gradient descent method is then introduced into the planning results for
smoothing, and these results are packed into samples that are stored in the experience
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replay. In the training process, the algorithm updates the target network parameters based
on the prioritized experience replay mechanism. This is performed by probabilistically
sampling from the experience replay according to the weights assigned to each sample.
The target network parameters are updated first, and then the two updated target networks
are combined to update the estimation value network. The TD is recalculated based on the
updated network and updated in the corresponding samples within the experience replay.
The practical flows is shown in Algorithm 1.

Algorithm 1 Multi-UGV pursuit algorithm

1 Initialize the 2D environment, exploration probability ε, discount factor γ, q value updating
factor α;
2 for episode = 0 to M-1 do
3 Initial position joint state information s0 = (S10, . . . , Sn0), Si0 = (xi0, yi0), Si0 is obtained
from the information shared through the communication;
4 while episode not terminated do
5 for vehicle i = 0 to n− 1 do
6 take random ρ ∈ (0, 1);
7 if ε > ρ then
8 Take random action ait from action space;
9 else
10 action ait = argmaxaQ(st, a), st ∈ (S1t, . . . , Snt);
11 Decay exploration probability ε(i);
12 Execute action ait, then observe reward rit and next state st+1;
13 Experience value et = (st, ait, rit, st+1) is stored into experience replay memory E
according to priority Pt = maxPi. The stored path is smoothed based on gradient descent;
14 for j = 1 do

15 Sampling according to Pj: j ∼ P(j) =
Pα

j

∑i Pα
i

;
16 Calculate the importance sampling weights according to Equation (19);
17 Calculate TD(t) according to Equation (15);
18 Update the sample priority: P(j)← TD(t) ;
19 if episode terminates at sk+1 then
20 if collision or all pursuit successful then
21 yk = ∑n

1 yik = ∑n
1 rik;

22 obtain the state
(
si0,si1, · · · , sit

)
of each vehicle from E, and plan the path curve;

23 else
24 yik = rik;
25 else
26 yik = rik + γmax

a
Q(st+1(i));

27 Compute the loss function loss = ∑n
1 (yik −Q(sk, aik))

2;
28 Execute the optimization algorithm on the loss function to update the Q-network
for back propagation;
29 st= st+1;

During the testing phase, each unmanned vehicle employs its respective neural net-
work to calculate a sequence of actions that maximizes the reward value given a particular
state. These actions are then mapped onto the environment to derive the planning path,
which represents the optimal path.

5. Experiment Evaluation and Results

In the experimental evaluation, the proposed method was compared with some
popular algorithms such as MADDPG [20], Regularized Softmax Deep Multi-Agent Q-
Learning Network (RES-MADQN) [40], and A* for a pursuit task.

5.1. Parameter Setting

The simulation environment was an Ubuntu 18.04 and Anaconda3 platform, the
experimental program was based on Python 3.6. A 2D environment was built using the
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Python standard library Tkinter, and the neural network was built based on Pytorch. The
sampling time interval between two adjacent times was set to 1 ms. All results were
obtained on the Intel Core i7-11800H CPU and NVIDIA GeForce RTX 3060 GPU.

After several tests, the parameter settings of the proposed algorithm in this paper
were obtained as shown in Table 4. The parameter settings of the MADDPG and the
RES-MADQN are the same as those of the proposed algorithm.

Table 4. Hyper-parameters list.

Hyperparameters Value Description

γ 0.90
Initial ε 0.90 Explore the initial value ε
Final ε 0.1 Explore the final value ε

Minibatch 32 Size of the sample
Learning rate 0.03 Learning rate of the optimizer

Experience replay 10,000 Capacity of experience replay
Memory True —

Network type CNN —
Activation function ReLU Learning complex patterns in data

5.2. Static Targets Pursuit

There are four UGVs to pursue one static target in the simulation. The performance
of the proposed PER-GDMADDQN is compared with that of the MADDPG and RES-
MADQN algorithms. In the comparison, the initial conditions for different algorithms are
the same. The optimal path, number of iteration steps per episode, time consumption, and
reward of each algorithm are shown in Figures 10, 11, 12 and 13, respectively.
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The simulation results from the starting position to the target position using the
MADDPG in the grid environment are shown in Figures 10a and 11a. The shortest total
path is 185 steps and the longest path is 3828 steps. The RES-MADQN results are shown in
Figures 10b and 11b. The shortest path is 129 steps and the longest path is 3506 steps. The
results of the proposed algorithm are shown in Figures 10c and 11c. The shortest path is
120 steps and the longest path is 3071 steps. As can be seen, the path-planning performance
of the proposed method is better than MADDPG and RES-MADQN.

In the training process, since there is no signal accumulation at the early stage
of learning, it takes a lot of time to find the path at the beginning, and obstacles are
constantly encountered in this process. However, as the knowledge accumulates, the
number of steps required for the wayfinding process gradually decreases. Figure 12a
shows that the MADDPG algorithm has no obvious convergence trend in the process of
10,000 episodes. Figure 12b shows that the RES-MADQN algorithm tends to converge
at around 6000 episodes through continuous exploration of the environment and accu-
mulation of knowledge. Figure 12c shows that the convergence speed of the proposed
PER-GDMADDQN algorithm is significantly faster and converges at around 4000 episodes,
which is nearly 2000 episodes less than the convergence speed of the RES-MADQN. In
the same environment, the MADDPG algorithm requires 48,525 ms for training, the RES-
MADQN algorithm requires 408 ms, and the proposed algorithm requires 311 ms.

The DRL accumulates rewards in the learning process and maximizes the cumulative
reward value as the learning objective. At the start of learning, the vehicle actions are
randomly selected, and it is easy to encounter obstacles. When an obstacle is encountered,
the reward value is −1000, so the initial reward value is negative. With the increase
in training episodes, the number of vehicles encountering obstacles decreases, and the
cumulative reward increases gradually. It can be seen in Figure 13a that when the training
number increases, the cumulative reward of the MADDPG algorithm does not converge. As
can be seen in Figure 13b, the cumulative reward of the RES-MADQN algorithm gradually
increases with the increase of training episodes and finally approaches −3500. Figure 13c
shows that the cumulative reward variation of the proposed algorithm is more stable and
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approaches −2600 at about 4000 steps. The three trained models are applied to the same
obstacle environment, and three planned paths are obtained. The path information is listed
in Table 5.

Table 5. Comparison of the algorithms for path planning.

MADDPG RES-MADQN PER-GDMADDQN

Planning time (ms) 882 561 419
Number of turns 18 10 6

As can be seen in the table, PER-GDMADDQN is much better than MADDPG and
RES-MADQN in terms of planning time. This is mainly because the proposed algorithm
introduces the prioritized experience replay, which substantially reduces the training time
and makes it easier to obtain the optimal path. In addition, the total path after smoothing is
compared to the unsmoothed path, and the planning time is reduced by a certain magnitude.
The smoothing can be shown in the number of turns, and it can be seen from Table 5 that the
proposed algorithm has a significantly lower number of turns than the other two algorithms
due to the use of gradient descent.

The simulation results are listed in Table 6. According to the results in Table 6, when
compared with the MADDPG algorithm, the proposed algorithm is more suitable for path
planning in a static environment. Compared with the RES-MADQN algorithm, the pro-
posed algorithm significantly improves the solving efficiency and accelerates convergence.

Table 6. Performance comparison of the three algorithms.

Performance MADDPG RES-MADQN PER-GDMADDQN

Minimum steps 185 129 120
Maximum steps 3828 3506 3071

Convergence No convergence trend after
10,000 episodes Convergence after 6000 episodes Convergence after 2000 episodes

Time-consumption Unconverted 7169 s 5026 s
Average reward Unconverted −3500 −2600

5.3. Dynamic Target Pursuit

To further explore the performance of the proposed algorithm, the A* algorithm [41]
is selected for comparison with the PER-GDMADDQN algorithm to carry out the pursuit
task in a rasterized environment. The comparison results are shown in Figure 14.
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As shown in Figure 14, both algorithms can successfully complete the pursuit task
when the target moves. However, the PER-GDMADDQN algorithm has a shorter pursuit
time, travels a shorter total distance, and has a smoother path. Specifically, in the early
stage of the pursuit, all vehicles move towards the target. The difference is that the vehicles
with the proposed algorithm can directly move along the diagonals of the grid, whilst
the vehicles using the A* algorithm gradually move towards the target along orthogonal
paths. The main reason is that the proposed algorithm in this paper expands the traditional
four-direction output actions to eight-direction output actions, which not only improves
the smoothness of the planned path but also greatly shortens it.

Table 7 provides a statistical analysis of the pursuit indicator. The pursuit time
indicates the duration of the entire process, from the moment the four unmanned vehicles
start moving until the successful capture of the target. The total path length represents the
combined distance calculated by all vehicles during the pursuit process. From Table 7, it
can be noted that the proposed algorithm plans the pursuit path much faster than the A*
algorithm, and its total path length is 28.02% shorter than that of the A* algorithm.

Table 7. Comparison of pursuit process data.

Parameter PER-GDMADDQN A*

Pursuit consuming (ms) 692 1933
Total path length 185 257

According to the analysis conducted in Table 7, it is evident that the proposed algo-
rithm demonstrates efficient path planning during the testing phase. The time required
for this process is approximately one-third of that required by the A* algorithm. This
significant difference can primarily be attributed to the fact that the A* algorithm relies on a
heuristic function to guide the search process and selects the optimal path using a priority
queue. In contrast, the proposed algorithm utilizes a well-trained network that directly
outputs the optimal strategy based on the input state value of the environment, thereby
substantially reducing the planning time. Moreover, the total path length of the proposed
method is reduced by 28.02% when compared to the A* algorithm. This reduction can
be attributed to two factors. First, the proposed algorithm extends the action output and
smooths the planned paths, greatly reducing the overall path length. Second, due to the
reduced planning time, the movement distance of the target is shortened, naturally leading
to a decrease in the tracking distance.

In order to enhance the fidelity of the simulation results and better reflect real-world
application scenarios, the initial positions of the UGVs are randomized within a specific
range (x ∈ [0, 8], y ∈ [30, 40]) in the simulation. The proposed algorithms are compared
with MADDPG and RES-MADQN. Since the initial positions differ, this paper primarily
focuses on comparing the average planning time and average reward based on the results of
100 tests, as depicted in Figure 15. The figure clearly demonstrates that, under the random
initial position condition, the proposed method is superior to MADDPG and RES-MADQN
in terms of path planning time and average reward.

To summarize, through comparisons with the MADDPG, RES-MADQN, and A* algo-
rithms, the performance of PER-GDMADDQN is demonstrated. In the case of encircling
static targets with multiple UAVs, all three algorithms can accomplish the pursuit task,
while PER-GDMADDQN shows superior results. Additionally, when it comes to the pur-
suit of dynamic targets with multiple UAVs, PER-GDMADDQN significantly outperforms
the A* algorithm.
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6. Conclusions

In this study, we present a novel algorithm for path planning in multi-UGV pursuit
scenarios. Specifically, our study investigates the challenges associated with multi-UGV
pursuit and establishes a grid-based environmental model to address these challenges. We
introduce the theoretical derivation of DDQN and extend it to the multi-UGV environment.
Building upon this, we propose the PER-GDMADDQN algorithm, which incorporates gra-
dient descent and a prioritized experience replay mechanism, which enables the UGVs to
learn interactively in the grid environment and successfully complete the pursuit task. Sim-
ulation results demonstrate the effectiveness of the proposed algorithm, which outperforms
other popular algorithms in terms of planning time and path smoothness.

While focusing on the pursuit of multiple UGVs in a 2D environment, it is important
to acknowledge that real battlefield conditions are significantly more complex than the
assumptions made in the proposed PER-GDMADDQN algorithm. Therefore, further
investigations are required to explore the pursuit problem in 3D scenarios. Additionally,
our study only considers a fixed number of UGVs pursuing a single target, neglecting the
pursuit of multiple targets by varying numbers of UGVs. Future research should prioritize
addressing this limitation and consider more complex scenarios.
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