
Citation: Wang, J.; Wang, Y.; Song, J.;

Cheng, H. IoV Vulnerability

Classification Algorithm Based on

Knowledge Graph. Electronics 2023,

12, 4749. https://doi.org/10.3390/

electronics12234749

Academic Editor: Maciej

Ławryńczuk

Received: 19 October 2023

Revised: 14 November 2023

Accepted: 19 November 2023

Published: 23 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

IoV Vulnerability Classification Algorithm Based on
Knowledge Graph
Jiuru Wang, Yifang Wang, Jingcheng Song * and Hongyuan Cheng

School of Information Science and Engineering, Linyi University, Linyi 276000, China;
wangjiuru@lyu.edu.cn (J.W.); 210854002030@lyu.edu.cn (Y.W.); chenghongyuan@lyu.edu.cn (H.C.)
* Correspondence: songjingcheng@lyu.edu.cn

Abstract: With the rapid development of smart technologies, the Internet of Vehicles (IoV) is revo-
lutionizing transportation and mobility. However, the complexity and interconnectedness of IoV
systems lead to a growing number of security incidents caused by vulnerabilities. Current vulnerabil-
ity classification algorithms often struggle to address the low occurrence frequency and incomplete
information associated with IoV vulnerabilities, resulting in decreased precision and recall rates of
classifiers. To address these challenges, an effective vulnerability classification algorithm (KG-KNN),
is proposed, designed to handle imbalanced sample data. KG-KNN integrates the vulnerability
information of IoV and the association relationship between features by constructing a feature knowl-
edge graph to form a complete knowledge system. It adds the correlation relationship between
features to the similarity calculation, calculates vulnerability similarity from multiple dimensions, and
improves the prediction performance of the classifier. The experimental results show that compared
to the k-NearestNeighbor (KNN), Support Vector Machine (SVM), Deep Nueral Network (DNN) and
TFI-DNN classification algorithms, KG-KNN can effectively deal with imbalanced sample data and
has different degrees of improvement in precision, recall, and the F1 score.

Keywords: Internet of Vehicles; vulnerability classification; knowledge graph; machine learning;
KNN algorithm

1. Introduction

With the booming development of the field of IoV [1], the Internet of Vehicles (IoV)—a
deep integration of vehicles and information technology—changes transportation and
mobility with an unprecedented speed. The IoV system is a comprehensive system that
organically integrates the traditional vehicle self-organizing network and the Internet of
Things (IoT). Telematics takes mobile vehicles as the carrier of information perception and
utilizes next-generation information and communication technologies, such as sensor net-
work technology [2] and radio frequency identification technology [3], to connect vehicles to
the Internet. A variety of innovative applications have been realized, including intelligent
navigation [4], remote diagnosis, vehicle automation [5], and so on. The rapid development
of IoV has not only greatly enhanced the driving experience at the technological level but
has also positively impacted society in a number of areas, including enhancing road safety,
improving transportation efficiency, and contributing to environmental sustainability. In
the future, as technology continues to advance, IoV will continue to drive innovation in
mobility, bringing even greater improvements in urban mobility and road safety, as well as
providing people with more convenient and sustainable mobility options.

In IoV, with the rapid development of connected vehicles and intelligent transporta-
tion systems [6], cybersecurity has become a crucial topic. The complexity and high degree
of interconnectivity of connected IoV systems, while enhancing convenience and efficiency,
are also accompanied by potential cybersecurity risks. Hackers can utilize potential vulner-
abilities to invade IoV systems, thereby threatening road safety, personal privacy, and data

Electronics 2023, 12, 4749. https://doi.org/10.3390/electronics12234749 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12234749
https://doi.org/10.3390/electronics12234749
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12234749
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12234749?type=check_update&version=1

Electronics 2023, 12, 4749 2 of 21

security. In recent years, there has been a proliferation of IoV security incidents triggered
by vulnerabilities. For example, in March 2022, Mitsui Bussan Secure Directions, a Japanese
cybersecurity firm, announced that a group calling itself “Pandora” had threatened to
disclose Denso’s trade secrets on the dark web. The group claimed to have stolen more
than 157,000 purchase orders, emails, and sketches, totaling 1.4 terabytes of data. Pandora
used ransomware to carry out a cyberattack on Denso, which encrypts company data
and places companies at risk of data leakage if they do not pay the ransom. Therefore, it
has become particularly important to study and solve the problem of IoV vulnerabilities.
Network security managers must pay close attention to the vulnerability situation and fix
the vulnerabilities in a timely manner in order to safeguard the security of IoV devices
and systems.

The uneven distribution of vulnerabilities in the IoV drives a huge challenge for cy-
ber security. IoV integrates information technology and vehicles and involves numerous
complex systems and components, from intelligent vehicles to back-end servers, which
can be potential targets of vulnerability attacks. The diversity of components and systems
leads to the trend of an uneven distribution of vulnerabilities in the IoV; therefore, effective
management and application of vulnerability information and keeping up-to-date with
the latest vulnerabilities are crucial for securing the cybersecurity of the IoV system [7].
Although the National Vulnerability Database (NVD), Information Security Vulnerability
Portal (VULHUB), and Common Vulnerabilities and Exposures (CVE) have been developed
in the U.S., it is not easy for them to manage and apply vulnerability information in a timely
manner. Moreover, different vulnerability repositories use different categorization methods
and naming conventions, resulting in the same vulnerability taking different forms in
each repository [8]. This makes it necessary for cybersecurity managers to consume a lot
of time and effort to collect, integrate, and filter information from multiple vulnerability
repositories. Classification of vulnerabilities in IoV [9] can discover vulnerability informa-
tion in a timely and effective manner, help cybersecurity managers to quickly recognize
vulnerabilities, and also prioritize vulnerabilities so as to target vulnerability remediation
and defense strategies to improve the overall security of the IoV system.

Existing vulnerability classification algorithms suffer from a low precision rate, recall
rate, and F1 score when dealing with unbalanced sample data. This makes it difficult for
them to effectively deal with the large amount of vulnerability information emerging from
IoV. Vulnerability classification [10] is essentially a processing method for vulnerability
information, which analyzes and categorizes vulnerabilities based on their characteristics,
attributes, etc., by choosing appropriate classification algorithms [11]. However, there are
multiple types of vulnerabilities in the telematics environment [12–14], some of which occur
less frequently, resulting in their relatively small sample size and incomplete vulnerability
information. With such uneven sample data, existing vulnerability classification algorithms
may not be able to adequately extract the vulnerability features from the few classes and
instead misclassify the samples into the more numerous feature-rich vulnerability classes.
Such misclassification may lead to the neglect of important vulnerabilities, thus bringing
potential risks to the cybersecurity of telematics. Only through continuous innovation
and improvement can vulnerability classification algorithms better address the challenges
posed by the massive number of vulnerabilities in the IoV environment, enhance the ability
of cybersecurity management, and safeguard user privacy and data security.

In order to overcome the limitations of vulnerability classification algorithms in the
face of imbalanced samples, a new vulnerability classification algorithm, KG-KNN, is
proposed, which is based on weighted Euclidean distance and a feature knowledge graph,
which improves the classification of imbalanced vulnerability samples. The algorithm
employs knowledge graph to assist vulnerability classification, which transforms the
correlation relationship between feature words into the shortest path between feature word
nodes in the knowledge graph. Considering that a few categories of samples cannot fully
extract feature values, the concept of association distance is introduced to improve the
traditional Euclidean distance algorithm [15], and a weighted Euclidean distance algorithm

Electronics 2023, 12, 4749 3 of 21

is proposed. The algorithm adds the association distance between features to the Euclidean
distance calculation and calculates the similarity between loophole features from multiple
dimensions. Then, the similarity between features is applied to the K-nearest neighbor
(KNN) classification algorithm to classify vulnerability information. To obtain the optimal
features, the features describing the text are extracted using the term frequency–inverse
document frequency (TF-IDF) algorithm. In addition, to integrate vulnerability information
and obtain the correlation distance between features, this paper proposes that multiple
information sources can be integrated so a unified knowledge graph of vulnerabilities in
IoV can be established, and the vulnerability information and the correlation relationship
between feature words can be stored in the knowledge graph to form a more complete
knowledge system. Classifying vulnerability information through the above steps can
help security managers manage vulnerabilities and effectively respond to various network
security threats.

The main contributions of this paper are as follows:

• We propose a new vulnerability classification algorithm. To improve the classification
performance of imbalanced samples, we offer a new vulnerability classification algo-
rithm, KG-KNN, based on weighted Euclidean distance and the feature knowledge
graph. This algorithm increases the correlation distance between features in a similar-
ity calculation, achieving a multi-dimensional similarity calculation and overcoming
the limitations of imbalanced sample classification.

• Construct the feature knowledge graph based on the optimal feature word set. This
paper integrates vulnerability information from multiple sources, extracts the optimal
feature word set, and constructs a feature knowledge graph to solve the problem of
dispersed vulnerability information of the IoV and obtain the association distance.

• We propose a weighted Euclidean distance algorithm. This paper introduces the
concept of association distance, improves the traditional Euclidean distance algorithm,
and presents a weighted Euclidean distance algorithm to solve the problem that the
samples of a few categories cannot fully extract the feature values.

The structure of this article is as follows. Section 2 reviews the related research at home
and abroad. Section 3 provides the background knowledge. Section 4 introduces the design
strategy of the algorithm. Section 5 describes the process of vulnerability classification
and proposes an improved vulnerability classification algorithm. Section 6 outlines the
conclusion of this paper.

2. Related Work

Many factors affect the effectiveness of vulnerability classification, among which the
main elements are dimensionality reduction processing techniques [16] and classification
algorithms [17]. The purpose of dimensionality reduction processing techniques is to
convert a high-dimensional vulnerability dataset into a low-dimensional representation
while trying to preserve the structure and information of the vulnerability data, that is, how
to represent a vulnerability with as few feature words as possible; classification algorithms
are the process of automatically classifying unknown vulnerability information based on
known vulnerability training datasets.

2.1. Dimensionality Reduction Processing Technique

The preprocessed vulnerability dataset contains massive features, which can increase
computational complexity and storage space, thereby reducing the efficiency of the clas-
sification model. Therefore, to improve the classification efficiency, the dimensionality
reduction processing of the dataset is a hotspot researched by many experts and scholars.
Researchers focus on two commonly used dimensionality reduction methods: feature
selection and feature extraction.

Feature selection [18] refers to selecting the most relevant features from the original
data and removing those not helpful for the model’s performance to reduce dimension-
ality. In 1997, Yang et al. [19] proposed a feature selection algorithm based on document

Electronics 2023, 12, 4749 4 of 21

frequency, in which the authors remove features which have a lower frequency than a
certain threshold to reduce feature set dimension. The algorithm is simple and easy to
use but is invalid in dealing with complex nonlinear data. Zhang et al. [20] proposed a
multi-label feature selection algorithm based on information entropy in 2013, which filters
important features and removes irrelevant features using a threshold value by calculating
the information gain between the parts and the set of labels to improve the prediction
performance of multi-label classification models. However, this algorithm ignores the effect
of the relationships between elements on labels and performs poorly in situations where
feature correlation is high.

Feature extraction [16] uses synthetic transformations to construct new feature terms
from the original feature set, thus forming a feature subset. Lewis et al. [21] first proposed
mutual nearest neighbor clustering in 1992, which clusters feature words by calculating
the similarity between words, thus achieving the purpose of feature extraction. In 2020,
Rahman et al. [22] proposed a method that uses mixed principal component analysis and
t-statistics to extract features of EEG emotional signals and applies these extracted features
to classifiers such as SVM, LDA, and KNN for classification. The experimental results
show that this method achieves excellent classification performance. However, there are
thousands of statistical features in the time, frequency, and time-frequency domains, yet this
method only considers commonly used features. Alqahtani et al. [23] designed an IDS-IVN
system for vehicular networks in 2022, using convolutional neural and long short-term
memory networks to extract features and classify them using latent space representation.
This method shows high accuracy on the ROAD dataset.

This paper uses the TF-IDF algorithm [24] to extract the optimal features. TF-IDF can
emphasize the words in the text that occur frequently in a particular document but are
relatively uncommon across the entire corpus of text, thus highlighting the features and
essential information of the text. Through this dimensionality reduction processing, the
text data reduces the feature dimensions while retaining critical features, resulting in a
more compact and efficient feature representation.

2.2. Classification Algorithm

Vulnerability information is mainly presented in textual form, so the classification of
vulnerability information primarily relies on text classification. Many researchers have suc-
cessfully applied machine learning methods to vulnerability classification in recent years.
Domeniconi et al. [25] proposed a locally adaptive nearest-neighbor classification method
in 2000, which divides the clusters in the subspace with the local weights of the features and
can improve the classification accuracy of KNN. However, this scheme consumes vast com-
putational resources and is less efficient. Chen et al. [26] proposed an SVM-based automatic
vulnerability classification model in 2018, which builds SVM classifiers for each vulnerabil-
ity category and uses vulnerability descriptive information for training, by which it can
accurately and automatically classify new unlabeled vulnerability descriptive information.
Song et al. [27] proposed an IDS model based on deep CNN (DCNN) in 2019, which was
optimized for the data traffic of the controller area network (CAN) bus. The model shows
high accuracy on the car hacking dataset. Zhang [28] designed the Direct-CS-KNN classifier
and Distance-CS-KNN classifier in 2020, which improved the classification efficiency of
imbalanced data by combining several enhancement strategies, such as smoothing, feature
selection, and ensemble selection. Yang et al. [29] proposed a tree-based stacking algorithm
in 2021 to detect known and unknown attacks on vehicular networks. This method is
feasible and shows excellent performance in real-time vehicle systems.

Although the above standard vulnerability classification algorithms have been widely
studied and improved, they may not adequately extract the vulnerability features in a few
classes when dealing with imbalanced sample data, leading to unsatisfactory classification
results [30]. For this reason, this paper proposes an improved vulnerability classification
algorithm for the IoT vulnerability dataset imbalance problem, which introduces the
correlation between features in the process of vulnerability classification using the KNN

Electronics 2023, 12, 4749 5 of 21

algorithm and calculates the similarity between vulnerabilities from multiple dimensions,
thus effectively enhancing the performance of the vulnerability classification algorithm
when dealing with imbalanced sample data.

3. Background

This section will introduce the main tools used in KG-KNN, including the knowledge
graph, K-nearest neighbor classification algorithm, and vulnerability classification.

3.1. Knowledge Graph

Google formally introduced the concept of knowledge graph [31] (KG) in 2012, aim-
ing to realize a more intelligent search engine, and then KG began to be widely used in
academia. Its core idea is to organize knowledge into a graphical structure, where nodes
represent entities and edges define relationships between entities. This graphic structure
makes the associations between knowledge intuitive and easy to understand. The con-
struction of a knowledge graph typically involves several key steps, including knowledge
extraction, knowledge fusion, knowledge storage, and other related processes [32]. The
construction process is shown in Figure 1.

Figure 1. Knowledge graph construction process.

Knowledge extraction is the first step in building a knowledge graph. Different
processing methods are used for different types of data. For semi-structured data, entities,
relationships, and attributes need to be further extracted to transform the information into
structured information. Unstructured data needs to be processed by natural language
processing technology. In the knowledge fusion stage, knowledge from different data
sources needs to be integrated to eliminate conflicts, duplications, and inconsistencies. This
involves the alignment of various entities, the disambiguation of entities with the same
name, the merging of relationships, etc., to provide more complete and accurate data for
building knowledge graphs.

In the knowledge storage stage, structured semantic network data are mainly stored in
the database. The general storage medium is various types of graph databases. Neo4j is a
typical, high-performance graph database. Compared with other non-relational databases,
it supports ACID transactions and has all the characteristics of a mature database. It can
solve the vulnerability areas of low data value density and large quantity questions.

Knowledge application refers to applying the constructed knowledge graph to actual
scenarios to support various intelligent applications and decision-making needs. The
knowledge graph obtained through the above steps can provide rich knowledge support
and semantic associations for various fields.

3.2. K-Nearest Neighbor Classification Algorithm

The K-nearest neighbor classification algorithm (also known as the KNN algorithm) [33],
a traditional pattern recognition method, is widely used in text automatic classification
research and is accurate. The idea is that for each sample, the K-nearest neighbors can be

Electronics 2023, 12, 4749 6 of 21

taken as the basis for classifying this sample. Among the commonly used methods to calculate
the distance are the Euclidean distance [34], Manhattan distance [35], cosine distance [36],
Chebyshev distance [37], and so on.

Euclidean distance is a commonly used distance metric to measure the similarity
or distance between samples. It calculates the straight-line distance between two points
in Euclidean space, also known as Euclidean distance. The main steps are to compute
the difference between two vectors in each dimension, then square the difference and
sum it, and finally square the sum of squares to obtain the Euclidean distance. For two n-
dimensional vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), the equation for Euclidean
distance is shown below:

d(x, y) =
√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2, (1)

Here, d(x, y) denotes the Euclidean distance between vector x and vector y.
The procedure of the KNN algorithm is as follows:

• Divide the preprocessed samples into a training sample set and a test sample set;
• Choose an appropriate distance equation to calculate the distance between the word

vectors in the test samples and the word vectors in each training sample;
• Sort the word vectors of the training samples in the order of distance from most petite

to most significant;
• Setting the value of parameter k and selecting the top K-word vectors from the

previously sorted queue as the set of neighbors;
• Calculate the frequency of occurrence of the first K vectors and record it;
• Return the category with the highest frequency of occurrence of the first K vectors as

the predicted classification of the test sample.

The KNN algorithm is simple to operate and has high accuracy; however, the al-
gorithm has some problems in calculating similarity using Euclidean distance. When
the target samples are highly imbalanced, the minority class samples are easily affected
by the majority class samples when determining the categories, which leads to a poorer
classification effect, resulting in a bias in the prediction results.

3.3. Vulnerability Classification

Vulnerability classification is the process of categorizing and labeling known vulnera-
bility information according to a developed system or standard and then organizing the
vulnerability information into one or more categories. This process is mainly completed au-
tomatically by computer. The detailed operation of vulnerability classification is illustrated
in Figure 2. Initially, the vulnerability text undergoes preprocessing, after which the data
is dimensionally reduced to obtain low-dimensional data for vector representation. The
vector representation of the dataset is divided into a training set and a test set. The training
set is input into the classifier for training to obtain the appropriate classifier parameters,
and then the test set is input into the classifier to obtain the classification results.

• Text preprocessing: Before classifying the vulnerability text, preprocessing operations
are necessary. These typically involve removing punctuation, splitting words, reducing
linguistic complexity, and applying deactivation filtering.

• Dimensionality reduction processing: Dimensionality reduction processing techniques
are used to filter irrelevant or redundant features and retain the most distinguishable
and relevant features to form the optimal set of features;

• Text representation: The classifier cannot recognize the form of the above feature set,
and it needs to be converted into a declaration that the machine learning algorithm
can identify to carry out the next classification task;

• Classification: According to the characteristics of the vulnerability text, select the
appropriate classification algorithm, use the training set for training, obtain the proper
classifier parameters, and then input the test set into the classifier to obtain the classifi-
cation results.

Electronics 2023, 12, 4749 7 of 21

Figure 2. Vulnerability classification process.

4. Design Strategy
4.1. System Design

This paper adopts a knowledge graph to integrate the dispersed vulnerability informa-
tion to improve the classification effect of imbalanced sample data. It combines the screened
important features to construct a unique feature knowledge graph. Firstly, we analyze the
calculation principle of Euclidean distance and then combine it with the knowledge graph
to realize the calculation of association distance and the weighting operation of Euclidean
distance to propose a new vulnerability classification algorithm.

The KNN algorithm is affected by the number of features when calculating the sim-
ilarity distance between training and testing samples. Therefore, this article adopts a
bidirectional breadth-first search algorithm to obtain the shortest path between feature
words in the feature knowledge graph. The average of the sum of the shortest paths
between all the vital feature words stored in the knowledge graph of the two samples is
used as the correlation distance between the samples and fused with the Euclidean distance
to realize the weighting operation on the Euclidean distance to obtain the final sample
distance. This approach assigns different association weights to the samples and calculates
the similarity between the samples from multiple dimensions to enhance the accuracy of
the similarity estimation actively.

As shown in Figure 3, the overall design can be divided into the following two modules:

• Feature knowledge graph construction: After the vulnerability text is processed by
dimensionality reduction, its feature set is fused into the IoV vulnerability knowledge
graph to construct a unique feature knowledge graph;

• Improvement in vulnerability classification algorithm: Calculate the association dis-
tance between feature words according to the feature knowledge graph and use its
combination with the Euclidean distance to calculate the text similarity to realize the
improvement in the vulnerability classification algorithm.

Electronics 2023, 12, 4749 8 of 21

Figure 3. Design idea of vulnerability classification algorithm based on knowledge graph.

4.2. Performance Metrics

The improved vulnerability classification model will be evaluated in the following
aspects:

4.2.1. Precision Rate

The precision rate is the ratio of the number of correct samples predicted by the
classifier to belong to a particular category to the number of all models predicted to belong
to that category, which is especially suitable for evaluating the performance of the classifier
in an imbalanced dataset. The higher the precision rate, the better the classifier can predict
positive categories. The equation is as follows:

P =
TP

(TP + FP)
(2)

where P represents the precision rate, TP represents the number of correctly categorized
texts, and FP represents the number of incorrectly categorized texts.

4.2.2. Recall Rate

Recall is the ratio of the number of correct samples predicted by the classifier to belong
to a category to the number of samples that belong to that category. The recall rate takes
the range of 0 to 1, and closer to 1 means that the classifier is more capable of recognizing a
particular type. The equation is given below:

R =
TP

(TP + FN)
(3)

where R represents the recall rate and FN indicates the number of texts that belong to a
category but are incorrectly predicted by the classifier to belong to other types.

4.2.3. F1 Score

The F1 score combines precision and recall. When both precision and recall are high,
the F1 score increases, indicating the classifier’s ability to recognize positives and accurately
classify harmful instances. The equation is as follows:

F1 = 2× P× R
(P + R)

(4)

which F1 referents F1 score.

Electronics 2023, 12, 4749 9 of 21

4.2.4. Macro Average

In a multi-categorization problem, we employ the macro average method to calculate
the performance metrics for each category. First, we calculate each type’s performance
metrics separately. Then, we average the metrics for all classes to derive the final macro
average. For multi-category classification with n categories, the macro-averaging equation
is as follows:

MP =
1
n

n

∑
i=1

X (5)

Here, X represents various metrics, including the precision rate, recall rate, and F1 score.

4.2.5. Weighted Average

Weighted averaging is an improvement in macro averaging that considers the number
of samples of each category as a proportion of the total samples. There is a set of data
x = (x1, x2, . . . , xn) whose corresponding weights w = (w1, w2, . . . , wn), and the equation
for the weighted average is as follows:

W =
w1 · x1 + w2 · x2 + . . . + wn · xn

w1 + w2 + . . . + wn
(6)

5. Methodology

In this section, we will describe the specific steps involved in classifying vulnerability
data using the vulnerability classification algorithm proposed in this paper. Figure 4
illustrates the flowchart of this section.

Figure 4. Flowchart of IoV vulnerability classification algorithm based on knowledge graph.

This section is divided into five blocks to introduce the steps in detail: data prepro-
cessing, dimensionality reduction processing, constructing the feature knowledge graph,
text representation, and the vulnerability classification algorithm based on the feature
knowledge graph (KG-KNN).

5.1. Data Preprocessing

Data preprocessing is a crucial step for vulnerability classification, which refers to the
processing and conversion of the original vulnerability data to make it better adapted to
the vulnerability classification algorithm. In this paper, there is a large amount of text data
in the vulnerability description text set that is not useful for vulnerability classification, and
this text data has a significant impact on the efficiency and accuracy of feature extraction,
so it is necessary to preprocess the text data before vulnerability classification.

This paper mainly divides the vulnerability description text preprocessing into three
steps: word division, word shape reduction, and deactivation word filtering.

• Participle. The purpose of word separation is to cut the continuous text sequence
into separate words or lexical units, which provides the basis for the subsequent text-
processing tasks. With its diverse segmentation patterns and wide range of application
areas, Jieba word segmentation has become the most commonly used Chinese text
segmentation tool in China. In this paper, we use the precise mode of stuttering

Electronics 2023, 12, 4749 10 of 21

participle, which will try to cut the text into the most reasonable word combinations
according to the dictionary and algorithm.

• Lemmatization. The purpose of lexical reduction is to reduce different forms of words
to their root forms to reduce the vocabulary’s diversity and dimensionality. This
paper uses the NLTK natural language processing tool library for the word form
reduction operation. After decomposing each text into a list of words, we perform
word form reduction on each word by referencing the word form relations in the
WordNet database to convert the terms into their original forms or stems.

• Stop word filtering. The purpose of deactivation word filtering is to reduce the noise
and redundant information in the text to improve the efficiency and accuracy of
the subsequent text analysis task. In this paper, we utilize the TF-IDF algorithm to
filter out stop words, and we apply Equation (9) to identify and exclude frequently
occurring words that do not contribute significantly to the classification task. These
words are then incorporated into the Chinese stop words list to create a specialized
stop words list tailored to the characteristics of vulnerability data.

Following the data preprocessing steps outlined above, we can mitigate the impact of
extraneous information, thereby enhancing the efficiency and precision of feature extraction.
Consequently, we can furnish more refined input data to bolster the performance of the
subsequent classification task.

5.2. Dimension Reduction

Dimension reduction is crucial to the effectiveness of vulnerability classification algo-
rithms, which mainly reduces the computational complexity by reducing the number of
feature dimensions. In this section, we apply the TF-IDF algorithm to extract features from
the vulnerability description text and identify more significant keywords for vulnerability
classification.

The following describes the specific steps of dimensionality reduction processing.

• Calculate the value of each word using Equation (7)

TF =
ni, j

∑k
1 nk, j

(7)

where i denotes the word, j denotes the document, ni, j is the number of times word i
appears in document j, and ∑k

1 nk, j is the sum of the number of times all words appear
in document j.

• Calculate the value of each word using Equation (8)

IDF = log2
|D|∣∣j : i ∈ dj

∣∣+ 1
(8)

where |D| denotes the total number of documents in the corpus,
∣∣j : i ∈ dj

∣∣ denotes
the number of documents containing the word i, and to avoid the denominator being
0, it is generally used

∣∣j : i ∈ dj
∣∣+ 1.

• Calculate the value of each word using Equation (9)

TF-IDF = TF× IDF (9)

• 800 feature words are selected, which have larger TF-IDF values.
Table 1 shows a vulnerability description and its dimensionality reduction results.

Electronics 2023, 12, 4749 11 of 21

Table 1. A vulnerability description and its dimensionality reduction results.

Description Dimensionality Reduction Results

An authenticated, remote attacker can gain
access to a dereferenced pointer contained in a
request. The accesses can subsequently lead to

local overwriting of memory in the
CmpTraceMgr, whereby the attacker can

neither gain the values read internally nor
control the values to be written. If invalid
memory is accessed, this results in a crash.

[‘attacker’, ‘control’, ‘access’, ‘request’,
‘authenticated’]

5.3. Construct Feature Knowledge Graph

Constructing a feature knowledge graph is a necessary step before vulnerability
classification. In this study, we employ a feature knowledge graph as a vital tool to in-
tegrate IoT vulnerability information, depict the interrelationships among features, and
provide a more precise and comprehensive feature similarity metric within the vulner-
ability classification process. This approach significantly enhances the effectiveness of
vulnerability classification.

The construction of the feature knowledge graph mainly involves the following steps.

• Knowledge extraction. The first step in constructing a knowledge graph is knowledge
extraction. This paper obtains a large amount of structured data after the automated
extraction of IoV vulnerability data from vulnerability repositories such as NVD,
VULHUB, and CVE. Each data column is considered a specific entity, attribute, and
relationship, and the table structure and data in the vulnerability repositories are
converted into RDF graphs through direct mapping.

• Knowledge fusion. After executing the knowledge extraction operation, the next
crucial step involves integrating the IoV vulnerability data sourced from different
vulnerability repositories. This integration process aims to resolve conflicts, elimi-
nate duplications, and rectify inconsistencies, encompassing essential tasks such as
entity alignment, entity disambiguation, and attribute alignment. The refined and
processed data will be stored in documents, serving as a robust and precise basis for
the subsequent construction of the knowledge graph.

• Get feature word sets. After fusing the vulnerability data, we proceed with the
preprocessing and dimensionality reduction of the vulnerability description text to
extract the most relevant features and their correlations. Simultaneously, we store
the generated optimal feature vocabulary and associated vulnerability information
in a CSV file. We have elucidated the detailed steps of these preprocessing and
dimensionality reduction operations in Sections 5.1 and 5.2.

• Knowledge storage. We have selected the Neo4j graph database for storing vul-
nerability data. We reserved the above-mentioned integrated data in CSV files and
imported them into Neo4j. We constructed entities and relationships using the Cypher
query language, ultimately creating the feature knowledge graph. As illustrated in
Figure 5, CVE-2021-43963 is the assigned vulnerability number, categorized as having
a medium risk level, falling under the information exposure type, and matching the
keyword ‘mode’.

Electronics 2023, 12, 4749 12 of 21

Figure 5. Fragment of feature knowledge graph.

5.4. Text Representation

In vulnerability classification algorithms, it is imperative to convert textual data
into computationally tractable vectors via text representation techniques, facilitating the
execution of subsequent tasks. The standard text representation methods are one-hot
encoding, bag-of-words model, word2vec, etc. Since the category labels in this paper are
discrete features, we use one-hot encoding to represent the filtered features in binary form
to ensure the efficiency of vector construction. The one-hot encoding extends the discrete
attribute feature values of each vulnerability text into the Euclidean distance, and the
importance of the attribute features corresponds to a certain point in the Euclidean distance
to realize the vulnerability text’s representation.

The specific steps are as follows:

• Determine the categorization variables. First, it is necessary to determine which
features are categorization variables, i.e., the number of elements;

• Establish a vocabulary. A vocabulary needs to be built for each categorical variable,
listing all its possible values and assigning a unique index or number to each matter;

• One-hot encoding. For each sample categorical variable, map its raw fetches to the
corresponding vocabulary index and convert that index to a binary vector. In this
vector, the element corresponding to the index position is 1, and the rest of the parts
are 0. The vector representation of the partial vulnerability description text is shown
in Table 2.

Table 2. Vector representation of some vulnerability description texts.

CVE Word Set Word Vector

CVE-2014-10374

‘Fitbit’:0 ‘activity’:0 ‘-’:0 ‘tracker’:0
‘is’:0 ‘USA’:1 ‘Fitbit’:0 ‘company’:1
‘of’:0 ‘One’:0 ‘Smart’:1 ‘Sports’:0

‘Watch’:1 . . .

[000010100101
. . . 1100101. . . 1011111. . .]

5.5. Vulnerability Classification Algorithm Based on Feature Knowledge Graph (KG-KNN)

This subsection proposes a new vulnerability classification algorithm (KG-KNN)
based on the weighted Euclidean distance algorithm and feature knowledge graph. It adds
the correlation distance between features to the similarity computation, which realizes
the multi-dimensional calculation for a few categories and improves the vulnerability
classification effect.

Below, we will introduce the specific process of classification using KG-KNN, and
Figure 6 illustrates the flowchart.

Electronics 2023, 12, 4749 13 of 21

Figure 6. Flowchart of vulnerability classification algorithm based on feature knowledge graph.

• Data preprocessing. The obtained vulnerability description text set is subjected to pre-
processing operations such as word splitting, word shape reduction, and deactivation
word filtering on the training and test text sets. The detailed steps are described in
Section 5.1.

• Dimension reduction. Use the TF-IDF algorithm to reduce dimensionality on the
training text set and test text set after the preprocessing operations to form the training
text feature set and test text feature set. The detailed steps are described in Section 5.2.

• Text representation. The text representation is of the training text feature set and test
text feature set using solo thermal coding to obtain the feature representation set. The
detailed steps are described in Section 5.3.

• Partition the dataset. Following an 8:2 split, the feature representation set is divided
into two mutually exclusive parts. One part serves as the training text feature set,
while the remaining data is designated as the test text feature set.

• Calculate the word vector distance. Let x = (x1, x2, . . . , xn) is the n-dimensional vector
after the text representation of the test text feature set and y = (y1, y2, . . . , yn) is the
n-dimensional sample vector in the training set |x| = |y| = n . Calculate the distance
between the word vectors in the test text and the word vectors in each training text
as follows:

– Set two-word vectors x1 and y1 and use them f (x, y) to represent the similarity
distance between the test text set and the training text set;

– Calculate the Euclidean distance between word vectors d(x, y) using Equation (1);
– Obtain the shortest path length l(x1, y1) of the two-word vectors corresponding

to the feature words in the feature knowledge graph, where l(x1, y1) = 0 when
x1 = y1;

Electronics 2023, 12, 4749 14 of 21

– Calculate the average value of the sum of the shortest path lengths of all feature
words in the sample vector in the knowledge graph according to Equation (10),
called the association distance p(x, y), where m represents the number of feature
words with the shortest path not being 0;

P(x, y) =
1
m

n

∑
i=1

l(xi, yi) (10)

– According to Equation (11), use the correlation distance to weigh the Euclidean
distance and obtain the final sample distance f (x, y).

f (x, y) = d(x, y)× p(x, y) (11)

• Training data sorting. Sort the vectors of training data in the order of final sample
distances from the most minor to the most significant;

• Select k neighbors. Set the size of parameter k and select the top k vectors from the
above-sorted queue as the set of neighbors;

• Calculate frequency. Calculate the frequency of occurrence of the first k vectors and
sort them in descending order;

• Return prediction results. Return the category with the highest frequency as the
predicted classification of the test data.

6. Experiment
6.1. Experiment Configuration

In this paper, we will experimentally verify the classification effect of the proposed
KG-KNN and compare it with other common classification algorithms to confirm whether
the improved algorithm has better experimental results.

The experiment uses PyCharm as the integrated development environment, and the
building information of the experiment configuration is shown in Table 3.

Table 3. Experiment configuration.

System Configuration Configuration Information

Operating system Windows 11
Version 22H2
Memory 16 GB

Central Processing Unit R7 5800H
Solid-State Disk 512 GB

6.2. Experimental Dataset

This paper randomly selected 3121 IoV vulnerability data. The experiments involved
27 vulnerability types in CWE, and the number of vulnerabilities in each category is shown
in Figure 7. The numbers 1–27 are used in Figure 7 to present the IoV vulnerability in-
formation better to indicate 27 data types, including SQL injection, code injection, code
issues, trust management issues, exposure of sensitive information to an unauthorized
actor, key management errors, command injection, security features, cryptographic issues,
insufficient validation of data authenticity, improper authentication, missing encryption
of sensitive data, data processing errors, improper access control, injections, improper
privilege management, race condition, memory buffer errors, incorrect default permissions,
resource management errors, cross-site scripting, cross-site request forgery, path traversal,
improper input validation, link following, configuration, and communication channel er-
rors. Each vulnerability information contains the vulnerability name (lname), vulnerability
number (CVE), vulnerability type number (CWE), vulnerability type (ltype), vulnerability
class (CVSS), and vulnerability description (ldetail). Some information on IoV vulnerability
data is shown in Table 4.

Electronics 2023, 12, 4749 15 of 21

Figure 7. Distribution of the number of vulnerabilities in each category.

Table 4. IoV vulnerability data.

lname CVE CWE ltype CVSS ldetail

IBM Sterling File Gateway
2.2.0.0 through CVE-2020-4654 CWE-287 improper authentication low

IBM Sterling File Gateway
2.2.0.0 through 6.1.1.0 could
allow an authenticated user

to obtain sensitive. . .

Access Control
Vulnerability in Citrix

Systems Gateway Plug-in
CVE-2020-8199 CWE-269 improper privilege

management low

Citrix Systems Gateway
Plug-in is a plug-in
developed by Citrix
Systems, a US-based

company. . .

6.3. Analysis of Experimental Results
6.3.1. Validation Experiment

The category falls within a limited number of classes, as evident in Figure 7. This
observation implies that KG-KNN has demonstrated an improved precision rate when
classifying these select categories. We also vectorize the text and labels to obtain a vulnera-
bility feature representation set. The dataset is divided into a training dataset and a test
dataset according to 8:2 to observe the classification effect of KG-KNN and the original
algorithm (KNN) under the same dataset. The test results are shown in Figures 8–10, where
yellow represents the KNN and blue represents the KG-KNN. A–W denotes the categories
in the test set, which are, in order of priority, SQL injection, code injection, code issues,
trust management issues, exposure of sensitive information to an unauthorized actor, crit-
ical management errors, command injection, security features, cryptographic problems,
insufficient verification of data authenticity, improper authentication, missing encryption
of sensitive data, improper access control, injections, improper privilege management,
race condition, memory buffer errors, incorrect default permissions, resource manage-
ment errors, cross-site scripting, cross-site request forgery, path traversal, and improper
input validation.

The comparison of the precision rate of the KG-KNN and the original classification
algorithm is given in Figure 8. From Figure 8, it can be seen that the KG-KNN proposed
in this paper has a better precision rate compared to the previous model. In particular,
the code injection category has a precision rate of 0 in the original model, while the new
model successfully classifies it correctly. As can be seen from the data in Figure 7, the

Electronics 2023, 12, 4749 16 of 21

code injection category belongs to a very small number of categories in the dataset, and
the original model cannot classify it correctly, which means that it may be challenged by
imbalanced data. The successful classification of the KG-KNN model shows its improve-
ment in handling imbalanced data, which helps to improve the balance of the overall
classification performance.

Figure 8. Comparison of precision rate between the original algorithm and the improved algorithm.

Figure 9 shows that the proposed KG-KNN has advantages in recall rate, especially for
the code injection category. Compared with KG-KNN, KNN is terrible since it has a very
low recall rate and even 0 recall for some cases.However, KG-KNN successfully increased
the recall of this category from 0% to 100%, which is a significant improvement. This means
that KG-KNN captures relevant samples more effectively when processing minority class
data, ensuring that this key information will not be missed, thus improving the overall
recall rate.

Figure 9. Comparison of recall rate between the original algorithm and the improved algorithm.

Electronics 2023, 12, 4749 17 of 21

The comparison between KG-KNN and the original classification algorithm in terms of
the F1 score is shown in Figure 10. KG-KNN shows significant improvements in handling
very few categories such as code injection and cryptographic security issues. This means
that KG-KNN achieves a better balance and improves the F1 score when classifying these
important but relatively uncommon categories.

The F1 score takes into account precision and recall, and therefore reflects the overall
performance of the model in data classification. The improvement in the F1 score of KG-
KNN shows its effectiveness in handling imbalanced data and classifying key information.

Figure 10. Comparison of F1 score between the original algorithm and the improved algorithm.

In summary, KG-KNN has different degrees of improvement in the precision rate,
recall rate, and F1 score relative to the KNN algorithm, so the KG-KNN algorithm is more
effective in coping with imbalanced samples.

6.3.2. Comparative Experiment

To verify the applicability of KG-KNN, this paper selects the widely used SVM
model [38], KNN model [39], DNN security model [40], and TFI-DNN [41] model
for comparison.

The SVM model achieves data discrimination and classification by finding a hyper-
plane in the feature space that maximizes the interval between different categories. In
imbalanced classification problems, support vectors are usually samples of minority cate-
gories, which help improve the model’s classification performance for minority categories.
The KNN model uses a feature weighting algorithm to allocate weights to various features
of the training set and then finds the K neighbors most similar to the target vector by
calculating the similarity between vectors, by combining feature weighting and KNN to
balance the focus on minority classes. The DNN security model is a machine learning
model based on the neuron hierarchy, which performs feature learning and representation
learning through multiple hidden layers to gradually extract the abstract representation of
the input data and ultimately achieve efficient modeling and prediction of complex tasks.
The TFI-DNN model uses TF-IDF to calculate the frequency and weight of each word from
the vulnerability description, uses information gain for feature selection, obtains an optimal
set of feature words, and then uses the DNN neural network model to build an automatic
vulnerability classifier, thus enabling an effective vulnerability classification.

We separately calculate each classification algorithm’s macro-averaged precision rate,
recall rate, and F1 score to provide a more intuitive view of these classification models.

Electronics 2023, 12, 4749 18 of 21

The results are presented in tabular form. As shown in Table 5, from top to bottom is a
representation of the comparison models selected in this article: SVM, KNN, DNN security,
TFI-DNN, and KG-KNN. Each column represents the performance results of each model
under different metrics.

Table 5. Macro-averaged precision, recall, and F1 score across different classification algorithms.

Model Precision Recall F1 Score

SVM 21 15 15
KNN 34 32 31

DNN security 24 21 21
TFI-DNN 29 27 26
KG-KNN 36 36 33

The experimental results show that the KG-KNN proposed in this paper improves the
precision rate by 5.9%, the recall rate by 12.5%, and the F1 score by 6.5%, compared to the
KNN classification algorithm. It indicates that the classification result of KG-KNN is better
than the text classification algorithm based on KNN, and the experimental results show
that the improvement in the KNN classification algorithm achieves the expected purpose.
Compared with the SVM text classification algorithm, there is an improvement of 71%,
140%, and 106% in the precision rate, recall rate, and F1 score, respectively. It shows that
compared to the SVM-based text classification algorithm, KG-KNN is good at classification.

Compared with the DNN security model, it shows improvements of 50% in the
precision rate, 71% in the recall rate, and 57% in the F1 score. It indicates that KG-KNN is
more suitable for classifying imbalanced samples than the DNN security model—although
TFI-DNN achieves better classification results compared with the above models. However,
the KG-KNN model improved the precision rate, recall rate, and F1 score by 24%, 31%,
and 18%, respectively. It shows that the KG-KNN model is more suitable for classifying
imbalanced samples.

However, the vulnerability samples are predominantly imbalanced datasets, and
evaluating the classification model using the weighted average is preferable to using the
macro average. Therefore, this paper also calculates the weighted average, and the results
are presented in Table 6.

The results presented in Table 6 demonstrate that KG-KNN outperforms the text
classification algorithms of KNN, SVM, DNN security, and TFI-DNN in terms of accuracy,
recall, and the F1 score. This observation underscores KG-KNN’s superior ability to classify
imbalanced samples and validates its applicability, as proposed in this paper.

Table 6. Weighted average precision, recall, and F1 score across different classification algorithms

Model Precision Recall F1 Score

SVM 52 41 39
KNN 60 55 56
DNN 57 52 53

TFI-DNN 59 56 56
KG-KNN 61 56 57

7. Conclusions

To improve the classification effect of imbalanced samples, this article proposes an im-
proved vulnerability classification algorithm. This algorithm uses the calculation principle
of Euclidean distance and combines the critical path algorithm of the knowledge graph
to calculate the correlation distance and the weighted operation of Euclidean distance. It
effectively utilizes the correlation between vulnerability features to improve the perfor-
mance of the classification algorithm. Through experiments with three classic classification
models and comparing the results of the macro average and weighted average, it was

Electronics 2023, 12, 4749 19 of 21

found that the vulnerability classification algorithm based on the feature knowledge graph
is better than other models in terms of precision, recall rate, and F1 score. The experimental
results reflect that the algorithm can better classify imbalanced samples and verify the
effectiveness of the algorithm proposed in this article. This algorithm is expected to play
an important role in the field of vulnerability research and security protection, providing
useful exploration and practice for improving system security and reducing potential risks.

The limitation of our current research lies in the reliance on the TF-IDF algorithm for
vulnerability feature extraction, which predominantly considers the impact of features at
a global level while neglecting their concurrent influence at the local level. It makes the
algorithm have certain shortcomings in capturing local information, specific context, and
subtle differences. Future research directions need to explore feature extraction methods
that are more adaptable to complex contexts to better capture global and local information
and improve the model’s performance. CNN’s proficiency in capturing spatial hierarchies
and complex patterns will alleviate the lack of consideration of the local effects in current
models, allowing for more detailed and comprehensive analyses. Therefore, future work
plans to introduce CNN into this model, use CNN to extract local features of vulnerabilities,
and combine global features with local features to better optimize the classification model.

Author Contributions: Conceptualization, J.W.; methodology, Y.W.; software, Y.W.; validation, Y.W.,
J.S. and H.C.; formal analysis, J.W.; investigation, J.W. and H.C.; resources, Y.W. and J.S.; data curation,
H.C.; writing—original draft preparation, Y.W., J.S. and H.C.; writing—review and editing, Y.W.;
visualization, Y.W.; supervision, J.S.; project administration, H.C.; funding acquisition, J.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Major Science and Technology Innovation Project of
Shandong Province 2019JZZY010134, and the Natural Science Foundation of Shandong Province
ZR2020MF058, and Shandong Province Science and Technology smes Innovation Enhancement
Project 2022TSGC2544.

Data Availability Statement: These data are not publicly available due to the experimental data
involving another unpublished paper.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

References
1. Chen, C.; Li, H.; Li, H.; Fu, R.; Liu, Y.; Wan, S. Efficiency and Fairness Oriented Dynamic Task Offloading in Internet of Vehicles.

IEEE Trans. Green Commun. Netw. 2022, 6, 1481–1493. [CrossRef]
2. Liu, X.; Zhao, S.; Tan, L.; Tan, Y.; Wang, Y.; Ye, Z.; Hou, C.; Xu, Y.; Liu, S.; Wang, G. Frontier and hot topics in electrochemilumines-

cence sensing technology based on CiteSpace bibliometric analysis. Biosens. Bioelectron. 2022, 201, 113932. [CrossRef]
3. Sarkar, B.; Takeyeva, D.; Guchhait, R.; Sarkar, M. Optimized radio-frequency identification system for different warehouse shapes.

Knowl.-Based Syst. 2022, 258, 109811. [CrossRef]
4. Friji, H.; Khanfor, A.; Ghazzai, H.; Massoud, Y. An End-to-End Smart IoT-Driven Navigation for Social Distancing Enforcement.

IEEE Access 2022, 10, 76824–76841. [CrossRef]
5. Domeyer, J.E.; Lee, J.D.; Toyoda, H.; Mehler, B.; Reimer, B. Driver-Pedestrian Perceptual Models Demonstrate Coupling:

Implications for Vehicle Automation. IEEE Trans. Hum.-Mach. Syst. 2022, 52, 557–566. [CrossRef]
6. Wu, Y.; Dai, H.N.; Wang, H.; Xiong, Z.; Guo, S. A Survey of Intelligent Network Slicing Management for Industrial IoT: Integrated

Approaches for Smart Transportation, Smart Energy, and Smart Factory. IEEE Commun. Surv. Tutor. 2022, 24, 1175–1211.
[CrossRef]

7. Bang, A.O.; Rao, U.P.; Visconti, A.; Brighente, A.; Conti, M. An IoT Inventory Before Deployment: A Survey on IoT Protocols,
Communication Technologies, Vulnerabilities, Attacks, and Future Research Directions. Comput. Secur. 2022, 123, 102914.
[CrossRef]

8. Man, D.; Zeng, F.; Lv, J.; Xuan, S.; Yang, W.; Guizani, M. AI-based Intrusion Detection for Intelligence Internet of Vehicles. IEEE
Consum. Electron. Mag. 2021, 12, 109–116. [CrossRef]

9. Alabbad, Y.; Demir, I. Comprehensive flood vulnerability analysis in urban communities: Iowa case study. Int. J. Disaster Risk
Reduct. 2022, 74, 102955. [CrossRef]

http://doi.org/10.1109/TGCN.2022.3167643
http://dx.doi.org/10.1016/j.bios.2021.113932
http://dx.doi.org/10.1016/j.knosys.2022.109811
http://dx.doi.org/10.1109/ACCESS.2022.3192860
http://dx.doi.org/10.1109/THMS.2022.3158201
http://dx.doi.org/10.1109/COMST.2022.3158270
http://dx.doi.org/10.1016/j.cose.2022.102914
http://dx.doi.org/10.1109/MCE.2021.3137790
http://dx.doi.org/10.1016/j.ijdrr.2022.102955

Electronics 2023, 12, 4749 20 of 21

10. Li, B.; Xu, H.; Zhao, Q.; Su, P.; Chabbi, M.; Jiao, S.; Liu, X. OJXPerf: Featherlight object replica detection for Java programs. In
Proceedings of the 44th International Conference on Software Engineering, Pittsburgh, PA, USA, 8–27 May 2022; pp. 1558–1570.

11. Li, B.; Zhao, Q.; Jiao, S.; Liu, X. DroidPerf: Profiling Memory Objects on Android Devices. In Proceedings of the 29th Annual
International Conference on Mobile Computing and Networking, Madrid, Spain, 2–6 October 2023; pp. 1–15.

12. Luo, Q.; Liu, J. Wireless telematics systems in emerging intelligent and connected vehicles: Threats and solutions. IEEE Wirel.
Commun. 2018, 25, 113–119. [CrossRef]

13. Li, B.; Su, P.; Chabbi, M.; Jiao, S.; Liu, X. DJXPerf: Identifying Memory Inefficiencies via Object-Centric Profiling for Java. In
Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization, Montréal, QC, Canada,
25 February–1 March 2023; pp. 81–94.

14. Guo, J.; Liu, Z.; Tian, S.; Huang, F.; Li, J.; Li, X.; Igorevich, K.K.; Ma, J. Tfl-dt: A trust evaluation scheme for federated learning in
digital twin for mobile networks. IEEE J. Sel. Areas Commun. 2023, 41, 3548–3560. [CrossRef]

15. Bundak, C.E.A.; Abd Rahman, M.A.; Karim, M.K.A.; Osman, N.H. Fuzzy rank cluster top k Euclidean distance and triangle
based algorithm for magnetic field indoor positioning system. Alex. Eng. J. 2022, 61, 3645–3655. [CrossRef]

16. Zebari, R.; Abdulazeez, A.; Zeebaree, D.; Zebari, D.; Saeed, J. A comprehensive review of dimensionality reduction techniques for
feature selection and feature extraction. J. Appl. Sci. Technol. Trends 2020, 1, 56–70. [CrossRef]

17. Islam, M.M.; Chuenpagdee, R. Towards a classification of vulnerability of small-scale fisheries. Environ. Sci. Policy 2022, 134, 1–12.
[CrossRef]

18. Khaire, U.M.; Dhanalakshmi, R. Stability of feature selection algorithm: A review. J. King Saud Univ.-Comput. Inf. Sci. 2022,
34, 1060–1073. [CrossRef]

19. Yang, Y.; Pedersen, J.O. A comparative study on feature selection in text categorization. In Proceedings of the ICML, Nashville,
TN, USA, 8–12 July 1997; Volume 97, p. 35.

20. Zhang, C.; Mousavi, A.A.; Masri, S.F.; Gholipour, G.; Yan, K.; Li, X. Vibration feature extraction using signal processing techniques
for structural health monitoring: A review. Mech. Syst. Signal Process. 2022, 177, 109175. [CrossRef]

21. Lewis, D.D. Feature selection and feature extraction for text categorization. In Proceedings of the Speech and Natural Language:
Proceedings of a Workshop Held at Harriman, New York, NY, USA, 23–26 February 1992.

22. Rahman, M.A.; Hossain, M.F.; Hossain, M.; Ahmmed, R. Employing PCA and t-statistical approach for feature extraction and
classification of emotion from multichannel EEG signal. Egypt. Inform. J. 2020, 21, 23–35. [CrossRef]

23. Alqahtani, H.; Kumar, G. A deep learning-based intrusion detection system for in-vehicle networks. Comput. Electr. Eng. 2022,
104, 108447. [CrossRef]

24. Qaiser, S.; Ali, R. Text mining: Use of TF-IDF to examine the relevance of words to documents. Int. J. Comput. Appl. 2018,
181, 25–29. [CrossRef]

25. Domeniconi, C.; Peng, J.; Gunopulos, D. Adaptive metric nearest neighbor classification. In Proceedings of the Proceedings IEEE
Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), Hilton Head, SC, USA, 15 June 2000;
IEEE: Piscataway, NJ, USA, 2000; Volume 1, pp. 517–522.

26. Chen, Z.; Zhang, Y.; Chen, Z. A categorization framework for common computer vulnerabilities and exposures. Comput. J. 2010,
53, 551–580. [CrossRef]

27. Song, H.M.; Woo, J.; Kim, H.K. In-vehicle network intrusion detection using deep convolutional neural network. Veh. Commun.
2020, 21, 100198. [CrossRef]

28. Zhang, S. Cost-sensitive KNN classification. Neurocomputing 2020, 391, 234–242. [CrossRef]
29. Yang, L.; Moubayed, A.; Shami, A. MTH-IDS: A multitiered hybrid intrusion detection system for internet of vehicles. IEEE

Internet Things J. 2021, 9, 616–632. [CrossRef]
30. Ding, H.; Chen, L.; Dong, L.; Fu, Z.; Cui, X. Imbalanced data classification: A KNN and generative adversarial networks-based

hybrid approach for intrusion detection. Future Gener. Comput. Syst. 2022, 131, 240–254. [CrossRef]
31. Zeng, X.; Tu, X.; Liu, Y.; Fu, X.; Su, Y. Toward better drug discovery with knowledge graph. Curr. Opin. Struct. Biol. 2022,

72, 114–126. [CrossRef]
32. Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; Philip, S.Y. A survey on knowledge graphs: Representation, acquisition, and applications.

IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 494–514. [CrossRef]
33. Dai, Z.; Li, D.; Zhou, Z.; Zhou, S.; Liu, W.; Liu, J.; Wang, X.; Ren, X. A strategy for high performance of energy storage and

transparency in KNN-based ferroelectric ceramics. Chem. Eng. J. 2022, 427, 131959. [CrossRef]
34. Patel, S.P.; Upadhyay, S.H. Euclidean distance based feature ranking and subset selection for bearing fault diagnosis. Expert Syst.

Appl. 2020, 154, 113400. [CrossRef]
35. Cheng, W.; Zhu, X.; Chen, X.; Li, M.; Lu, J.; Li, P. Manhattan distance-based adaptive 3D transform-domain collaborative filtering

for laser speckle imaging of blood flow. IEEE Trans. Med. Imaging 2019, 38, 1726–1735. [CrossRef]
36. Liu, D.; Chen, X.; Peng, D. Some cosine similarity measures and distance measures between q-rung orthopair fuzzy sets. Int. J.

Intell. Syst. 2019, 34, 1572–1587. [CrossRef]
37. Chen, T.Y. New Chebyshev distance measures for Pythagorean fuzzy sets with applications to multiple criteria decision analysis

using an extended ELECTRE approach. Expert Syst. Appl. 2020, 147, 113164. [CrossRef]
38. Astorino, A.; Fuduli, A. The proximal trajectory algorithm in SVM cross validation. IEEE Trans. Neural Netw. Learn. Syst. 2015,

27, 966–977. [CrossRef]

http://dx.doi.org/10.1109/MWC.2018.1700364
http://dx.doi.org/10.1109/JSAC.2023.3310094
http://dx.doi.org/10.1016/j.aej.2021.08.073
http://dx.doi.org/10.38094/jastt1224
http://dx.doi.org/10.1016/j.envsci.2022.03.023
http://dx.doi.org/10.1016/j.jksuci.2019.06.012
http://dx.doi.org/10.1016/j.ymssp.2022.109175
http://dx.doi.org/10.1016/j.eij.2019.10.002
http://dx.doi.org/10.1016/j.compeleceng.2022.108447
http://dx.doi.org/10.5120/ijca2018917395
http://dx.doi.org/10.1093/comjnl/bxp040
http://dx.doi.org/10.1016/j.vehcom.2019.100198
http://dx.doi.org/10.1016/j.neucom.2018.11.101
http://dx.doi.org/10.1109/JIOT.2021.3084796
http://dx.doi.org/10.1016/j.future.2022.01.026
http://dx.doi.org/10.1016/j.sbi.2021.09.003
http://dx.doi.org/10.1109/TNNLS.2021.3070843
http://dx.doi.org/10.1016/j.cej.2021.131959
http://dx.doi.org/10.1016/j.eswa.2020.113400
http://dx.doi.org/10.1109/TMI.2019.2896007
http://dx.doi.org/10.1002/int.22108
http://dx.doi.org/10.1016/j.eswa.2019.113164
http://dx.doi.org/10.1109/TNNLS.2015.2430935

Electronics 2023, 12, 4749 21 of 21

39. Wang, Z.; Na, J.; Zheng, B. An improved knn classifier for epilepsy diagnosis. IEEE Access 2020, 8, 100022–100030. [CrossRef]
40. Almutairi, S.; Barnawi, A. Securing DNN for smart vehicles: An overview of adversarial attacks, defenses, and frameworks. J.

Eng. Appl. Sci. 2023, 70, 16. [CrossRef]
41. Huang, G.; Li, Y.; Wang, Q.; Ren, J.; Cheng, Y.; Zhao, X. Automatic classification method for software vulnerability based on deep

neural network. IEEE Access 2019, 7, 28291–28298. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2020.2996946
http://dx.doi.org/10.1186/s44147-023-00184-x
http://dx.doi.org/10.1109/ACCESS.2019.2900462

	Introduction
	Related Work
	Dimensionality Reduction Processing Technique
	Classification Algorithm

	Background
	Knowledge Graph
	K-Nearest Neighbor Classification Algorithm
	Vulnerability Classification

	Design Strategy
	System Design
	Performance Metrics
	Precision Rate
	Recall Rate
	F1 Score
	Macro Average
	Weighted Average

	Methodology
	Data Preprocessing
	Dimension Reduction
	Construct Feature Knowledge Graph
	Text Representation
	Vulnerability Classification Algorithm Based on Feature Knowledge Graph (KG-KNN)

	Experiment
	Experiment Configuration
	Experimental Dataset
	Analysis of Experimental Results
	Validation Experiment
	Comparative Experiment

	Conclusions
	References

