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Abstract: Vehicle to everything (V2X) is widely regarded as a critical application for future wireless
communication networks. In V2X, large relative speeds between vehicles may severely deteriorate
the performance of communication between vehicles. Orthogonal time frequency space (OTFS)
modulation, which converts time- and frequency-selective channels into non-selective channels in the
delay-Doppler (DD) domain, provides a solution for establishing reliable wireless communications in
V2X scenarios. However, in the complex multi-scattering scenarios, the channel also suffers from
a serious inter-Doppler interference (IDI) problem, which poses a great challenge to the accurate
demodulation of OTFS receiver signals. To address the above problems, this paper considers the
variation of Doppler sampling points within one symbol when deriving the channel model, which
effectively overcomes the IDI problem, and employs a basis expansion model (BEM) to convert the
channel estimation into a sparse recovery problem for the basis coefficients. In addition, to better
utilize the sparse nature of the OTFS channel, a generalized approximate message passing-sparse
Bayesian learning (GAMP-SBL)-based algorithm is employed to estimate the basis coefficients of
the channel. The complexity of this algorithm is greatly reduced compared to the conventional
SBL algorithm. Finally, system simulation results are reported to verify the superiority of the
proposed scheme.

Keywords: V2X; OTFS; delay-Doppler; inter-Doppler interference; sparse Bayesian learning; channel
estimation

1. Introduction

As a critical component of future wireless communication networks, vehicle to every-
thing (V2X) communication strives to meet stringent standards concerning the volume of
connected devices, data rate, latency, and dependability [1,2]. In 2018, the Third Generation
Partnership Project (3GPP) released the R15 standard [3], which mentioned the enhance-
ment of long-term evolution-V2X (LTE-V2X), that is, under the premise of compatibility
with R14 LTE-V2X, the delay performance, reliability performance, and transmission rate
of LTE-V2X are further improved by reducing the resource selection window and adding
transmission diversity and carrier aggregation. In 2020, 3GPP officially froze the R16 stan-
dard [4], which defined the new ratio-V2X (NR-V2X) based on 5G. NR-V2X supports higher
frequency shifts and bandwidth. Meanwhile, ultra-reliable low-latency communication
(URLLC) can be achieved with the help of 5G, thus meeting the more advanced business
requirements of vehicle formation, advanced driving, and remote driving.

However, V2X channels differ significantly from traditional cellular channels [5].
Because of the relative speed, there may be a higher Doppler shift when communicating be-
tween users with high mobility. As a representative of multicarrier modulation techniques,
orthogonal frequency division multiplexing (OFDM) [6] is widely employed in 4G/5G
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mobile communications due to its benefits of high data transmission rates, high bandwidth
efficiency, and significant resistance to multipath fading [7]. In high-speed mobile scenarios,
however, the Doppler effect caused by terminal and scatterer movement can seriously
damage the orthogonality of subcarriers in OFDM, resulting in intercarrier interference
(ICI) [8], which poses a significant challenge for channel estimation and equalization. As a
result, creating new modulation waveforms and high-mobility communication techniques
for next-generation wireless networks will be a major research area in the future.

In recent years, orthogonal time frequency space (OTFS) has progressively become a
hot research issue in academia due to its capacity to successfully offset the channel’s Doppler
effect and has been discovered to significantly outperform OFDM in doubly-selective
channels [9,10]. Furthermore, it inherits the same multipath resistance as OFDM and as a
unique modulation scheme based on delay-Doppler (DD) domain, allows each symbol to
experience the same channel gain even under high Doppler conditions. Simultaneously,
OTFS can be implemented as a pre-processing and post-processing module of a filtered
OFDM system, which not only allows for dense and flexible encapsulation of the reference
signals to support the critical requirements in large antenna arrays in massive multiple-
input multiple-output (MIMO), but also achieves compatibility with 4G and 5G system
architecture [11].

Currently, there has been a lot of work to apply OTFS to complex scenarios, such as
high-speed mobility. Ref. [12] employs OTFS modulation to construct a 5G-NR transmitting
and receiving scheme that can be applied on unmanned aerial vehicles (UAVs) to perform
accurate measurements of arrival time even in high-mobility scenarios. In addition, to
address the challenges of high mobility in V2X systems, ref. [13] designs a new OTFS-
based multi-antenna receiver. Due to the high resolution provided by multi-antennas, the
channel sparsity in the delay-Doppler domain can be guaranteed. On this basis, a combined
maximum proportion combination (MRC) OTFS iterative detection method is proposed,
and the simulation results show the superiority of this scheme. All these prove that OTFS
has the characteristics of anti-high Doppler.

Despite the benefits of OTFS listed above, the DD-domain spreading of OTFS symbols
generated by 2D channel convolution during transmission provides a significant barrier to
channel estimate. Prof. Raviteja [14] of Australia employed a single pulse signal as the pilot,
inserting a piece of the guard interval around it, and then used the threshold approach
to estimate the channel response in the DD domain. Nevertheless, this channel estima-
tion approach depends on the choice of protection interval, and the threshold is chosen
based on experience, which have a significant impact on channel estimation performance.
Furthermore, ref. [15] developed a set of transform domain basis functions to model the
OTFS channel by constructing a low-dimensional subspace that can accurately estimate the
interference caused by inter-Doppler interference (IDI), while the algorithm used in the
paper is linear minimum mean square error (LMMSE). The LMMSE-based channel estima-
tion in low-dimensional subspaces uses the prior information of the channel, which is not
applicable to real-world scenarios. In addition, there are similar methods in OFDM systems
to estimate the phase noise of channels in high-mobility scenarios. Ref. [16] uses the basis
expansion model (BEM) to fit the time variation and phase noise of multipath channels
and provides an effective approximate solution for the joint estimation problem based on
maximum likelihood. Therefore, BEM can effectively and accurately fit and reduce the
dimension of channel changes, which is conducive to the subsequent channel estimation.

Indeed, many recent publications have presented compressed sensing-based channel
estimate algorithms. Ref. [17] developed an orthogonal matching tracking algorithm for
3D structures that takes advantage of channel sparsity in three domains: the delay domain,
the Doppler domain, and the angular domain. Furthermore, ref. [18] adopted three-
dimensional Newtonian orthogonal matched tracking to recover the channel parameters
of the time–frequency domain, incorporating channel gain, direction of arrival, delay, and
Doppler shift.



Electronics 2023, 12, 4722 3 of 15

Reviewing the above channel estimation approaches, it is clear that most simulation
environments only evaluate simple channel situations and do not conform to the channels
of real scenarios. The Doppler shift in the wireless channel is not constant, but rather
conforms to the variation of the U-shaped spectrum, according to the classical Clarke’s
channel modeling method. Furthermore, unlike OFDM, the size of the grid in OTFS
controls the delay-Doppler quantization resolution [19] (the larger the grid, the higher the
resolution). However, the grid cannot generally take a larger value. Hence, the Doppler
shift cannot be accurately quantified to the grid points, and the above channel estimation
methods for this inaccurate channel model will cause certain estimation errors, degrading
system performance [20]. To solve the aforementioned issues, we create a BEM-based
channel model, transform the OTFS channel estimation into a basis coefficients recovery
problem, and suggest generalized approximate message passing (GAMP) to lower the
sparse Bayesian learning (SBL) algorithm’s complexity. The primary contributions are
as follows:

(1) We first give the input-output expression relationship equation in the DD domain
in OTFS system, and based on this, we model the OTFS channel into a DD-domain
channel response that can reflect the variation of sampling points in the Doppler
domain. We then convert the channel estimation problem into a basis coefficient
recovery problem using the BEM.

(2) In order to estimate the DD-domain channel, including Doppler sampling points, the
GAMP- SBL method is additionally proposed to estimate the basis coefficients and
channel noise while simultaneously lowering the SBL’s complexity.

(3) The scheme is evaluated by simulation of the OTFS system. The simulation and
complexity analysis show that the GAMP-SBL algorithm proposed in this paper
has advantages regarding computing complexity and performance under the 3GPP-
specified V2X channel model. In summary, both simulation and experimental results
demonstrate the effectiveness of the algorithm.

The remainder of the paper is structured as follows. In Section 2, we briefly describe the
signals transmitted and receive by the OTFS system and provide a discrete-time formulation
of the OTFS channel in V2X scenarios. Then, the channel estimation is formulated as
a sparse signal recovery problem, and a GAMP-SBL solution is proposed in Section 3.
Simulation results and complexity analysis are given in Section 4. Finally, conclusions are
drawn in Section 5.

2. System Model

In this section, we first introduce OTFS transmitters and receivers and give mathemati-
cal representations of the transmitted and received signals. Then, we analyze the equivalent
channel matrix of OTFS in the time, delay, and Doppler domains for the V2X scenario,
which is the basis for the subsequent channel estimation. Finally, the sparse channel-based
OTFS relation is reformulated in vector form and modeled as a sparse basis coefficient
recovery problem. The base-band signal transmission model of the OTFS system is shown
in Figure 1.

2.1. The Transmitted Signal

At the transmitter end, the data information that needs to be sent is modulated first,
and then it is placed in the resource grid of the DD domain. Here, xdd[n, m] represents the
transmission signal at the m, n position in the DD domain, and xtf[k, l] represents the trans-
mission signal at the k, l position in the time-frequency domain, where k = 0, 1, · · · , N − 1,
l = 0, 1, · · · , M − 1. Inverse symmetric finite Fourier transform (ISFFT) transforms the
signal from the DD domain to the time–frequency domain with the expression:

xtf[l, k] =
1√
MN

N−1

∑
n=0

M−1

∑
m=0

xdd[m, n]ej2π( nk
N −

ml
M ) (1)
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Subsequently, signal xtf[l, k] is converted to the time domain using Heisenberg trans-
formation of the time–frequency domain, as follows:

s(t) =
N−1

∑
k=0

M−1

∑
l=0

xtf[l, k]gt(t− kT)ej2πl∆ f (t−kT) (2)

where gt(t) denotes the shape filter function in the transmit end. When gt(t) is a non-
rectangular pulse, it will cause non-orthogonality between subcarriers, which will reduce
the bit error rate (BER) performance [21]. Therefore, in this paper, we assume that gt(t) is a
rectangular pulse, and Equation (2) also degenerates into inverse discrete Fourier transform
(IDFT), which is equivalent to traditional OFDM modulation.
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2.2. The Received Signal

The time domain signal will be impacted by the channel’s fading as it travels across it.
Here, h(τ, v) represents the complex base-band response of the channel in the DD domain,
where τ, v represent the delay and the Doppler component, respectively. Then, h(τ, v)
represents the following:

h(τ, v) =
P

∑
p=1

hpδ
(
τ − τp

)
δ
(
v− vp

)
(3)

where P is the multipath number; hp is the attenuation coefficient of p-th path; τp, vp
represent the discretized value of delay and the Doppler of the p-th path, respectively; and
δ(·) denotes Dirac delta function. Then, after the time-domain transmitted signal passes
through the channel, the receiving signal can represent the two-dimensional convolution of
the time-domain transmitted signal and the DD channel, and the expression is as follows:

r(t) =
∫ ∫

h(τ, v)s(t− τ)ej2πv(t−τ)dτdv + z(t) (4)

where z(t) is the time domain additive Gaussian white noise. At the receiving end, the
Wigner transform is applied to the time domain signal r(t), and the expression of the
discrete signal ytf[k, l] is obtained:

ytf[l, k] =
∫

r(t)g∗r (t− kT)e
−j2πl∆ f (t−kT)

dt (5)
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In (5), gr(t) denotes the matching filter function of the receiving end. Similarly, when
gr(t) is a rectangular pulse form, Equation (5) is a discrete Fourier transform (DFT). Finally,
after the symmetric finite Fourier transform (SFFT) is used, the resource grid ydd[m, n] of
the DD domain is obtained as follows:

ydd[m, n] =
1√
MN

N−1

∑
k=0

M−1

∑
l=0

xtf[l, k]e−j2π( nk
N −

ml
M ) (6)

2.3. The Multi-Domain Channel

(1) Time domain

It can be seen from the above analysis that the OTFS system is based on the OFDM
system with the addition of a pre-module (ISFFT transform) and a post-module (SFFT
transform). Similarly, to acquire the time-domain received signal expression, we can begin
with the time domain channel. It is known that the received signal in the time domain is
obtained by convolution of the transmitted signal and the channel, and the relationship is
as follows:

r(n) =
L−1

∑
l=0

g(n, l)s(n− l) + z(n), n ∈ [0, MN − 1] (7)

where r(n) is the time-domain receiving symbol, and L represents the maximum delay of
the channel, which is less than the CP length NCP, that is L < NCP, g(n, l) is the impulse
response of the n-th sampling point in the l-th tap. It is noted that in order to avoid
interference between OTFS transmitted data blocks, we add cyclic prefix (CP) at the vector
header when OTFS symbols are converted to serial vectors. Therefore, the matrix relation
of the time domain receiving vector can be expressed as follows:

r = Gs + z (8)

where s ∈ CMN×1 and r ∈ CMN×1 represent the received signal and the transmitted
signal in the time domain, respectively; z ∈ CMN×1 represents the additive complex
Gaussian white noise vector representing the mean of 0 and the covariance matrix of σ2I,
and G ∈ CMN×MN represents the cyclic matrix composed of CIR, which is composed as
follows:

G =



g0
0 0 · · · 0 g0

L−1 g0
L−2 · · · g0

1

g1
1 g1

0 0
. . . 0 g1

L−1
. . .

...
...

. . . . . . . . . . . . . . . . . . gk−2
L−2

gk−1
L−2

. . . gk−1
1 gk−1

0 0
. . . 0 gk−1

L−1

gk
L−1

. . . . . . gk
1 gk

0 0
. . . 0

0
. . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . 0
0 · · · 0 gMN−1

L−1 gMN−1
L−2 · · · gMN−1

1 gMN−1
0



(9)

For ease of representation, the element of G in Equation (9) is denoted as gn
l , where

g ∈ CMN×L is the time domain CIR.

(2) Time-delay domain

Let x̃ and ỹ denote the transmitted and received vectors in the time-delay domain, re-
spectively, and the relationships between them and the time domain vectors are respectively
given as follows:

x̃ = P′s (10)



Electronics 2023, 12, 4722 6 of 15

ỹ = P′r (11)

Note that P ∈ CMN×MN is the row-column interleaving permutation matrix [22] and
is defined as follows:

P =


E1,1 E2,1 · · · EM,1
E1,2 E2,2 · · · EM,2

...
. . . . . .

...
E1,N E2,N · · · EM,N

 (12)

where Ei,j ∈ CM×N denotes

Ei,j
(
i′, j′

)
=

{
1, if i′ = i and j′ = j
0, otherwise

(13)

Further, by submitting Equations (8) and (10) into Equation (11), the input-output
relation of the time-delay domain can be expressed as follows:

ỹ = P′r
= P′Gs + z′

= P′GPx̃ + z′

= H̃x̃ + z′

(14)

where H̃ = P′GP ∈ CMN×MN is the time-delay domain channel matrix.

(3) Delay-Doppler domain

The DD domain channel is obtained by applying fast Fourier transform (FFT) to the
time domain on the basis of the time-delay domain channel. Hence, the relationships
between the DD domain and the time-delay domain are as follows:

y = (IM ⊗ FN) · ỹ (15)

x = (IM ⊗ FN) · x̃ (16)

where IM ∈ CM×M is the identity matrix. In addition, FN ∈ CN×N is Fourier matrix, which
consists of the following:

F(n, k) =
1√
N

exp(−j2πnk/N) (17)

According to Equations (14)–(16), the input-output relation of the DD domain can be
obtained as follows:

y = (IM ⊗ FN) · H̃ ·
(
IM ⊗ FH

N
)
x + w

= Hx + w
(18)

In (18), H = (IM ⊗ FN) · H̃ ·
(
IM ⊗ FH

N
)
∈ CMN×MN is the DD domain channel matrix.

2.4. Problem Formulation

In the DD domain, the two-dimensional convolution of the input signal with the DD
domain channel yields the output signal. To facilitate channel estimation, Equation (18) is
converted to the following form:

y = Xh + w̃ (19)

where y = vec(YT) ∈ CMN×1 is serial receiving signal in the DD domain, and h ∈ CMNL×1

is the vector form of the DD channel response. In addition, X = [X 0, . . . ,X l , . . . ,X L−1] ∈
CMN×MNL is composed of the transmission vector of the DD domain, in which X l ∈
CMN×MN is a block diagonal matrix, including M small matrix ∆i of dimension N× N. De-
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fine a new index rl = circshift(1 : M, l) ∈ C1×M, and let X(rl(i), :) = [hl
i(0), . . . , hl

i(N − 1)]
to obtain the following:

∆i = circ(hl
i(0), . . . , hl

i(N − 1))

=


hl

i(0) hl
i(N − 1) · · · hl

i(1)
hl

i(1) hl
i(0) · · · hl

i(2)
...

...
. . .

...
hl

i(N − 1) hl
i(N − 2) · · · hl

i(0)

 (20)

From Equation (19), it is found that the dimension of the parameter to be solved h is
larger than the dimension of the observed value y, which suggests that the equation is an
underdetermined equation and not amenable to direct solution. To estimate h, we employ
the BEM to reduce the number of parameters to be solved, which can use a fixed set of basis
functions and a linear combination of its basis coefficients to fit the time-domain channel
response. In this paper, DPS-BEM [23] is adopted to model the time-domain channel tap
as follows:

gl(n) =
Q−1

∑
q=0

bq(n)cq(l) + ε l(n) (21)

where bq ∈ CMN×1, cl ∈ CQ, and εl ∈ CN denote the basis vector, basis coefficients and
error vector, respectively. Based on the relationship between the DD domain channel and
the time domain, we can obtain the following matrix expression:

hl = 1√
N
(FN ⊗ IM)Bcl +

1√
N
(FN ⊗ IM)εl

= Acl + ε̃l
(22)

By substituting Equation (22) into Equation (19), the relationship between the observed
signal and the basis coefficients can be obtained as follows:

y = X (IL ⊗A)c + w̃
= Φc + w̃

(23)

where c = [c0, . . . , cl , . . . , cL−1]
T ∈ CQL denotes the basis coefficients matrix, Φ , X (IL ⊗

A) ∈ CMN×QL.

3. Proposed Algorithm

In this section, we propose a low-complexity channel estimation algorithm, the SBL-
GAMP algorithm. First, the SBL framework is used to accomplish sparse recovery of the
basis coefficients of the created channel model in Equation (23). Then, in order to reduce
the computational complexity, GAMP is introduced into the expectation maximization
algorithm, and a low-complexity SBL framework based on GAMP is established without
degrading the performance. The GAMP framework may successfully tackle the Gaussian
message propagation problem in the SBL algorithm due to the Gaussian assumption in the
SBL algorithm. Meanwhile, the sum-product method is used to realize belief propagation
and track Gaussian messages in the factor graph. In addition, GAMP utilizes a series
of scalar operations on the input and output nodes to achieve the approximation of the
a posteriori estimates of the joint vectors in the SBL E-step, which greatly reduces the
computational effort.

3.1. SBL Algorithm

This section introduces the SBL algorithm based on expectation maximization (EM)
iteration to solve the channel model in Equation (23). Assuming that the elements in the
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noise vector w̃ are independent of each other and obey the complex Gaussian distribution
w̃ ∼ N (0, σ2I), the Gaussian likelihood model is obtained as follows:

p(y|c, w̃ ) =
(

2πσ2
)−MN/2

exp
{
− 1

2σ2 ‖y−Φc‖2
2

}
(24)

Making a prior assumption about c is a typical operation to avoid overfitting and is
equivalent to adding a regular term from the Bayesian perspective [24]. Assuming that each
component of the basis coefficients c obeys Gaussian distribution and that each variable ci
corresponds to an A hyperparameter αi, the Gaussian prior distribution of c can then be
calculated as follows:

p(c|α) =
MN

∏
i=0
CN

(
ci

∣∣∣0, α−1
i

)
(25)

where αi is the non-negative hyperparameter that controls the sparsity of parameter ci.
As αi → ∞ , ci → 0 . Based on the Gaussian prior hypothesis, the hierarchical Bayesian
framework is established to ensure the sparsity of the posterior estimation. However,
it is difficult to estimate the hyperparameter α since the multi-layer prior method is
adopted to make a prior assumption for α again. Therefore, define the prior estimate of the
hyperparameter to obey the gamma distribution:

p(α|a, b ) =
QL−1

∏
m=0

Gamma(αm|a, b )

=
QL−1

∏
m=0

Γ(a)−1baαa−1e−bαm

(26)

In order to make these parameters not informative, we usually set a = b = 10−4. After
defining the prior term for the estimation parameter c, the maximum posterior estimate of
c can be performed using Bayesian inference.

The EM algorithm can be used to learn sparse basis coefficients c and hyperparameters{
α, σ2}. In the EM frame, the basis coefficients are regarded as hidden variables, and we

iteratively maximize the posterior probability to update the hyperparameters. In short, the
algorithm alternates between E and M steps.

In the E step, according to Bayesian rule, we can calculate the posterior distribution, i.e.,

p
(

c|y,α, σ2
)

∝ p
(

y|c, σ2
)

p(c|α) (27)

It can be easily proven that the posterior c follows a Gaussian distribution and is given
by p

(
c|y,α, σ2) = CN (µc,Σc), the mean and covariance of which are respectively given

as follows:
µc = σ−2ΣcΦHy (28)

Σc =
(

σ−2ΦHΦ + Λ
)−1

(29)

where µ,Σ represent the mean and covariance matrix of c, respectively, and
Λ = diag([α0, α1, · · · , αM−1]) ∈ CM×M. The Q-function can be computed, i.e.,
Ec|y,α,σ2

[
log p

(
α, σ2

∣∣y)], where Ec|y,α,σ2 [·] represents the expectation of the posterior dis-
tribution p

(
c|y,α, σ2).

In the M step, by maximizing the Q function with respect to hyperparameters
{
α, σ2},

we can obtain the following updated formula:

αn =
1

φc
n,n + µc

n
2 (30)
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σ2 =

∣∣∣∣y−Φµc
∣∣|22

MN − φc
n(1− αnΣc

n,n)
(31)

where Σc
n,n denotes the (i, i)-th diagonal element of the covariance matrix Σc. The algorithm

makes use of the convergence of EM and realizes the global optimization. However,
the matrix inversion in Equations (23) and (24) require a lot of computation since the
SBL algorithm cannot be applied to large-scale problems. Next, we will develop a low-
complexity sparse Bayesian learning algorithm based on GAMP.

3.2. GAMP-SBL-Based Channel Estimation

GAMP is a very low-complexity Bayesian iteration technique [25] to approximate the a
posteriori distribution p

(
c|y,α, σ2). As a result, it can be embedded in the EM framework

to approximate the a posteriori distribution of the basis coefficients in place of the true a
posteriori distribution and greatly reduce the complexity of computation.

Define θ ,
{
α, σ2} as hyperparameter and assume a posteriori independence between

hidden variables {cn}. As a result, the true a posteriori distribution can be approximated
as follows:

p̂(cn|y, r̂n, τr
n,θ) =

p( cn|θ)N (cn|r̂n, τr
n)∫

c p( cn|θ)N (cn|r̂n, τr
n)

(32)

where r̂n and τr
n are the scalars updated during the iteration of the GAMP algorithm. In

combination with the Gaussian prior distribution of the basis coefficients, it can be easily
shown that the approximate posterior also obeys a Gaussian distribution, and its mean and
variance are respectively given as follows:

µc
n =

r̂n

1 + αnτr
n

(33)

φc
n =

τr
n

1 + αnτr
n

(34)

The noiseless output is the other approximation zm = ϕT
mc, where ϕT

m is the m-th row
of Φ. The true posterior distribution p(zm|y,θ) can also be approximated as follows:

p̂
(

zm

∣∣∣y, p̂m, τ
p
m,θ

)
=

p(ym|zm,θ)N
(

zm

∣∣∣ p̂m, τ
p
m

)
∫

z p(ym|zm,θ)N
(

zm

∣∣∣ p̂m, τ
p
m

) (35)

where p̂m and τ
p
m are the scalars updated during the iteration of the GAMP algorithm. Ac-

cording to the assumption of Gaussian white noise, we can obtain p(ym|zm,θ) = N
(
zm, σ2).

Therefore, p̂
(

zm

∣∣∣y, p̂m, τ
p
m,θ

)
also obeys a Gaussian distribution, and its mean and variance

are respectively given as follows:

µz
m =

τ
p
mσ−2ym + p̂m

1 + σ−2τ
p
m

(36)

φz
m =

τ
p
m

1 + σ−2τ
p
m

(37)

Using the above approximation, we can define the scalar functions: gin(·) and gout(·).
In the MMSE criterion, the input scalar function gin(·) is directly defined as the posterior
mean µc

n [26], i.e.,

gin(r̂n, τr
n,θ) = µc

n =
r̂n

1 + αnτr
n

(38)
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The partial derivative of τr
ngin(r̂n, τr

n,θ) with respect to r̂i is the posterior variance, i.e.,

τr
n

∂

∂r̂n
gin(r̂n, τr

n,θ) = φc
n =

τr
n

1 + αnτr
n

(39)

Similarly, the relation of the output scalar function gout(·) to the posterior mean µz
m

and its partial derivation are derived as follows:

gout

(
p̂m, τ

p
m,θ

)
=

1
τ

p
m
(µz

m − p̂m) (40)

τ
p
m

∂

∂ p̂m
gout

(
p̂m, τ

p
m,θ

)
=

φz
m − τ

p
m

τ
p
m

(41)

Given the definitions gin(·) and gout(·), an efficient algorithm can be derived to gen-
erate an approximate posterior distribution of the variables c and z. In this process, the
inverse of the matrix no longer needs to be calculated. The main operation in each iteration
is simple matrix multiplication, and then EM is used to update the hyperparameters. The
steps of the above GAMP-SBL algorithm are noted as Algorithm 1, where ϕmn represents
the (m, n)-th entry, and µc

n(k) and φc
n(k) represent the posterior mean and variance of cn at

the k-th iteration, respectively.

Algorithm 1 Basis coefficient estimation based on GAMP-SBL

Input:y, Φ, ε

Output:̃c, σ̃2

1. Initialization: µc(0) = φc(0) = IN , σ2(0) = 1, ŝm(−1) = 0
2. for k = 0, 1, · · · , kmax
3. E-Step:
4. ∀m ∈ {1, · · ·MN} :
5. ẑm(k) = ∑

n
ϕmnµc

n(k)

6. τ
p
m = ∑

n
ϕ2

mnφc
n(k)

7. p̂m(k) = ẑm(k)− τ
p
m(k)ŝm(k− 1)

8. ŝm(k) = gout

(
p̂m(k), τ

p
m(k),θ

)
9. τs

m(k) = − ∂
∂ p̂m

gout

(
p̂m(k), τ

p
m(k),θ

)
10. ∀n ∈ {1, · · ·QL} :

11. τr
n(k) =

(
∑
m

ϕ2
mnτs

m(k)
)−1

12. r̂n(k) = µc
n(k) + τr

n(k)∑
m

ϕmn ŝm(k)

3. µc
n(k + 1) = gin(r̂n(k), τr

n(k),θ)
14. φc

n(k + 1) = τr
n(k)

∂
∂r̂n

gin(r̂n(k), τr
n(k),θ)

15. M-Step:
16. Update the hyperparameters according to Equations (30) and (31)
17. If ∑

n
|µc

n(k + 1)− µc
n(k)|

2 ≤ ε, break

18. end

4. Simulation Results and Analysis
4.1. Complexity Analysis

This section analyzes the complexity of the proposed algorithm and traditional ba-
sis coefficient estimation algorithms, which is our motivation to improve the SBL-based
framework for basis coefficient estimation.

The traditional basis coefficient estimation algorithms based on LS and LMMSE all
have the operation of matrix inversion; hence, the complexity is noted as (QL)2 ×MN +

(QL)3. As previously stated, matrix inversion operations are present in the SBL algorithm
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while solving the a posteriori probability of the basis coefficients. The number of mul-
tiplication operations are dominated by mean and variance, i.e., (QL)2 × MN + (QL)3

and (QL)2 ×MN + (QL)3, respectively, which are comparable to the complexity of the
traditional method.

Obviously, the complexity of GAMP-SBL algorithm is mainly determined by the E step
in SBL, where the complexity is mainly matrix multiplication. In the GAMP algorithm, each
iteration is multiplication between elements and does not involve the operation between
matrices; thus, the complexity of the product operation of each iteration is approximately
(MN) + (QL).

In addition to the analytical results, the simulation runtime is also a useful indicator
of complexity. Under the same constraints, when the signal noise ratio (SNR) is 20 dB,
we illustrate the runtimes of the different algorithms as the number of subcarriers M in
Figure 2, where the convergence error of both EM and GAMP iterations is 10−6. The
runtimes of both SBL and LMMSE increase exponentially as M increases, which is due
to the fact that matrix inversion occurs in both algorithms. The runtime of SBL is higher
than that of LMMSE with regard of the presence of the iterative calculation. However,
the GAMP-SBL proposed in this paper avoids matrix inversion by decoupling the matrix
into scalars using approximation messages. Therefore, as the number of subcarriers M
increases, it does not cause the runtime of this algorithm to increase to a large extent, which
implies the superiority of the proposed algorithm.
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4.2. System Performance Comparison

In this section, we run a number of simulations to confirm the suggested algorithm’s
efficacy in terms of performance and accuracy. We adopt the EVA channel [27], which is
specified by 3GPP for V2X scenarios. In addition, the path amplitude follows the Rayleigh
distribution, and the average energy is exponentially decreasing over time. Each tap has
a Doppler shift, which is randomly generated by Jake’s model fi = fmax cos(θi), where
θi indicates a uniform distribution between −π and π. In this paper, we simulate some
scenarios with normalized maximum Doppler shift ranging from 3% to 15%, matching
the speeds range of from 137 km/h to 685 km/h. In addition, existing channel estimation
schemes are used for simulation comparison, including traditional pulse channel estimation
based the threshold method [6] and the basis coefficient estimation algorithm based on
LS, MMSE and SBL algorithms. The normalized mean square error (NMSE) and BER are
utilized as evaluation criteria to assess the performance of the suggested algorithm and
confirm its superiority and efficacy in the V2X channel. NMSE is defined as follows:

NMSE = 10 log10

E
[
‖h− ĥ‖2

]
E
[
‖h‖2

] (42)
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where ĥ denotes the estimated DD domain channel vector. The system simulation parame-
ter for this paper is displayed in Table 1.

Table 1. System simulation parameter.

Simulation Parameters Settings

Carrier frequency 5.9 GHz
Subcarrier spacing 15 KHz

Modulation method QPSK
Number of subcarriers (M) 32

Number of symbols (N) 16
CP length 7

Basis extended dimension Q 8
Channel model EVA

Maximum user’s velocity 121.5–607.5 km/h

Figure 3a presents the NMSE curve of channel estimation when fd = 3%. It is found
that the NMSE of the traditional pulse channel estimation-based threshold method curve
will produce a platform effect with the increase of SNR and cannot continue to decline.
For the basis coefficient estimation model derived in this paper, the NMSE will continue
to decline as SNR increases, which proves the superiority of the channel model. At the
same time, the NMSE performance of the GAMP-SBL algorithm is basically equal to that
of the SBL algorithm and close to the lower bound LMMSE algorithm. It proves that the
GAMP-SBL algorithm can not only greatly reduce the complexity, but also guarantee good
estimation performance.
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In Figure 3b, we illustrate the performance comparison of NMSE at fd = 15%. In
high-speed scenarios, the traditional pulse channel estimation-based threshold method
can only estimate the channel response in the DD domain of a single point, but cannot
capture the channel change in each Doppler sampling point. Therefore, the platform
effect is more serious, and it is not suitable for channel estimation in V2X scenarios. The
NMSE performance of GAMP-SBL improves significantly with the increase in the SNR
ratio. Therefore, the proposed scheme can achieve accurate channel estimation in complex
scenarios, such as V2X.

Figure 4a,b show the performance comparison of BER in different scenarios, where
the perfect channel BER serves as the benchmark, and the traditional MMSE algorithm is
used as the symbol detector in the OTFS system. It is found that the proposed GAMP-SBL
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algorithm achieves satisfactory BER performance, which is close to the performance of the
MMSE algorithm in the OTFS system. The channel response obtained using the traditional
method is not accurate, which leads to poor BER performance, especially in high-speed
scenarios. In conclusion, the channel estimation algorithm proposed in this paper can
guarantee good performance in different scenarios and greatly reduce the computational
complexity, which proves the superiority of the proposed algorithm.
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5. Conclusions

In order to make better use of OTFS channel sparsity and reduce the complexity
of channel estimation, a GAMP-SBL channel estimation algorithm is proposed in this
paper. We first restate the input-output relationship of the OTFS system in the DD domain
and derive a channel model that can reflect the sampling points in the Doppler domain.
Secondly, the channel estimation problem is transformed into a sparse basis coefficient
recovery problem using BEM, which greatly reduces the parameters of channel estimation.
Finally, the GAMP algorithm is used to achieve reliable channel quantization estimation
in the OTFS system and avoid matrix inversion in SBL. In particular, (1) under different
SNR values, the algorithm is significantly superior to the channel estimation technique
based on a single pulse in the simulation, and the matrix operation is converted into scalar
computation using the message passing framework, which greatly reduces the algorithm
complexity. (2) The channel state information obtained by the model is more accurate. Thus,
the proposed algorithm can be applied to multi-scatterer scenarios, such as V2X, and the
simulation and experimental results also have superior BER performance in 3GPP-specified
vehicle networking scenarios, which verifies the effectiveness of the proposed algorithm.
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