
Citation: Yan, Q.; Xiao, T.; Qu, Y.;

Yang, J.; Deng, F. An Efficient and

High-Quality Mesh Reconstruction

Method with Adaptive Visibility and

Dynamic Refinement. Electronics

2023, 12, 4716. https://doi.org/

10.3390/electronics12224716

Academic Editor: Pawel Strumillo

Received: 16 October 2023

Revised: 13 November 2023

Accepted: 19 November 2023

Published: 20 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Efficient and High-Quality Mesh Reconstruction Method
with Adaptive Visibility and Dynamic Refinement
Qingsong Yan 1, Teng Xiao 2,3 , Yingjie Qu 1 , Junxing Yang 4 and Fei Deng 1,3,*

1 School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China; yanqs_whu@whu.edu.cn (Q.Y.);
quyj_whu@whu.edu.cn (Y.Q.)

2 School of Computer Science, Hubei University of Technology, Wuhan 430068, China; xiao@hbut.edu.cn
3 Wuhan Tianjihang Information Technology Co., Ltd., Wuhan 430010, China
4 School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture,

Beijing 102616, China; yangjunxing@bucea.edu.cn
* Correspondence: fdeng@sgg.whu.edu.cn

Abstract: Image-based 3D reconstruction generates 3D mesh models from images and plays an
important role in all walks of life. However, existing methods suffer from poor reconstruction quality
and low reconstruction efficiency. To address this issue, we propose an improved optimization-
based mesh reconstruction method with adaptive visibility reconstruction and dynamic photo-metric
refinement. The adaptive visibility reconstruction adjusts soft visibility based on the observation
and geometry structure of points to reconstruct details while suppressing noise in the rough mesh.
The dynamic photo-metric refinement tunes the learning rate using historical gradients and stops
to optimize converged triangles to speed up the mesh refinement. Experiments on BlendedMVS
and real datasets showed that our method found a good balance between reconstruction quality
and reconstruction efficiency. Compared with the state-of-the-art methods, OpenMVS and TDR,
our method achieved higher reconstruction quality than OpenMVS and obtained competitive re-
construction quality with TDR, but required only one-third of the reconstruction time of OpenMVS
and one-tenth of the reconstruction time of TDR. Our method balances reconstruction efficiency and
reconstruction quality and can meet real-world application requirements.

Keywords: 3D reconstruction; mesh reconstruction; mesh refinement; graph-cut; photo-metric
consistency; reconstruction efficiency

1. Introduction

Image-based 3D reconstruction is a core topic in computer vision, which can construct
a 3D mesh model of the real world and plays a key role in many fields, such as urban
planning and disaster relief. Typically, 3D reconstruction consists of four main components.
First, structure from motion (SfM) [1] estimates intrinsic and extrinsic camera parameters
from images. Then, multi-view stereo (MVS) [2,3] generates dense point clouds of the scene.
Mesh reconstruction [4,5] transforms these point clouds into 3D mesh models. Finally,
texture mapping [6] adds textures to meshes to enhance visual quality. However, of these
four components, the mesh reconstruction determines the final shape of the mesh. Without
a high-quality mesh reconstruction, the utility and fidelity of the generated 3D model will
be significantly reduced, no matter how successful the other modules have been.

In general, mesh reconstruction can be categorized into two types of methods, the
spline method [7] and the optimization method [4,5,8]. However, the spline method cannot
deal with the noise in the point cloud and usually generates a poor-quality mesh that loses
the details of the scene. In contrast, the optimization method, which can obtain higher-
quality reconstruction results and is currently the dominant method, consists of two steps:
visibility reconstruction and photo-metric refinement, where the visibility reconstruction
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generates a rough mesh and the photo-metric refinement improves the quality of the rough
mesh. Here, we briefly review the development of the optimization method.

The visibility reconstruction first uses the dense point cloud to construct several
tetrahedrons, then employs the s-t graph-cut to classify these tetrahedrons based on the
visibility information of the point cloud and, finally, obtains the 3D rough mesh [9–11].
However, how to use the visibility information is a problem that has long plagued re-
searchers. Labatut et al. [12] proposed a robust algorithm to smooth the weighting process
by introducing soft visibility, which can effectively deal with a large amount of noise in the
dense point cloud. Jancosek and Pajdla [13,14] found that regions with few sampling points
are hard to reconstruct and used the free-space-support to improve the reconstruction
completeness by optimizing the weighting process. Zhou et al. [15] tried to increase the
details in the mesh by removing the soft visibility and increasing the number of points.
Zhou et al. [4] considered that the point cloud can only affect the tetrahedron of adjacent
regions and optimized the weighting process to avoid the reduction of the surface in-
tegrity due to occlusion. Apart from that, introducing external constraints is a good idea.
Labatut et al. [16] proposed a hierarchical algorithm to extract basic shape structures from
the dense point cloud, such as planes, spheres, cones, and cylinders, and used them as
constraints to guide the mesh reconstruction. Li et al. [17], on the other hand, constrained
the mesh reconstruction based on the 3D line extracted by [18] to improve the reconstruc-
tion quality of the thin structure. However, these methods ignore the different quality and
importance of each point in the dense point cloud and treat them equally, failing to balance
between removing noise and preserving details on the rough mesh.

The photo-metric refinement uses the 3D mesh to render a virtual image in a new per-
spective and tries to improve the mesh quality by maximizing the photo-metric consistency
between the virtual image and the real image [8]. However, while this method can obtain a
high-quality mesh, it has high computational complexity and low reconstruction efficiency.
Li et al. [19] and Zhang et al. [20] used an adaptive refinement algorithm, aiming to improve
the reconstruction efficiency with as little loss of reconstruction quality as possible. On the
other hand, Morreale et al. [21], Yan et al. [22], and Romanoni and Matteucci [23] believed
that there are a large number of redundant images during the refinement and only selected
the optimal image for each triangle in the mesh to avoid using images with poor observa-
tional conditions and improve the reconstruction efficiency. Meanwhile, other scholars have
attempted to improve the performance of the photo-metric refinement. Blaha et al. [24] and
Romanoni et al. [25] introduced semantic information into the photo-metric refinement. Fei
et al. [26] used Line3D [18] to obtain 3D lines and used them as constraints for photo-metric
refinement to prevent them from being too smooth. Romanoni and Matteucci [27] con-
sidered the self-occlusion problem caused by the depth consistency to select image pairs.
Qu et al. [5] improved the photo-metric consistency of zero-normalized cross-correlation
(ZNCC) through total differentiation and enhanced the mesh quality through adaptive
mesh filtering. However, it is still challenging to balance reconstruction quality and recon-
struction efficiency in photo-metric refinement. Increasing reconstruction quality means
decreasing reconstruction efficiency, while increasing reconstruction efficiency means losing
reconstruction quality.

In summary, existing 3D reconstruction methods struggle to find a balance between
reconstruction quality and reconstruction efficiency. To address this issue, we propose
an improved optimization-based method that can improve the reconstruction efficiency
and reconstruction quality through adaptive visibility reconstruction and dynamic photo-
metric refinement in this paper. The adaptive visibility reconstruction adjusts the soft
visibility of each point in the point cloud according to the observation and geometry
structure, thus retaining more-detailed information and effectively suppressing noise.
The dynamic photo-metric refinement speeds up the convergence speed by changing the
learning rate through the history gradient of the triangle and stopping to optimize the
converged triangle to reduce the computational complexity. To validate the effectiveness of
our method, we conducted quantitative and qualitative experiments on BlendedMVS [28]
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and two real-world datasets. We compared our method with two state-of-the-art methods,
OpenMVS [8,29] and TDR [5]. The results demonstrated that our method had a higher
reconstruction quality than OpenMVS and achieved comparable reconstruction quality
with TDR. Meanwhile, the reconstruction efficiency of our method was greatly improved.
Our method only required around 1/3 of the time OpenMVS needed and 1/10 of the
time TDR needed to complete the reconstruction, which proved that our method is more
valuable for practical applications.

Our contributions are as follows:

1. We propose an improved optimization mesh-reconstruction method, and extensive ex-
periments on BlendedMVS proved that our method can reconstruct a high-quality mesh
with higher efficiency, taking only 1/3 of the reconstruction time of OpenMVS [8,29]
and 1/10 of the reconstruction time of TDR [5] to complete the reconstruction.

2. We propose an adaptive visibility reconstruction, which analyzes the quality and
importance of different points in the dense point cloud to maintain enough details
and remove noise to obtain a better rough mesh.

3. We propose dynamic photo-metric refinement to improve the reconstruction quality
and efficiency of the photo-metric refinement by utilizing the triangle gradient to
adjust the learning rate and stop optimizing converged triangles dynamically.

2. Method

After obtaining the intrinsic and extrinsic camera parameters of a set of images I
by SfM and the dense point clouds P from MVS, we reconstructed the mesh M through
adaptive visibility reconstruction and dynamic photo-metric refinement, as shown in
Figure 1. Each point p in P has three types of attribution: position, color, and visibility vp,
where vp represents the set of images that can see the p.

Figure 1. The pipeline of the proposed method. Given a dense point cloud P , our method first
reconstructs the rough mesh Mr by adaptive visibility reconstruction, where the weight of each edge
in the s-t graph G is determined by adaptive soft visibility. Then, our method refines Mr to obtain the
fine mesh M f through dynamic photo-metric refinement, which analyzes the convergence state of
each triangle to speed up refinement.

In the adaptive visibility reconstruction, we reconstructed the rough mesh Mr by
subdividing the space into several tetrahedrons T and utilized the visibility of p ∈ P to
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classify these tetrahedrons into two categories, including “inside the surface” and “outside
the surface”. To deal with noise while maintaining details, we propose adaptive soft
visibility to set the weight of the edges in the s-t graph G based on the geometry structure
and visibility of each point. In the photo-metric refinement, we used the photo-metric
consistency to refine the rough mesh Mr and reconstruct the fine mesh M f with less noise
and more details. To speed up the refinement procedure, we checked the converging state
of each triangle in the mesh and applied the dynamic learning rate strategy to automatically
adjust the learning rate and the dynamic triangle selection to split triangles into the “active
triangle” and the “inactive triangle”.

We will describe the details of the proposed method in the following section. Section 2.1
introduces how to reconstruct the rough mesh Mr using the adaptive visibility reconstruc-
tion, which can adjust the weight of edges in the s-t graph G. Section 2.2 describes the details
of the dynamic photo-metric refinement, which can accelerate the refinement procedure to
obtain the fine mesh M f .

2.1. Adaptive Visibility Reconstruction

Due to mismatches in MVS [2–4], C contains much noise. To deal with this noise,
Vu et al. [8] utilized the s-t graph-cut to obtain the rough mesh Mr. The core idea of this
method is to divide the whole space into a series of tetrahedrons T and classify them into
“inside the surface” and “outside the surface” via the visibility information of each point
in the point clouds. Furthermore, Labatut et al. [12] proposed soft visibility to model the
uncertainty of each point and generate a smoother mesh. However, they ignored that the
quality and importance of each point are different and treated them equally, resulting in an
over-smoothed mesh. Therefore, we propose an adaptive visibility reconstruction, which
can find a balance between reducing noise and maintaining details.

Following Vu [8] and Labutu [12], we constructed tetrahedrons T by P and built
an s-t graph G to classify these tetrahedrons. Based on the space relationship between
tetrahedrons, we can define the node N and edge E in G. There are three types of nodes in
G. The nin ∈ N node and the nout ∈ N node represent “inside the surface” and “outside
the surface”, respectively. The nt ∈ N node indicates each tetrahedron t in T . There are
three types of edges in G. The ein→t edge denotes the possibility that a tetrahedron belongs
to nin, and the eout→t edge means the potential that a tetrahedron belongs to nout, while the
e f edge denotes the potential that two adjacent tetrahedrons belong to the same category,
where f is the adjacent face between two tetrahedrons. We show a demo of building the s-t
graph G from five points in Figure 2.

(a) points and tetrahedrons (b) s-t graph G

Figure 2. The tetrahedrons T and the s-t graph G. Given five points p0, p1, p2, p3, p4, we can build
two adjacent tetrahedrons t0 and t1, where f0 is the adjacent face between t0 and t1. Based on the
tetrahedrons, the corresponding s-t graph G has two nt nodes nt0 , nt1 , one e f edge e f0 , two ein→t

edges, and two eout→t edges.
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To classify the node nt in the graph G, we used the visibility of P to determine the
weight of each edge E in G. The visibility comes from the depth map fusion in MVS [2–4,30],
where each point p ∈ P has a set of visible images vp. For each image Ii ∈ vp, we can
construct a ray~rIi→p that traverses several tetrahedrons. Assuming p is located on the
surface, the tetrahedrons between Ii and p are “outside the surface” and the tetrahedrons
behind p are “inside the surface”, as Figure 3 shows.

Figure 3. The visibility of a point. Given a point p and a visible image Ii ∈ vp, we can construct a ray
~rIi→p that traverses a series of tetrahedrons and intersects many faces in T . To deal with the noise in
p, we used the adaptive soft visibility by extending the ray with a distance σp to find the tetrahedron
belonging to nin. Meanwhile, we determined the weight of e f based on the distance d f→p from the
intersection point of the ray and the face f to p.

However, there is noise in the position of the point from the dense point cloud; p is
located near the surface, rather than precisely on the surface. To solve this problem, we
used adaptive soft visibility by extending the ray with an adaptive distance σp for each
point. The adaptive soft visibility is based on the fact that the importance mp of each point
p ∈ P is different in the process of reconstructing the mesh. Obviously, points that contain
details, such as edges, are more important than those located in flat regions. Moreover,
points with more visible images are more reliable than those with fewer visible images
and contain less noise. Therefore, we calculated the importance mp as Equation (1) shows,
where~np represents the normal of p, |vp| is the size of vp, and Np is the points near p. The
normal~np shows the direction of the point, and regions with large variations in the normal
contain more details. However, since the normal is calculated by principal component
analysis (PCA), it is sensitive to the noise in the point clouds. For this reason, we also
introduced the size of the visible image vp to reduce the effect of the noise in p since a p
with higher |vp| generally has lower noise.

mp =
∑pn∈Np 1−~np~npn

|vp|(|vp| − 2)2 (1)

Based on the importance of the point mp, we can define the adaptive soft visibility
σp, as shown in Equation (2), where σ is the median distance of the point clouds P that
roughly reflects the noise level [4,8]. The σp differs for each point and can find a better
balance between noise and details.

σp = mpσ (2)

After determining the adaptive soft visibility σp, we can set the weight of each edge
in the s-t graph G, as Figure 3 shows. For p ∈ P and a visible image Ii ∈ vp, we built a
ray~rIi→p, which crosses a series of tetrahedrons and intersects the faces in T . At the same
time, we extended the ray~rIi→p by the distance σp to traverse another series of tetrahedrons
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behind p. Assuming p is located on the surface, the tetrahedrons between Ii and p are
“outside the surface” and the tetrahedrons between p and pσp are “inside the surface”.

More precisely, we define the weight of three types of edges in G as follows. Firstly, we
directly set the tetrahedron t where the image Ii is located as “outside the surface” and set
eout→t = ∞, which is because the image cannot be located “inside the surface”. Secondly,
we set the tetrahedron t where pσp is located as “inside the surface” and set eout→t = |vp|, as
the higher the |vp|, the higher the likelihood that t belongs to “inside the surface”. Thirdly,
we set the weight of e f based on the distance d f↔p of the intersection point of face f and
point p, as shown in Equation (3). The closer two tetrahedrons are to p, the more likely they
belong to the same category.

e f = (1− exp
−

d2
f↔p
2σ2

p )|vp| (3)

After setting the weight of all edges in the s-t graph G, we obtained the rough mesh
Mr through the s-t graph-cut as Vu et al. [8] did. It should be noted that Mr still needs
post-processing to improve the mesh quality, such as mesh smoothing, simplification, and
hole filling.

2.2. Dynamic Photo-Metric Refinement

The rough mesh Mr obtained from the s-t graph-cut still suffers from noise and needs
further optimization. Vu et al. [8] and Qu et al. [5] proposed an optimization algorithm
based on photo-metric consistency by rendering a virtual image through triangles in the
rough mesh Mr and comparing it with the ground truth image to optimize the geometry of
Mr. However, they ignored that triangles in different regions have different convergence
speeds and processed all triangles all the time, which is computationally inefficient. We
propose a dynamic photo-metric refinement algorithm that analyses the convergence state
of each triangle in Mr to speed up the refinement procedure.

Given a mesh M and a pair of images Ii, Ij ∈ I , we can re-render a virtual image IM
j

in view of Ij based on Ii, as shown in Figure 4. Following Vu [8], we first built a ray for
each pixel in Ij and intersecting with M to calculate the depth of the pixel, and then, we
re-projected this pixel to the 3D space and projected it to Ii to sample the color. For the sake
of the later introduction, we denote this procedure asR, as shown in Equation (4).

IM
j = R(Ii, M) (4)

After generating IM
j , we calculated the photo-metric consistency between Ij and IMr

j .
If M is closer to the ground truth (GT), the photo-metric consistency should be larger. For
each pixel in Ij and IMr

j , it is unreliable to calculate the photo-metric consistency by directly
comparing the difference of the color. Following Shen [2] and Vu [8], we set a window
for each pixel and computed the photo-metric consistency using the ZNCC, as shown in
Equation (5), where s is the size of the pixel window and Īj(p) and ĪM

j (p) are the average

color of the window around the pixel p in Ij and IM
j , respectively. h ranges from 0 to 2, and

a smaller h means a higher photo-metric consistency.

h(Ij, IM
j ) = 1− ∑

p∈Ij

∑|p−x|<=s (Ij(x)− Īj(p))(IM
j (x)− ĪM

j (p))√
∑|p−x|<=s (Ij(x)− Īj(p))2 ∑|p−x|<=s (IM

j (x)− ĪM
j (p))2

(5)

Combining Equations (4) and (5), we can obtain the loss function L, as shown in
Equation (6). Since the whole process is differentiable, we can compute the gradient
∂L/∂M to update the geometry of the mesh M to improve the photo-metric consistency.

LIi→Ij(M) = h(Ij, IM
j ) = h(Ij,R(Ii, M)) (6)
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Figure 4. Photo-metric refinement. Given a mesh M and one pair of images Ii, Ij, we first use Ii to
re-render a virtual image IM

j in view of Ij, where M provides the depth value. We then optimize the

geometry of M to maximize the photo-metric consistency between Ij and IM
j . During the dynamic

photo-metric refinement, we select partial triangles, i.e., blue triangles, to calculate photo-metric
consistency and ignore light blue triangles.

Once the gradient is obtained from the photo-metric consistency, it is also important
to know how to utilize the gradient to update M. Although the most-straightforward way
is to use the steepest descent method, it requires a precise learning rate setting to prevent
falling into a local minimum [5,8]. Considering this problem, we followed the optimization
method in deep learning and used Adam [31] to update M, which dynamically adjusts
the learning rate based on the current gradient and the historical gradient, as shown in
Equation (7), where t− 1, t is the iteration number, η is the learning rate, ε is set to the
default value of 1× 10−6, and α̂ and β̂ are the momentum and the second moment of the
gradient, respectively.

Mt = Mt−1 −
η√

β̂ + ε
α̂ = Mt−1 − dMt−1 (7)

Instead of using a fixed learning rate, Adam has a flexible optimization procedure, as
Equation (8) shows, where λα and λβ are set to default values of 0.9 and 0.999, respectively.
During optimization, Adam dynamically adjusts the learning rate of each triangle in M,
thus making refinement more efficient and accurate.

αt = λααt−1 + (1− λα)
∂L
∂M

βt = λββt−1 + (1− λβ)
∂L
∂M

2

α̂ =
αt

1− λα

β̂ =
βt

1− λβ

(8)

Except for the learning rate, another issue in photo-metric refinement is that each
triangle needs to calculate the photo-metric consistency in each iteration. However, due to
the inconsistent convergence speed of different triangles, some triangles may be converged
while others still need further optimization. To address this problem, we used an early
stopping strategy, which determines whether a triangle needs optimization based on
changes between the current position dMt and the last position dMt−1, as Equation (9)
shows, where Td is the stopping optimization threshold. If all three vertices of a triangle
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satisfy Equation (9), we considered that this triangle has converged and stopped the
optimization of it.

dMt <= dMt−1Td (9)

In addition, we employed a coarse-to-fine optimization strategy to improve the con-
vergence speed and prevent falling into the local minimum. Meanwhile, we subdivided
the mesh to add triangles in M to facilitate the representation of more details.

3. Experiments
3.1. Datasets

We conducted quantitative and qualitative experiments to verify the effectiveness and
reliability of the proposed algorithm. The quantitative experiment used ten scenes from
the BlendedMVS dataset [28] with an image resolution of 2048× 1536, including five aerial
scenes and five close-range scenes, as Figures 5 and 6 show. The qualitative experiment
used two real-world datasets: one aerial scene, P36, with an image resolution of 4533× 3016
captured by an unmanned aerial vehicle (UAV) from Pix4D [32] and one close-range scene,
P146, captured by a hand-held camera with an image resolution of 4016× 2005, as Figure 7
shows. BlendedMVS provides the ground truth intrinsic and extrinsic camera parameters
and the 3D models of the scene, and the real-world dataset uses accurate intrinsic and
extrinsic parameters provided by COLMAP [1]. To avoid the influence of dense point
clouds, we uniformly used the same MVS method to calculate the dense point cloud [2,3]
during the evaluation for all mesh-reconstruction methods.

(a) AER-1 (b) AER-2 (c) AER-3 (d) AER-4 (e) AER-5

Figure 5. Images of five aerial scenes. We selected five aerial scenes from BlendedMVS [28] that
capture buildings. We show one image from each scene, where the black pixels indicate areas outside
the reconstruction range.

(a) CLO-1 (b) CLO-2 (c) CLO-3 (d) CLO-4 (e) CLO-5

Figure 6. Images of five close-range scenes. We selected five close-range scenes from BlendedMVS [28]
that capture sculptures. We visualize one image in each scene, where the invisible region is black.

(a) P36 (b) P146

Figure 7. Images of two real-world scenes. We selected two real-world scenes for the quantitative
evaluation, including one aerial scene and one close-range scene.



Electronics 2023, 12, 4716 9 of 16

3.2. Implementation

We implemented our method in C++ in Visual Studio 2015. For all experiments, we
used a personal computer with Windows 10, which has a 3.2 GHz i7-8700 central processing
unit (CPU) and 64G of random access memory (RAM). We used the same hyper-parameters
for all experiments and set s = 5, Td = 0.01, η = 1.0.

3.3. Evaluation Metrics

In the qualitative evaluation, we compared our method with two state-of-the-art
methods, OpenMVS [29], which is an open-source implementation of Vu et al. [8], and
TDR [5]. For the ease of presentation, we note that Vr and Vf are the mesh reconstruction
results from OpenMVS in the visibility reconstruction and photo-metric refinement, Qr
the mesh reconstruction results from TDR in the photo-metric refinement, and Mr and M f
the mesh reconstruction results from our method in adaptive visibility reconstruction and
dynamic photo-metric refinement. The qualitative evaluation consisted of two metrics:
reconstruction efficiency E and reconstruction quality Q.

Reconstruction efficiency E measures the time a method needs to reconstruct the mesh
from dense point clouds. The less time a method requires, the more efficient it is. Typically,
reconstruction efficiency is measured in seconds.

Generally, we calculated the distance D between the reconstructed mesh and the
ground truth mesh to measure the reconstruction quality Q. However, the distance between
the two meshes is meaningful since the mesh provided by BlendedMVS lacks an absolute
scale. Therefore, we measured the reconstruction quality Q by comparing the distance
changes with Vr, as Equation (10) shows, where G is the ground truth mesh and M is the
mesh to evaluate. The closer between M and G, the higher Q. We used CloudCompare [33]
to calculate the distance D between two meshes, which randomly samples the points on
the mesh and calculates the average distance between these points.

Q(M) =
D(GT, Vr)− D(GT, M)

D(GT, Vr)
(10)

3.4. Aerial Scenes

Table 1 shows the quantitative results for the five aerial scenes. In terms of recon-
struction quality, Vf , Q f , Mr, and M f had higher reconstruction quality than Vr. Vf had
better reconstruction quality than Vr, with the reconstruction quality Q ranging from 0.76 to
4.65, which is unsurprising since photo-metric refinement can improve the mesh quality.
Meanwhile, the rough reconstruction results of our method, Mr, had a higher reconstruc-
tion quality than Vr, with the reconstruction quality Q ranging from 0.50 to 1.60, which
proved the effectiveness of the adaptive soft visibility. Our method utilized the adaptive
soft visibility to reconstruct a higher-quality rough mesh, while OpenMVS [8,29] lost many
details of the scene by directly using fixed soft visibility for all points. In addition, the
dynamic mesh refinement further improved the reconstruction quality. M f had higher
reconstruction quality than Vf in four scenes, with an improvement between 0.10 and 0.83.
The reconstruction quality of M f was only slightly lower than Vf on AEA-1. Moreover, re-
garding reconstruction efficiency, our method was much better than OpenMVS on all scenes.
Although the reconstruction efficiency of both our method and OpenMVS decreased as the
number of images increased, our method required only 34% to 43% of the reconstruction
time of OpenMVS. Compared to TDR [5], our method achieved comparable reconstruction
quality, but only needed 3% to 14% of the reconstruction time of TDR. Although TDR
achieved the highest reconstruction quality among all methods, its reconstruction efficiency
was too low to be used in practical applications.
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Table 1. Quantitative experimental results on five aerial scenes.

Dataset Number OpenMVS [8,29] TDBI [5] Ours
E(Vf ) Q(Vf ) E(Q f ) Q(Q f ) E(M f ) Q(Mr) Q(M f )

AER-1 77 1708 0.76 7245 4.56 736 0.50 0.59
AER-2 125 2958 4.65 13,016 13.67 1220 1.60 5.47
AER-3 132 3140 3.62 8549 7.08 1189 1.37 3.71
AER-4 149 3516 2.07 17,968 8.11 1457 1.08 2.47
AER-5 186 6125 1.14 67,568 5.98 2106 1.08 1.97

To further compare the different methods, we visualize the reconstruction results of
the five aerial scenes in Figure 8 and zoom in on some regions to compare the reconstruction
details in Figure 9. It struck us that, although TDR [5] achieved the highest reconstruction
quality, the quality of its edge areas was poor, and it could not reconstruct the thin structure
of buildings. Compared with OpenMVS and TDR, our method successfully reconstructed
the thin structures of buildings and recovered more details of the scene. Our approach
is more suitable for 3D reconstruction tasks in urban areas containing a large number of
man-made buildings.

(a) GT (b) Vf (c) Q f (d) M f

Figure 8. Results on aerial scenes. We show the reconstruction results from AER-1, AER-2, AER-3,
AER-4, and AER-5 from top to bottom. We visualize the ground truth mesh provided by Blend-
edMVS [28] in (a), as well as the results from the state-of-the-art methods OpenMVS [8,29] in (b)
and TDR [5] in (c). (d) is the results from our method. Overall, our method achieved comparable
reconstruction quality to OpenMVS and TDR, but the reconstruction efficiency of our method was
much higher.
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(a) DetailGT (b) DetailVf (c) DetailQ f (d) DetailM f

Figure 9. Details on aerial scenes. In order to clearly compare the differences between methods, we
show the details of the reconstruction results from AER-1, AER-2, AER-3, AER-4, and AER-5 from
top to bottom. (a) DetailGT shows the details from the ground truth mesh. (b) DetailVf shows the
results from OpenMVS [8,29]. (c) DetailQ f shows the results from TDR [5]. (d) DetailM f shows the
results from our method. Compared with OpenMVS and TDR, our method can reconstruct more
sharp edges of the scene. We use red boxes to mark areas where our method achieved better results.

In conclusion, in terms of reconstruction quality, our method is comparable to Open-
MVS [8,29] and TDR [5], but significantly improved the reconstruction efficiency, and it
better meets the needs of practical applications.

3.5. Close-Range Scenes

Table 2 shows the quantitative reconstruction results for the five close-range scenes.
In terms of reconstruction quality, all methods had higher quality than Vr. Compared
with Vr, the reconstruction quality of Mr ranged from 0.46 to 1.92, and the reconstruction
quality of M f ranged from 1.43 to 10.05. Meanwhile, M f showed a more-significant
improvement over Vf compared to aerial scenes, which was 1.12 to 2.93 higher than Vf .
The main reason for this improvement is that the observation of the image was clearer in
the close-range case, and the photo-metric consistency can provide more-reliable gradient
information to adjust the learning rate and select triangles. In terms of reconstruction
efficiency, our method still outperformed OpenMVS [8,29] in all scenes, requiring only
about 39% to 49% of the reconstruction time of OpenMVS. Compared with TDR [5], our
method achieved competitive reconstruction qualitatively on four scenes while obtaining
better reconstruction quality on CLO-5. Overall, the reconstruction quality of TDR only
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improved a little over our method, but the reconstruction efficiency of TDR was so low that
our method only needed 0.3% to 8% of its reconstruction time.

Table 2. Quantitative experimental results on close-range scenes.

Dataset Number OpenMVS [8,29] TDBI [5] Ours
E(Vf ) Q(Vf ) E(Vf ) Q(Vf ) E(Mr) Q(Mr) Q(M f )

CLO-1 51 1073 8.70 20,680 17.52 497 0.65 10.05
CLO-2 64 1172 0.03 155,636 6.8 466 0.57 1.43
CLO-3 91 1820 0.58 9893 4.11 834 1.92 2.81
CLO-4 100 2286 4.72 28,340 8.52 888 1.57 7.65
CLO-5 117 2078 2.84 46,047 1.13 794 0.46 3.96

We show the reconstruction results in Figure 10 and the details of the reconstruction
results in Figure 11. Our method also reconstructed more thin structures of the scenes, espe-
cially in CLO-2, where OpenMVS and TDR failed to rebuild the walking stick. Considering
the fact that TDR obtained the best reconstruction quality, the reason may be that it pays
too much attention to the flat regions while ignoring the boundary regions, which may
point the way to improve our approach.

(a) GT (b) Vf (c) Vf (d) M f

Figure 10. Results on the close-range scenes. From top to bottom, we visualize the reconstruction
results of CLO-1, CLO-2, CLO-3, CLO-4, and CLO-5. We show the ground truth mesh of Blended-
MVS [28] in (a) and compare the results of the state-of-the-art method OpenMVS [8,29] in (b) and
TDR [5] in (c) with our method in (d). As the reconstruction range of OpenMVS, TDR, and our method
is larger than the ground truth, we excluded regions that were out of scope during the evaluation.
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(a) DetailGT (b) DetailVf (c) DetailQ f (d) DetailM f

Figure 11. Details on the close-range scenes. From top to bottom, we visualize the details of
reconstruction from CLO-1, CLO-2, CLO-3, CLO-4, and CLO-5, where (a) DetailGT shows the ground
truth mesh, (b) DetailVf shows the results from OpenMVS [8,29], (c) shows the results from TDR [5],
and (d) shows the results from our method. On close-range scenes, our method can significantly
retain more details. We use red boxes to mark areas where our method achieved better results.

Overall, our method found a good balance between the reconstruction quality and
reconstruction efficiency in aerial images and close-range scenes, while OpenMVS and TDR
needed more reconstruction time with comparable reconstruction quality.

3.6. Real-World

To fully validate the effectiveness of our method, we also evaluated our method and
OpenMVS [8,29] on two real-world datasets. Due to the lack of ground truth meshes,
we only compared the reconstruction efficiency with OpenMVS, as shown in Table 3.
Consistent with the results of BlendedMVS, our method had higher reconstruction efficiency
on real-world datasets, taking only one-third of the reconstruction time of OpenMVS. We
further qualitatively compare them in Figure 12, which shows the dense point cloud from
MVS and the reconstructed mesh. We show the details of some regions, and while both
OpenMVS and our method were effective at dealing with noise in the dense point cloud,
the OpenMVS generated an over-smoothed mesh, while our method reconstructed the
mesh with more details, especially in the noise-filled regions.
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Table 3. Quantitative experimental results on real-world scenes.

Dataset Number OpenMVS [8,29] Ours
E(Vf ) E(M f )

P36 36 4026 1698
P146 146 10,035 3429

(a) P36-Cloud (b) P36–Vf (c) P36-M f

(d) P146-Cloud (e) P146-Vf (f) P146-M f

Figure 12. Results of P36 and P146. On real-world datasets, we compare results of different mesh
reconstruction methods with the same dense point cloud, and our method can maintain more details.
For each scene, we visualize the 3D scene in the first row and the details in the following two rows,
where (a) and (d) show dense point clouds from P36 and P146, respectively, (b,e) show the results
from OpenMVS [8,29] on two scenes, and (c,f) are the results from our method. OpenMVS and our
method can handle the noise in the dense point cloud, but OpenMVS reconstructs smoother meshes.
We use red boxes to mark areas where our method achieves better results.
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4. Conclusions

This paper proposed an improved optimization-based mesh reconstruction method
that balances reconstruction quality and reconstruction efficiency. Our method first recon-
structs high-quality rough meshes that preserve details and suppress noise by analyzing
point quality and importance. Then, our method employs dynamic photo-metric refinement
to speed up the convergence by changing the learning rate and stopping the optimiza-
tion of converged triangles. Extensive experiments on both BlendedMVS and real-world
datasets demonstrated that our method outperformed the state-of-the-art OpenMVS in
reconstruction quality while requiring only one-third of the time and achieved competitive
reconstruction quality with TDR with only one-tenth of the time. In the future, we plan to
extend our method to city-scale reconstruction tasks and further optimize the efficiency of
our method to meet the application requirements in scenarios such as emergency rescue.
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