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Abstract: Free space optical (FSO) channels between a low earth orbit (LEO) satellite and a ground
station (GS) use a highly directional optical beam that necessitates a continuous line-of-sight (LOS)
connection. In this paper, we propose a deep neural network (DNN)-based small target detection
method that detects the position of a LEO satellite in an infrared image, which can be used to
determine the receiver alignment for establishing the LOS link. For the infrared small target detection
task without excessive down-sampling, we design a target detection model using a modified ResNest-
based feature extraction network (FEN), a custom feature pyramid network (FPN), and a target
determination network (TDN). ResNest utilizes the feature map attention mechanism and multi-
path propagation necessary for robust feature extraction of small infrared targets. The custom FPN
combines multi-scale feature maps generated from the modified ResNest to obtain robust semantics
across all scales. Finally, the semantically strong multi-scale feature maps are fed into the TDN to
detect small infrared targets and determine their location in infrared images. Experimental results
using two widely used point spread functions (PSFs) demonstrate that the proposed algorithm
outperforms the conventional schemes and detects small targets with a true detection rate of 99.4%
and 94.0%.

Keywords: LEO satellite; deep learning; free space optical communication; small infrared target

1. Introduction

Recently, free space optical (FSO) communications have attracted considerable atten-
tion from researchers and industry for satellite-to-ground station (satellite-GS) links and
inter-satellite links owing to the extensive unlicensed bandwidth, low power consumption,
and high data rates [1–3]. Satellite-GS FSO communication research is becoming especially
relevant because it can provide high speed and reliable voice and data communication ser-
vices in locations where terrestrial cellular and broadband access is not possible or where
network coverage is insufficient [3,4]. The European Space Agency (ESA) successfully
tested the first inter-satellite laser communication link between the SPOT-4 and ARTEMIS
satellites for optical data-relay services at 50 Mbps [4]. The ETS-VI satellite and a GS in
Konegi, Japan, established the first successful ground–satellite optical link [5]. NASA’s
Laser Communication Relay Demonstration (LCRD) [6], which launched in 2021, and
the Terabyte Infrared Delivery (TBIRD) [7] CubeSat mission, which demonstrated laser
downlinks at 200 Gbps from LEO satellites, have already paved the way for future optical
communications missions.

FSO communication uses a highly directional optical beam with a very narrow beam
divergence. Consequently, receivers in FSO links have a limited field of view (FOV) [8].
During downlink, if the optical beam emitted by a satellite is not directed at the FOV of the
receiving aperture at the GS, it will dissipate into the atmosphere, resulting in a decrease
in received signal power, an increase in bit error rate (BER), and communication failure.
Hence, an FSO-based communication system between a LEO satellite and a GS needs

Electronics 2023, 12, 4701. https://doi.org/10.3390/electronics12224701 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12224701
https://doi.org/10.3390/electronics12224701
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0080-6333
https://orcid.org/0000-0002-4728-9011
https://doi.org/10.3390/electronics12224701
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12224701?type=check_update&version=1


Electronics 2023, 12, 4701 2 of 21

a direct line-of-sight (LOS) connection. For this, the GS must have a robust mechanism
to detect and track the position of the LEO satellite. Although a two-line element (TLE)
can obtain satellite position information, they are not precise enough to accurately point
a GS toward its target satellite [9]. Since the orbit of LEO satellites such as nano- and
pico-satellites tend to shift more quickly than those of bigger satellites, their TLE accuracy is
very low [10]. Furthermore, GS-based telescopes equipped with a tracking system are more
suitable for tracking slow-moving space objects such as stars or planets rather than tracking
fast-moving LEO satellites [11]. Due to the narrow FOV and slow tracking, slight changes
in the angle of the GS-based telescope can cause LOS connection failures for LEO satellites.

A viable option to establish an accurate LOS link for FSO-based communication
between a LEO satellite and a GS is to use high-output light emitting diodes (LEDs) as
light sources of LEO satellites. The LED source can appear as an artificial star, and it can be
captured using a wide-FOV camera at a GS. Experiments on the detection of a satellite as
an artificial star in an image for visible light communication (VLC) have been addressed
in [11,12]. While the LEO satellite transmits the light signal, a camera with a wide FOV at
the GS can capture images containing the LEO satellite as a small target. This small target in
the image is detected and tracked to determine the accurate position of the satellite. Then,
an uplink beacon laser beam is transmitted from the GS to the target satellite so that the
optical transceiver present in the satellite can change its orientation towards the GS. Finally,
a robust LOS link is created to initiate the data transmission.

With advancements in camera sensor technology for remote sensing, there has been
growing interest in the usage of short-wave infrared (SWIR) bands [13]. The SWIR spectrum
is a frequency band located between the visible and mid-infrared bands of the electromag-
netic spectrum, and it has a wavelength range of about 1–3 µm [14]. Compared to visible
bands, SWIR bands are less impacted by atmospheric scattering and absorption [13]; thus, a
SWIR camera is used at the GS to capture LEO satellites as small targets in infrared images.

Although numerous studies have been conducted on detecting small targets from
infrared images, challenging problems still remain. For long-distance imaging, the small
targets in infrared images are minute in size and occupy only a few pixels of the whole
image [15]. Furthermore, the signal-to-clutter ratio (SCR) of an infrared image for a long
distance is small, because the intensity of infrared radiation is inversely proportional to the
square of the imaging distance [15]. As a result, the contrast between the infrared small
target and the neighboring background is low, making it difficult to distinguish targets from
the background. Several conventional techniques, such as filtering-based techniques, local
contrast-based techniques, and low-rank-based techniques, have been proposed to identify
infrared small targets [15]. Moradi et al. [15] used the multi-scale average absolute gray
difference (AAGD) and Laplacian of point spread function (LoPSF) for infrared small target
detection. Zhang et al. [16] utilized local intensity and gradient properties (LIG) to detect
small targets. These conventional techniques significantly rely on handcrafted features and
fixed hyper parameters that are usually only effective against a specific background [17].
Additionally, these methods generally utilize only grayscale values to distinguish small
targets, resulting in limited generalization capabilities [18].

With the advancements in deep neural networks (DNNs), significant progress has been
made in the field of computer vision, especially in image classification and object detection.
Traditional methods rely on handcrafted feature extraction based on prior knowledge. In
contrast to traditional techniques, DNNs extract discriminative features of an object, such
as edges, corners, texture, color, and shape, directly from input images using a data-driven
approach. As a result, they can distinguish objects and patterns in the input data better
than traditional methods.

Generally, the DNN structure includes down-sampling mechanisms to decrease the
size of feature maps and iteratively widen the receptive field. However, small infrared
targets require high-resolution feature maps with more details to differentiate them from
background noise. Excessive down-sampling in DNN structures can lead to a loss in
spatial resolution in small target detection resulting in low-resolution feature maps. This
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can blur the small target or merge it with the background in low-resolution feature maps.
Consequently, it becomes difficult for the network to distinguish the features of a small
target from other objects and background noise. Hence, general DNN-based target de-
tection networks using excessive down-sampling, such as YOLO [19] and RetinaNet [20],
perform poorly on the feature extraction of small infrared targets [21]. A two-stage infrared
small target detection technique based on a region proposal and a DNN was proposed
by Fan et al. [22]. In the first stage, the small target’s intensity is increased in accordance
with the characteristics of local intensity, and then, potential target regions are suggested
by using corner detection. In the second stage, each potential target region is fed into a
DNN classifier to remove non-target regions from the images. However, this two-stage
method is computationally expensive and cannot meet real-time requirements. To improve
small target feature extraction capability and to reduce time consumption, Du et al. [23]
proposed a DNN-based infrared dim small target detection algorithm using target-oriented
shallow–deep features and an effective small anchor. The term “dim” implies that the
small targets in infrared images have low contrast or are not very bright compared to the
background due to a long imaging distance [23]. The proposed method in [23] combines
semantically robust deep features with target-oriented shallow features to address the
issue of low accuracy in detecting small targets. However, the ResNet50 backbone for their
detection network does not utilize feature map attention and multi-path representation,
which can improve the performance of visual recognition tasks. In addition, they used only
a one-to-one concatenation technique between a shallow layer and a deep layer instead
of combining all layers from the ResNet50 feature extraction network (FEN) to obtain
multi-scale feature maps.

Therefore, to overcome the limitations of previous approaches, we propose a novel
DNN-based small target detection model for LEO satellite-GS FSO communications, which
consists of ResNest [24] FEN architecture, a custom feature pyramid network (FPN) [25] and
a target determination network (TDN). The original ResNest101-based FEN is modified
via an ablation study to exploit the feature map attention mechanism and multi-path
propagation without excessive down-sampling. The modification is performed through
adding or removing intermediate layers in ResNest101 and limiting the down-sampling
process to three. In this study, the modified ResNest-based FENs in the ablation study
are named ResNestX, where X = 23, 32, 89, and 92 and represents the number of layers
in the FEN network after modification. The custom FPN combines multi-scale feature
maps generated via ResNest101 to create robust semantics at all scales. The custom FPN
structure employed in this study uses a top-down and a bottom-up approach similar to
the path aggregation network (PANET) [26]. Furthermore, we use a skip connection from
the original input to the output node if they are at the same spatial resolution level. By
using a skip connection, the custom FPN preserves the original information obtained from
the three FEN outputs while enabling the concatenation of additional features at a low
computational cost. The TDN, which consists of a classification network in parallel with a
bounding box regression network, is used to identify small targets in infrared images. For
the simulation of target generation using a SWIR camera, two commonly used point spread
functions (PSF), i.e., a two-dimensional (2D) Gaussian function and a Moffat function, are
used. Since the SWIR imaging of the target satellite is affected by atmospheric channel
conditions such as clouds, turbulence, fog, light pollution, and background stars, random
values of diffusion parameters are applied in PSF, and random Gaussian noise is added to
the infrared image. Experimental results show that the proposed scheme can obtain small
target detection accuracy up to 99.4% and 94.0% for synthetic small infrared target data
generated using a 2D Gaussian function and a Moffat function, respectively.

The contributions of our study are as follows:

• To detect small targets from infrared images, we propose a DNN model that consists of
a FEN, a custom FPN, and a TDN, and we evaluate the detection accuracy in various
LOS link scenarios between a LEO satellite and a GS.
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• Using the 2D Gaussian function and the Moffat function, we generate synthetic image
datasets, which include small targets and background noise, to train the DNN model.

• In order to find the optimal combination of convolutional stages from the FEN with-
out excessive down-sampling, we conducted an ablation study through adding or
removing intermediate layers of the ResNest101-based FEN.

• The structure of the custom FPN is designed to fuse feature maps of different spatial
resolutions and obtain multi-scale feature maps in which all levels, including high-
resolution levels, are semantically strong.

• The TDN, which consists of a classification network in parallel with a bounding box
regression network, is designed to accurately identify small infrared targets in infrared
images.

The rest of this paper is organized as follows. Section 2 describes the system model of
an FSO communication environment between a LEO satellite and a GS. Section 3 provides
a detailed explanation of our proposed deep learning-based small target detection model.
The experiments and results obtained from this study are discussed in Section 4. Section 5
provides the discussion about future work and Section 6 concludes our study.

2. System Model

In this paper, we consider an FSO communication environment between a LEO satellite
and a GS. In order to establish an LOS FSO link, both the LEO satellite and the GS must
be precisely aligned, owing to the directional optical beam with a very narrow beam
divergence. Note that the LEO satellite is available within the LOS range of the GS for
only a limited time period [3]. When real-time multimedia transmission is required, a large
amount of data must be transmitted from the LEO satellite to the GS within this limited
time period [5]. If the FSO signal transmitted from the satellite is not aimed directly at
the FOV of the receiving aperture of the GS during this timeframe, it will dissipate into
the atmosphere. This results in a decrease in received signal power, an increased BER,
and communication disconnect. Hence, an FSO-based GS must establish a robust LOS
connection with the satellite to initiate data transmission.

To align the receiving aperture of the GS with the satellite, telescopes equipped with a
tracking system can be exploited [11]. Using TLE parameters, the tracking system aims the
telescope towards the estimated position of the satellite as it moves across the sky. TLE is
a standard format for encoding a satellite’s orbital information, describing the orbit and
position of the satellite at a particular time. Each satellite’s TLE can be detected, tracked,
and updated by the North American Aerospace Defense Command (NORAD) [11], which
tracks and monitors satellites using radar systems and optical sensors to generate the TLE.
However, this method only guides the telescope to the expected range of the satellite’s
position, which is not precise enough to establish the FSO communication link [11]. Note
that conventional telescopes equipped with a tracking system at the ground station are
more suitable for tracking slow-moving space objects such as stars or planets rather than
tracking fast-moving LEO satellites. In addition, due to the telescope’s extremely small
FOV [4], mechanical variation or operational delay in the telescope angle might lead to
missing the LOS link.

In the process of FSO communication link alignment, the SWIR camera integrated with
the proposed DNN-based target detection method locates the fast-moving LEO satellite
with high accuracy and precision in a wide FOV area as illustrated in Figure 1. First, the
telescope at the GS is coarsely the orbital area of the LEO satellite with the help of TLE
parameters. When the LEO satellite comes within LOS range of the GS, the light source in
the satellite is captured by the SWIR camera at the GS, and infrared images containing the
LEO satellite as a small point target are obtained. Then, DNN-based small target detection
is performed to detect and track the LEO satellite position in the captured infrared images.
After tracking the satellite, the GS transmits an FSO uplink beacon signal to the LEO
satellite. Based on the uplink beacon signal, the LEO satellite aims its antenna towards
the GS in order to precisely align itself [11]. With accurate alignment between both the
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LEO satellite and the GS, data transmission for a two-way FSO communication channel
is initiated.
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Figure 1. FSO communication environment for detecting and tracking the position of a satellite using
a SWIR camera.

The intensity of infrared radiation is inversely proportional to the square of the
imaging distance and is attenuated due to the channel conditions, such as clouds, fogs,
and atmospheric turbulence. In addition, there might be a presence of light pollution
and background stars in captured images. To successfully distinguish the target from
its neighboring background in the infrared image, we developed a DNN-based target
detection method that consists of a ResNest [24] architecture-based FEN, the custom FPN,
and the TDN. Using this architecture, it is possible to extract multi-scale robust features of a
small infrared target and successfully detect a LEO satellite. Using the position information
of the small target in the image, the telescope of the GS aligns with the LEO satellite and
sends an uplink beacon signal towards the satellite. Then, the satellite aligns itself precisely
towards the GS using the uplink signal. Finally, a robust two-way FSO communication link
can be established.

3. Proposed Method

To describe the response of an optical imaging system to a point light source, PSFs are
extensively employed in astronomical science. A PSF expresses the intensity distribution of
the point source of light affected by the distance and atmospheric conditions. The two PSFs
that are most frequently used to model a point target are the 2D Gaussian function and
the Moffat function [27]. Based on these functions, we generated synthetic image datasets
for DNN model training and performance evaluation. First, the ResNest FEN architecture
extracts multi-scale features of the small infrared target from the input images generated
using the two PSFs. Then, the multi-scale feature maps at different spatial resolutions are
combined using a custom FPN method to obtain robust semantics across all scales. Finally,
the TDN containing a classification network in parallel with a bounding box regression
network is used to accurately identify small targets in infrared images.

3.1. Small Target Images

Note that the infrared imaging system generally exhibits diffraction during imaging,
and thus, the target satellite captured from a GS appears as a diffuse spot [23]. This can be
modeled using PSFs, like the 2D Gaussian function and the Moffat function. Using both of
these PSFs, we constructed infrared image datasets that include a small infrared target in
every image.
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3.1.1. 2D Gaussian Function

A 2D Gaussian function is often utilized to approximate the PSF because it provides a
mathematical representation that closely resembles the actual blurring effects in astronomi-
cal imaging. Because this blurring effect in the image has a symmetrical nature, a small
target based on the 2D Gaussian function can be described as follows:

TG(x, y) = Tmaxexp

(
−1

2

[
(x−x0)

2

σ2
x

+

(
y−y0

)2

σ2
y

])
, (1)

where TG(x, y) represents the pixel intensity of the infrared small target, and Tmax repre-
sents the maximum intensity value. σx and σy represent horizontal and vertical diffusion
parameters, respectively, while (x0, y0) represents the target’s central location and (x, y) are
pixel co-ordinates in the image. Note that the horizontal and vertical diffusion parameters
are related to the spread shape of the PSF.

3.1.2. Moffat Function

When the light signal from the LEO satellite propagates through the atmosphere,
random fluctuation in the refractive index is induced. This is caused by atmospheric
turbulence, and it distorts the incoming light signal in the SWIR image [28]. The PSFs
produced by this distortion, also referred to as the “seeing” effect, may exhibit elongated
irregular shapes [28]. The Gaussian function assumes a symmetric and smooth PSF, which
fails to capture the non-uniformity and asymmetry induced by atmospheric turbulence.
The Moffat function [27], however, provides a more precise approximation of the PSF in
the presence of atmospheric turbulence. The small target based on the Moffat function can
be described as follows:

TM(x, y) =
Tmax(

1+ (x− x0)
2

σ2
x

+
(y−y0)

2

σ2
y

)β
, (2)

where TM(x, y) represents the pixel intensity of the infrared small target, and β represents
the shape parameter where the value ranges from 0 to 50. Diffusion parameters, σx and
σy, regulate the Moffat function’s size and width along the horizontal and vertical axes,
respectively. β describes the variation in the shape of the small infrared target.

3.1.3. Synthetic Image Generation

Note that LEO satellite imagery is very expensive, and the cost of acquiring and
processing the data is prohibitive. Therefore, we generated synthetic infrared images with
the point target based on the 2D Gaussian and Moffat functions. The infrared images
captured by the SWIR camera may contain background noise caused by light pollution,
background stars, and image sensor noises such as thermal noise, shot noise, and dark
current noise [4,11,14]. In addition, the channel conditions, such as clouds, fogs, and
atmospheric turbulence, affects the image quality. Hence, we applied random diffusion
parameters in the PSFs, and added random noise to the synthetic infrared images, similar
to [23], considering these impacts on the detection performance.

Based on the PSF functions, we generated infrared images with a small target of
3 × 3 pixels. The 3 × — pixel area provides adequate spatial area for capturing intensity
fluctuations adjacent to the center pixel of the target. This pixel area contains sufficient
intensity differences between the small infrared target and its neighboring background.
Figure 2 shows an example of the generated small target images including a small target
using the 2D Gaussian function. It can be seen from Figure 2a,b that the generated infrared
image contains a small point target and background noise, and it is difficult to differentiate
between them. Figure 2c shows the enlarged 3 × 3 target area, which has the maximum
radiation intensity at its center and intensity fluctuations adjacent to the center pixel of
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the target. Note that the contrast between the infrared target and the surrounding back-
ground noise is not large because the captured intensity of infrared radiation is inversely
proportional to the square of the imaging distance. Hence, DNN-based target detection
that can accurately differentiate between the small infrared target and background noise
is needed to locate the satellites in the captured images. Conventional methods, such
as local-contrast-based and low-rank-based methods, rely on manually created features
and predetermined hyperparameters that are typically only effective against a particular
background environment [14]. Unlike conventional methods that highly rely on manually
created features, the DNN model itself learns to recognize the most relevant features for
discriminating between small targets and the background from the input data.
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3.2. Target Detection Model

The DNN-based target detection model in this paper is divided into three parts, the
FEN, the FPN, and the TDN, as illustrated in Figure 3. The input infrared images containing
the point targets are fed to the modified ResNestX-based FEN to obtain feature maps at
different spatial resolutions. Then, the feature maps with different resolutions obtained
from the FEN are fused to generate a custom FPN. The custom FPN concatenates the multi-
scale feature map representation obtained from the FEN to improve the proposed DNN’s
ability to distinguish small infrared targets from the background. Finally, the TDN, which
consists of a classification subnet and box regression subnet, performs binary classification
and bounding box regression to determine the position of small infrared targets.
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3.2.1. FEN

For robust feature extraction of small point targets from generated infrared images,
the ResNest101 model, which comprises a feature map attention mechanism and multi-
path propagation, is used. ResNest is a variant of the ResNet architecture [29] that uses a
multi-path propagation and a split-attention mechanism, splitting the input feature maps
into groups and applying the attention mechanism to each group. Multi-path propagation
in ResNest propagates information along multiple paths or branches within the network.
ResNest generates several parallel pathways, each of which consists of a series of residual
blocks, as opposed to a single pathway. These parallel pathways allow the network to
learn diverse and complementary representations of the input data. This is especially
effective for small target identification because it enables a DNN network to capture fine-
grained characteristics and subtle patterns from multiple perspectives that may indicate
the presence of a small target in an infrared image. The split-attention technique improves
the ability to learn fine-grained characteristics of the target through capturing feature
map interdependencies. The split attention method separates the input feature maps into
many groups or branches, each of which pays attention to a different region of the feature
maps. Hence, split attention enables the model to concentrate on particular spatial regions
or the feature map channels that are particularly informative. In small target detection,
the split-attention mechanism improves network performance via effectively suppressing
unnecessary background noise and emphasizing the crucial characteristics corresponding
to small targets.

ResNest101 is a specific variant of the ResNest architecture that uses 101 layers or-
ganized into several convolutional stages, i.e., C1, C2, C3, C4, and C5, where Ci has 2i

less resolution than Ci−1 [23]. In ResNest, C1, consists of a simple convolutional layer, a
batch normalization (BN) layer, and a rectified linear unit (ReLU) activation layer. Each
stage after C1, i.e., C2, C3, C4, and C5, consists of several residual blocks that contain
multiple convolutional layers, BN layers, and ReLU activation layers. In DNN-based target
detection methods, a set of predetermined reference bounding boxes known as anchor
boxes are generated to compute the percentage of overlap region with the ground truth
(GT) bounding box of the target. The overlap value between the anchor boxes and the GT
bounding box of the target is then utilized to predict the location of the target in the image.
Note that a high computational cost is required to generate anchor boxes in high-resolution
feature maps obtained from the C1 stage for predicting the location of medium and large
targets of varied shapes and sizes from datasets such as COCO [30] and ImageNet [31].
Hence, they are not used in the FPN for medium and large object detection. For a small
target, however, the shape and size of small infrared targets do not vary greatly, so the
number of predefined anchor boxes needed to locate the target in the C1 convolutional
stage is significantly reduced [23]. In addition, the small infrared target can disappear in
the latter convolutional stages, i.e., C3, C4, and C5, due to excessive down-sampling. So,
high-resolution features obtained from C1 and C2 are crucial for extracting meaningful
information such as a target’s size and shape for small target detection with high accuracy.

The C1 convolutional stage in conventional ResNest101 only utilizes a simple convolu-
tion operation to learn the discriminative features of the small infrared target. It does not
contain any residual blocks that capture more discriminative features of the small infrared
target to improve detection accuracy. To overcome this limitation and to use additional
residual blocks for small infrared target detection, the down-sampling process is not ap-
plied after the C1 convolutional stage. As a result, the feature maps from C2 have the same
dimension as the feature maps obtained from the output of C1. Finally, the feature maps
obtained from C2 are utilized as the initial high-resolution input for the FPN instead of
those from C1, which allows for the incorporation of additional residual blocks to capture
more discriminative features of the small infrared target.

In addition, we conducted ablation experiments to modify the conventional ResNest101-
based FEN through adding or removing intermediate layers of specific convolutional stages.
The resulting FEN are named ResNestX, where X = 23, 32, 89, and 92 and represents the
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number of layers in the FEN network after modification. Through this process, we can
evaluate their impact on the small target detection model’s performance and find the
optimal combination of convolutional stages that obtains high detection accuracy. For
example, when using the combination of the C2, C3, and C5 convolutional stages as inputs
for the FPN in the modified ResNest-based FEN, we remove the C4 convolutional stage
entirely. The resulting FEN consisting of the C2, C3, and C5 convolutional stages is known
as ResNest32 since it only contains a total of 32 convolution layers after removing the
intermediate layers belonging to C4.

To prevent the target from disappearing or merging with the background in the
latter convolutional stages due to the excessive down-sampling of infrared images in
conventional ResNest architecture, the maximum down-sampling of input infrared images
in the FEN process is limited to three. Down-sampling the infrared images less than three
times may result in only high-resolution feature maps that lack the semantic information
needed to improve target detection accuracy. However, down-sampling the infrared images
more than three times may result in a large number of low-resolution feature maps that lack
the differentiating characteristics of the small infrared target. As a result, restricting down-
sampling in the network to three times attempts to achieve an optimal balance between
preserving the differentiating characteristics of the small infrared target and capturing
semantic information for small target detection with high accuracy.

The multi-scale feature maps obtained from the modified ResNestX based FEN are
denoted P1, P2, and P3, respectively, as shown in Table 1. Based upon the obtained multi-
scale feature maps, we devised our anchor box configuration for detecting the 3 × 3 target
as shown in Table 2. Since the target shapes and sizes do not change, the anchor size,
ratio, and scale are set to 3, 1, and 1, respectively. The obtained outputs from the modified
ResNest101 based FEN are used as inputs for the FPN to create multi-scale feature maps
that contain the differentiating characteristics of the small targets as well as semantic
information.

Table 1. Spatial resolution of feature maps from modified the ResNestX-based FEN.

Layers Input Map Size
(Pixels)

Output Map Size
(Pixels)

Down-Sampling
Stride

(Pixels)

P1 256 × 256 128 × 128 2

P2 128 × 128 64 × 64 2

P3 64 × 64 32 × 32 2

Table 2. Anchor configuration for small infrared target detection.

Layers P1 P2 P3

Size 1 3 3 3

Ratio 1

Scale 1
1 Size is the width of the anchor box in pixels.

3.2.2. FPN

The main purpose of using a custom FPN is to create multi-scale feature maps through
combining the important differentiating characteristics of small infrared targets including
pixel intensity and edges found in high-resolution feature maps, i.e., P1 and P2, with
semantic information obtained from the low-resolution feature maps, i.e., P3. The custom
FPN improves the target detection model’s understanding of the overall scene through
combining the higher-resolution feature maps with lower-resolution feature maps. This
process enhances the model’s capability to distinguish real targets from false positives,
leading to higher detection accuracy [23]. Generally, the FPN structure uses a top-down
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pathway and lateral connections to combine high-resolution feature maps, where semantical
information is weak, with low-resolution feature maps, which have semantically strong
features [25].

To create a custom FPN in the proposed scheme, we use a bottom-up pathway in
addition to the top-down pathway to combine multi-scale feature maps, as was imple-
mented in PANET [26]. In addition, we use a skip connection from the original input to
the output node if they are at the same spatial resolution level. In the context of small
infrared target detection, the additional bottom-up pathway facilitates the flow of the
differentiating characteristics of the point target, such as pixel intensity, edges, textures,
etc., from high-resolution feature maps to low-resolution feature maps. In addition, we use
a skip connection from the original input to the output node if they are at the same spatial
resolution level. The skip connection used in the FPN enables the concatenation of more
features without adding much computation cost and preserves the original information
obtained from the three outputs of FEN.

As shown in Figure 4, the top-down pathway in the custom FPN begins with the
lowest-resolution feature maps, i.e., P3 obtained from the modified ResNestX architecture.
At first, the feature maps obtained from P3 go through a 1 × 1 convolutional operation to
ensure feature maps have the same number of initial channels, i.e., 256 channels. Then, the
spatial resolution of the semantically stronger feature maps obtained from P3 is up-sampled
by a factor of 2 using 2D up-sampling. The higher resolution feature maps obtained from
P2 also go through a 1 × 1 convolutional operation to lower the channel dimensions. Then,
the feature maps of P2 are then combined with the up-sampled feature maps from P3 via
element-wise addition. Similarly, we combine the feature maps of P1 and P2 in the same
top-down pathway. In the top-down pathway, the output feature maps produced by P1, P2,
and P3 are designated K1, K2, and K3, respectively.
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The bottom-up pathway begins with the highest-resolution feature maps obtained
from the top-down pathway, i.e., K1. At first, the feature maps obtained from K1 go
through a 1 × 1 convolutional operation. Then, they are concatenated with the feature
maps obtained from the P1 block of the modified ResNestX network. This process enables
the concatenation of more features without significantly increasing the computation cost,
along with preserving the original information obtained from the modified ResNestX
network. The resulting feature maps again go through a 1 × 1 convolutional operation.
The corresponding output obtained from feature map concatenation is denoted N1. In the
second step, the feature maps obtained from K2 also go through a 1 × 1 convolutional
operation. Then, they are concatenated with P2 and the down-sampled N1 to obtain
N2. The process is repeated until we obtain the feature maps from the lowest resolution
layer, i.e., N3. Through this process, we can combine low-level information obtained
from high-resolution feature maps with low-resolution feature maps containing high-
level information. In small target detection, this process combines the differentiating
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characteristics of the point target obtained from high-resolution feature maps with the
semantic information obtained from low-resolution feature maps to differentiate the point
target from its neighboring background.

3.2.3. TDN

The output feature maps from the custom FPN, which are denoted N1, N2, and N3,
are fed into the TDN to predict the small infrared target location in the infrared images.
The TDN is divided into two subnet heads, classification and box regression, as illustrated
in Figure 5. Four 3 × 3 convolutional operations with C = 256 channel filters are applied in
the classification subnet. Each convolutional operation is followed by ReLU activations.
The 3 × 3 kernel size helps the network to capture the context of neighboring pixels while
generating predictions, which could improve prediction accuracy. Then, another 3 × 3
convolutional operation is added in the classification subnet to output KA channel filters.
The parameter “K” represents the number of target classes, and “A” represents the number
of anchors per spatial location. In this study, we set K = 1, A = 1 because we consider a single
target class and one anchor generated per spatial location. Finally, a sigmoid activation
function is used at the end of the classification subnet to perform binary classification per
spatial location.
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As shown in Figure 5, the box regression subnet has a structure that is identical to the
classification subnet, with the exception that it has 4A linear outputs per spatial location.
The four linear outputs of the box regression subnet can accurately predict the bounding
box offsets for each anchor box per spatial location. Finally, three detection results for three
outputs of the custom FPN, i.e., N1, N2, and N3, are generated via the combination of
classification and box regression subnetworks. The output contains the predicted target
label, its location information in the input infrared image, and a prediction score. The
output with the highest prediction score is chosen as the final target detection result.

4. Experiments and Results

In this section, we verify the effectiveness of our proposed small target detection
model in terms of true detection rate and average precision (AP). Due to the lack of publicly
available datasets with SWIR images of LEO satellites, synthetic datasets created with the
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two PSFs, i.e., 2D Gaussian function and Moffat function, were used in the experiments.
All experiments were conducted on PyTorch 1.12.1 in Python on a Windows 10 operating
system with an Nvidia GeForce RTX 3080 Ti GPU with 64 GB memory.

4.1. Data Generation

The light source emitted by the target satellite appears as a diffused spot when cap-
tured from a SWIR camera in the GS. This phenomenon is modeled using the PSF. So,
we built synthetic datasets (Data 1 and Data 2) using the 2D Gaussian function and the
Moffat function to generate the small infrared target in the captured images, respectively.
The target size for the synthetic datasets generated by both functions is considered to be
3 × 3 pixels.

The infrared images captured by the SWIR camera may contain background noise
caused by light pollution, background stars, and image sensor noises such as thermal noise,
shot noise, and dark current noise. In addition, the channel conditions, such as clouds, fogs,
and atmospheric turbulence, affect the image quality. To present the effect of background
stars, channel condition, and the sensor noise, we added random Gaussian noise to the
synthetic infrared images, as performed in [23]. Because the contrast between the point
target and background noise is small owing to the long-distance imaging, we applied
the local SCR strategy to both Data 1 and Data 2 while adding random noise. SCR is a
popular metric for determining the difference between the target and background and is
frequently used to calculate detection difficulty. In general, a lower SCR indicates it is more
challenging to find the infrared target in an image [32]. In this study, we set the local SCR
value between 1.0 and 1.5 to reduce the contrast difference between the small target and
the background in both Data 1 and Data 2 through adding random Gaussian noise. The
formula for local SCR [15] is given as follows:

SCR =
µ(T)−µ(B)

σ(B)
, (3)

where µ(T) is the mean pixel value of the target region, µ(B) is the mean pixel value of the
local background region, and σ(B) is the standard deviation of the background region. In
our study, a 3 × 3 area was chosen as the target region and a 15 × 15 neighboring region
around the target area was considered as the background region.

Data 1 using the Gaussian function was generated in the same manner used in [23] for
performance comparison. While creating Data 2 using the Moffat function, we generated
random values for σx, σy, and β from a uniform distribution within specific ranges. In our
experiment, we used a range of 0.4 to 0.8 to randomly generate horizontal and vertical
diffusion parameters, σx and σy. Similarly, β was also generated randomly from a uniform
distribution having a 0.5 range between 2.5 and 3.0. The generated Moffat functions will
have different spreads in the x and y directions if random diffusion parameters are used.
Using these parameters, the point target in the produced image presents various amounts
of sharpness or smoothness. The details of the datasets generated using the 2D Gaussian
function and the Moffat function are provided in Table 3.

As shown in Table 3, in this experiment, we generated 8450 images for both Data 1
and Data 2, with each image consisting of a single infrared target at a random position, and
an SCR between 1.0 and 1.5. The sample images for Data 1 and Data 2 are highlighted in
Figure 6, where the images with SCR < 1.3 have lower contrast compared to image with
SCR > 1.3. Hence, target detection in images with SCR < 1.3 is more challenging than in
infrared images with SCR > 1.3.
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Table 3. Data configuration for the small infrared target from two PSFs.

Dataset Data Partition Number of Images SCR Ratio

Data 1
(Gaussian)

Training data 5070 1.0 < SCR < 1.3: 41.99%
1.3 < SCR < 1.5: 58.00%

Test data 3380 1.0 < SCR < 1.3: 41.00%
1.3 < SCR < 1.5: 58.99%

Data 2
(Moffat)

Training data 5070 1.0 < SCR < 1.3: 41.99%
1.3 < SCR < 1.5: 58.00%

Test data 3380 1.0 < SCR < 1.3: 41.00%
1.3 < SCR < 1.5: 58.99%
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4.2. Target Detection Condition

As mentioned earlier, the small infrared target detection model is different than the
conventional target detection models for medium and large objects owing to the different
down-sampling process. In addition, the intersection-over-union (IOU) method that is
frequently utilized during the training of conventional target detection models to classify
medium and large targets cannot be utilized for small infrared targets [33]. Hence, during
the training stage of the target detection model, the predicted bounding box is considered a
positive sample if the centroid of the predicted target box is located within the area of the
GT; otherwise, it is referred to as a negative sample [23].

Generally, IOU and anchor boxes are employed to determine positive and negative
samples in target detection networks. IOU calculates the degree of overlap between a
predicted bounding box obtained from predefined anchor box generation and the actual
GT bounding box of an object. An anchor is often identified as a positive sample when
IOU ≥ 0.5 or 0.7 [33]. If the IOU method for normal objects is used to classify positive
and negative samples, the point target will be classified as both a positive sample and
negative sample, as shown in Figure 7. This problem is known as the sample misjudgment
problem [33]. When IOU is 0.286, the anchor is considered a negative sample even if it
contains the point target. When IOU is 0.5, it is considered a positive sample if a threshold
of 0.5 is used. So, IOU for normal objects is not a reliable metric to classify small infrared
targets. To avoid the sample misjudgment problem, we instead use the anchor centroid to
determine if a sample is positive, rather than using IOU during model training. We consider
a sample to be positive if the centroid of the anchor box is within the GT; otherwise, we
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consider it a negative sample. Using this strategy, both the sample boxes in Figure 7 are
regarded as positive samples because they both contain the point target, and their centroid
belongs within the GT.
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4.3. Target Detection Model Parameters

We describe the model parameters of the target detection model in Table 4. Out of
the 8450 images generated for Data 1 and Data 2, 5070 were used for training and 3380
were used to evaluate model performance. Additionally, during the training stage, the data
were further divided into another training dataset and a validation dataset. A validation
dataset evaluates the target detection model’s performance, tracks its generalization ability,
and optimizes its hyperparameters. Of the 5070 images, 4000 were used for training the
proposed target detection model and 1070 were used to evaluate performance and optimize
its hyperparameters during training stage. Other parameters such as batch size, learning
rate, and epochs were set to 8, 10−5, and 15, respectively.

Table 4. Details of model parameters used in target detection model for small infrared targets.

Model Parameters Value

Training data 4000

Validation data 1070

Test data 3380

Learning rate 10−5

Batch size 8

Epochs 15

Since background regions are much larger than the target region in the image, there is
an unequal distribution of target and background samples [20]. This uneven distribution is
known as a class imbalance problem in target detection [20]. This problem might result
in biased learning, where the target detection model focuses more on the background
than on the targets. This biased learning mechanism might result in poor target detection
performance because the model might not be able to learn the distinctive features of the
target effectively enough to classify them with high accuracy. Hence, to address class
imbalance in the target detection network, focal loss [20] was used as the loss function for
classifying small infrared targets. During the training phase, focal loss helps to alleviate
the impact of class imbalance through allocating larger weights to misclassified samples,
particularly those from the target class [23]. This is achieved through making the target
detection model pay more attention to small infrared targets via increasing the loss value
while making predictions for them. In addition, Smooth L1 loss [20], which combines
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the mean squared error (MSE) and mean absolute error (MAE) loss functions, is used
to calculate the difference between the predicted bounding box and GT bounding box
co-ordinates. Smooth L1 loss minimizes the loss obtained from bounding box regression
between the predicted target box and the GT box [23].

4.4. Performance Evaluation Metrics

In this section, we discuss the evaluation metrics used to determine the performance
of the proposed target detection network. The final output of the TDN determines the
location of the predicted infrared target in an image and its corresponding prediction score.
Depending upon the location co-ordinates and predicted score, we determine the missed
detection rate, true detection rate, and false detection rate. The model is determined to
have missed the target in an image if the predicted score is less than 0.5. If the predicted
score exceeds 0.5, the detected result is classified as a target or a false alarm. Further, if the
detected result’s center is within the GT area, the detected result is the target; otherwise, it
is a false alarm. The formulas for the missed detection rate (4), true detection rate (5), and
false detection rate (6) are given as follows:

Pmd =
Nummiss

Numall
, (4)

Pd =
Numtrue

Numall
, (5)

Pf =
Numfalse
Numall

, (6)

where Nummiss is the number of missed detections, Numtrue is the total number of true
detections, and Numfalse is the total number of false detections. The summation of Pmd,
Pd, and Pf is 1. Ideally, the detection ability is better when Pd is high, while Pmd and Pf
are low. In addition, we used average precision to evaluate the accuracy of our model. In
target detection networks, AP is a frequently employed evaluation metric that quantifies
the accuracy of object detection algorithms. It produces a single numerical value that
represents the target detection model’s precision–recall trade-off. While calculating the AP,
we use the standard IOU threshold of 0.5. As seen in Figure 7, with an IOU threshold of
0.5, the predicted bounding box closely aligns with the actual ground truth bounding box,
resulting in a highly precise localization of the small infrared target. The centroid-based
strategy can be considered an effective strategy for target detection if good detection results
can be generated when using it during the training stage and when using the standard IOU
in the testing stage [33].

4.5. Ablation Study

In this section, the effect of using different combinations of convolutional stages in the
ResNest-based FEN is analyzed using Data 1, and the optimal convolutional stages that
guarantee high detection accuracy are investigated. Finally, these optimal convolutional
stages are utilized for a performance comparison using Data 2 with other DNN-based
methods. Note that the main difference between the modified ResNestX, where X = 23, 32,
89, and 92, in our paper and the conventional ResNest101 model is that the input image
was not down-sampled more than three times in our experiment to prevent excessive
down-sampling. For example, when using C2, C3, and C5, we removed C4 entirely from
the network. In addition, we did not down-sample after C1, so that the feature maps
from C2 had the same dimension as the feature maps obtained from the output of C1.
Since C1 and C2 had the same dimension, the outputs feature maps of C2 are used as
the initial high-resolution output for the FPN instead of C1 to include additional residual
blocks. In addition, we utilized the optimal target-oriented shallow–deep features (TSDF)
model [23] in our ablation study for performance comparison. The optimal feature fusion
combinations obtained from the TSDF-based DNN [23] for the synthetic dataset is denoted
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as FC1 + FC2 + FC1C3 + FC2C3 +FC1C4 + FC2C4 (feature fusion 1), where FCiCj denotes
the feature fusion function.

The experimental results from the ablation study of different combinations of con-
volutional stages are shown in Table 5. The performance metrics for several of those
combinations are true detection rate (Pd), false detection rate (Pf), missed detection rate
(Pmd), and AP. Among several candidates, the combination of ResNest92 and FPN achieved
a slightly lower Pd and AP of 98.80% and 98.90%, respectively, suggesting a marginally
reduced ability to detect the small infrared target compared to the other combinations.
Changing the FEN to ResNest89 or ResNest23 while still using an FPN structure for fea-
ture fusion achieved slightly better results than the previously mentioned counterpart,
with both obtaining a Pd of 99.10%. However, the AP from ResNest89 was comparatively
worse than when we used ResNest23 along with FPN. When ResNest23 was used, the
AP was found to be 99.20%, which is 0.10% better when ResNest89 was used. Finally,
when ResNest32 was combined with FPN, a Pd and AP of 99.40% were achieved, while
maintaining Pf at only 0.30%. When compared to the TSDF model [23] that uses ResNet50
as FEN and feature fusion 1 technique for feature combination for small infrared target
detection in synthetic datasets using a 2D Gaussian function, all of the ResNest-based target
detection models achieved a higher Pd and AP. Therefore, the ablation study illustrated that
ResNest32 FEN with a combination of FPN had the highest Pd and AP while having the
lowest Pf, indicating that this combination achieved the highest accuracy while minimizing
false detections. From this ablation study, we determined that this is the combination that
should be used in FEN to accurately detect the small infrared target.

Table 5. Ablation study on Data 1 to find optimal convolutional stages combination.

FEN Feature Combination Pd (%) Pf (%) Pmd (%) AP (%)

ResNest23 Custom FPN 99.10 0.80 0.10 99.20

ResNest32 Custom FPN 99.40 0.30 0.30 99.40

ResNest89 Custom FPN 99.10 0.90 0.00 99.10

ResNest92 Custom FPN 98.80 1.10 0.10 98.90

ResNet50 [23] Feature fusion 1 98.30 1.70 0.00 95.20

4.6. Performance Comparison

To prove the performance improvements from the proposed method, we compared
the best performance obtained from our ablation study to conventional methods such as
Var_Diff [15], AAGD [15], LOG [15], LIG [16], NRAM [34], IPI [35], DPIR [36], and GST [37]
using Data 1. Then, we utilized Data 2 to compare the proposed DNN method’s perfor-
mance with other DNN-based methods. Comparing several DNN-based approaches aids
in analyzing how various network architectures, feature extraction methods, and feature
fusion strategies impact small infrared target detection. The performance comparison for
Data 1 is shown in Table 6.

When compared with the previous conventional approaches, our model was able to
provide accurate localization of the small infrared target while significantly reducing the
false detection rate. Compared with conventional handcrafted algorithms such as LIG,
NRAM, Var_Diff, and IPI, we achieved decreases of 14.08%, 16.89%, 17.92%, and 20.41%,
respectively, in the false detection rate while achieving increases in the true detection rate
of 13.78%, 16.59%, 17.62%, and 20.11%, respectively. Compared to DPIR and GST, our
proposed DNN method achieved even higher increases in true detection rates: 55.08%
and 61.94%, respectively. False detection rates were also drastically reduced by 55.38%
and 62.24%, respectively. Conventional techniques rely on simple handcrafted features to
manually generate important discriminative information on the small infrared target. How-
ever, the features of small infrared targets are difficult to distinguish from the background
due to their small size and low SCR when using the handcrafted conventional method.
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Hence, they produced the high false detection rates shown in Table 6. In contrast to the
conventional methods, the proposed DNN method automatically extracts features from the
infrared small target using multiple convolutional stages of modified ResNest architecture
without excessive down-sampling. The automatic feature extraction enhances the gener-
alization capability of the proposed DNN in different environmental settings, including
low-SCR conditions. In addition, the custom FPN combines the multi-scale feature maps
obtained from the modified ResNest architecture to enhance the discriminative capability
of the DNN. Hence, our proposed DNN method not only achieved a higher true detection
rate but also significantly reduced the false reduction rate.

Table 6. Performance comparison for small target detection using Data 1.

Algorithm Pd (%) Pf (%)

Var_Diff [15] 81.78 18.22

AAGD [15] 81.75 18.25

LOG [15] 81.48 18.52

LIG [16] 85.62 14.38

NRAM [34] 82.81 17.19

IPI [35] 79.29 20.71

DPIR [36] 44.32 55.68

GST [37] 37.46 62.54

Proposed 99.40 0.30

The performance comparison of various DNN-based structures using Data 2 is shown
in Table 7. Here, we utilized the optimal feature map combinations obtained from [22] with
ResNet50 and ResNest101 FEN to compare with the optimal FEN and FPN combination ob-
tained from our ablation study. For the performance comparison, we additionally computed
the AP for the DNN-based algorithms, in addition to Pd and Pf. The optimal feature fusion
combinations obtained from the TSDF-based DNN [23] are denoted FC1 + FC2 + FC1C3
+ FC2C3 +FC1C4 + FC2C4 (feature fusion 1) and FC1 + FC2 + FC3 + FC1C4 + FC2C4 (feature
fusion 2), where FCiCj denotes the feature fusion function. These feature fusion methods
were obtained using a ResNet50 architecture in [23] and were applied to ResNest101 for
small target detection using Data 2. The optimal FEN model obtained from our ablation
method is ResNest32. When using feature fusion 2 of the conventional ResNest101 FEN,
Pd increased by 0.74% while Pf decreased by 0.74%, compared to feature fusion 2 of the
ResNet50. Similarly, for the same feature fusion combination, there was a significant rise
in AP from 85.10% to 92.16% when the conventional ResNest101 was used instead of
ResNet50, suggesting that the ResNest101 FEN network performs better than ResNet50.
The combination of ResNest32 FEN and custom FPN achieved better performance with
Pd of 94.00%, Pf of 6.00%, and AP of 94.70%. Hence, based upon the experimental re-
sults on Data 2, the combination of ResNest32 FEN and custom FPN outperformed other
DNN-based methods.

Table 7. Performance comparison for small target detection using Data 2.

FEN Feature Combination Pd (%) Pf (%) AP

ResNet50
[23]

Feature fusion 1 92.93 7.07 86.88
Feature fusion 2 92.49 7.52 85.10

ResNest101
Feature fusion 1 88.14 5.36 81.22
Feature fusion 2 93.23 6.78 92.16

ResNest32 Custom FPN 94.00 6.00 94.70
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The superior performance of the proposed small target detection method can be
explained by the combination of the modified ResNest architecture and the proposed
custom FPN method. ResNest uses an attention mechanism that enables the network to
dynamically assign different weights to multiple input features, enhancing its ability to
obtain relevant information and suppress irrelevant or noisy signals, compared to the
ResNet backbone. In the TSDF-based feature fusion methods [23], the authors only applied
a one-to-one concatenation strategy between a shallow layer and a deep layer, rather than
integrating all layers from ResNet50 to create multi-scale feature maps. Hence, they contain
more limited information than the custom FPN structure used in the proposed DNN-based
target detection method. In the custom FPN in our study, information obtained from the
modified ResNest-based FEN is shared among all the layers using a top-down, bottom-up
pathway and a skip connection before sending it to the TDN. In addition, the ResNet50
architecture used in TSDF [23] is generally used for medium and large object detection and
is not specific to the small target. Through conducting an ablation study to modify the
structure of ResNest101 specifically for small target detection, the proposed DNN-based
small target detection method outperformed the previous DNN-based methods. Figure 8
illustrates the prediction results from Data 1 and Data 2 using our proposed DNN-based
target detection model. As shown in Figure 8, our proposed DNN-based target detection
model is able to detect the small infrared target in both Data 1 and Data 2. Using the
proposed scheme, the GS can successfully detect the position of the LEO satellite in the
infrared images, and this information is used to establish a robust FSO channel link between
the GS and the target LEO satellite.
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5. Discussion

The proposed method surpassed the previous small target detection approaches for
synthetic datasets Data 1 and Data 2, achieving Pd of 99.40% and 94.00%, and AP of 99.40%
and 94.70%, respectively. This is the result of ResNest32’s split attention and multi-path
propagation, as well as the multi-scale feature maps obtained from the custom FPN.

In practical scenarios, the LEO satellite needs to be constantly tracked by the SWIR
camera. As a logical extension of our study, we will develop a precise and robust tracking
solution that integrates convolutional neural networks (CNNs) and transformer networks.
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The backbone CNN will be responsible for extracting features from the input infrared
images. The transformer network will be responsible for simultaneously detecting and
tracking the infrared target using the features obtained from the CNN. To further improve
the prediction time for tracking, we will leverage inverted residual networks and linear
bottlenecks found in MobileNets [38] in the CNN backbone in our future work.

6. Conclusions

In this paper, we proposed a DNN-based small infrared target detection network that
can detect the location of a LEO satellite in an infrared image captured at the GS and can
determine the correct alignment of the receiver telescope to establish the FSO channel link.
To train the DNN model, we generated synthetic datasets that contain LEO satellites as
the small infrared target based upon frequently used PSFs (the Gaussian function and
the Moffat function). We designed a modified ResNest-based FEN to extract features
from infrared images using the optimal combination of convolutional stages. Then, we
utilized a custom FPN network to combine those features and extract the differentiating
characteristics of the point target, such as pixel intensity, as well as semantic information
to differentiate the point target from its neighboring background. Finally, we detected the
LEO satellite, imaged as a small infrared target using a TDN that consists of a classification
subnet and a bounding box subnet. Experiment results using two PSF-based datasets
proved that our proposed model outperformed existing small target detection schemes and
was able to achieve true detection rates of 99.40% and 94.00%, respectively.
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