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Abstract: The objective of event extraction is to recognize event triggers and event categories within
unstructured text and produce structured event arguments. However, there is a common phenomenon
of triggers and arguments of different event types in a sentence that may be the sameword elements,
which poses new challenges to this task. In this article, a joint learning framework for overlapping
event extraction (ROPEE) is proposed. In this framework, a role pre‑judgment module is devised
prior to argument extraction. It conducts role pre‑judgment by leveraging the correlation between
event types and roles, as well as trigger embeddings. Experiments on the FewFC show that the
proposed model outperforms other baseline models in terms of Trigger Classification, Argument
Identification, and Argument Classification by 0.4%, 0.9%, and 0.6%. In scenarios of trigger overlap
and argument overlap, the proposed model outperforms the baseline models in terms of Argument
Identification and Argument Classification by 0.9%, 1.2%, 0.7%, and 0.6%, respectively, indicating
the effectiveness of ROPEE in solving overlapping events.

Keywords: overlapping event extraction; trigger overlap; argument overlap; joint learning; role
pre‑judgment

1. Introduction
Event extraction (EE) is a challenging task in natural language understanding that

plays a crucial role [1–4]. EE is dedicated to extracting event information occurring in the
real world from text, classifying them into predefined event types, identifying the trigger
and event participants, etc. [5]. Event extraction can bewidely used in information retrieval
and summarization, knowledge graph construction [6], intelligence analysis [7], and other
fields. EE usually includes four subtasks, i.e., trigger identification (TI), Trigger Classifica‑
tion (TC), Argument Identification (AI), and Argument Classification (AC) [8–10].

The objective of event extraction is to identify events and arguments from the text.
The event extraction task is formally defined as follows:

Given an input sentence x = {x1, x2, …, xN} consisting of N words, an event‑type col‑
lection (C), and an argument role collection (R). Let Ex represent the gold set. Ex includes
all event types (Cx ⊆ C) in the sentence, all triggers (Tx,c) in each event type (c ∈ Cx), and
different argument roles under each event type. ar ∈ Ax is the argument corresponding
to r ∈ R.

However, a sentence may contain multiple events, and the arguments and triggers
of these events have complex overlapping phenomena. We summarize this into three
situations: (1) Different event types may be triggered by the same trigger. The trigger
“减持” (reduced its holdings) marked in red in Figure 1 triggers both the shareholding
reduction event and the share equity transfer event. (2) The same argument plays dif‑
ferent roles in different event types. In Figure 1, “大族激光” (Han’s Laser) plays the
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role of obj in the “股份股权转让” (share equity transfer) event, and also plays the target‑
company role in the share equity transfer, which is triggered by “减持” (reduced its hold‑
ings). (3) The same argument plays the same role in different events of the same event
type. In Figure 1, the “股份股权转让” (share equity transfer) event appears twice in the
sentence, both occurring in “10月” (October). In FewFC (a Chinese financial event ex‑
traction dataset) [11], about 13.5% of the sentences have trigger overlap problems, and
21.7% of the sentences have argument overlap problems. The same event type appears
repeatedly in 8.3% of the sentences.
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Most previous studies partially addressed overlapping issues and did not cover all the
above situations. In 2019, Yang et al. [12] utilized a staged pipeline approach for event trig‑
ger and argument extraction. Nevertheless, this method overlooked the challenge of trig‑
ger overlap. In 2020, Xu et al. [13] used a joint extraction framework to solve the role over‑
lapping problem. Xu defined event relationship triples to represent the relationship be‑
tween triggers, arguments, and roles, thereby converting the argument classification prob‑
lem into a relationship extraction problem. In 2020, Huang et al. [14] proposed using a hier‑
archical knowledge structure graph containing conceptual and semantic reasoning paths
to represent knowledge. They employed GEANet to encode intricate knowledge, address‑
ing the issue of trigger extraction in nested structures within the biomedical domain [14].
In 2022, Zhang et al. [15] designed a two‑stage pipeline model in which the trigger is iden‑
tified using a sequence annotation approach, and overlapping arguments are identified
through multiple sets of role binary classification networks. In 2023, Yang et al. [16] used
a multi‑task learning model to extract entity relationships and events, in which a multi‑
label classification method is used to settle the overlapping role problem shared by these
two tasks.

The contributions of this paper are summarized as follows:
(1) A role pre‑judgment module is proposed to predict roles based on the correspon‑

dence between event types and roles, text embeddings, and trigger embeddings, which
can significantly improve the recall rate of each subtask and provide a basis for ex‑
tracting overlapping arguments.

(2) ROPEE adopts a joint learning framework, and the designed loss function includes
the losses of fourmodules, event‑typedetection, trigger extraction, role pre‑judgment,
and argument extraction, so as to effectively learn the interactive relationship be‑
tween modules during training. Thus, error propagation issues can be alleviated in
the prediction stage.

(3) ROPEE outperforms the baseline model by 0.4%, 0.9%, and 0.6% in terms of F1 over
TC, AI, and AC on the FewFC dataset. For sentences with overlapping triggers,
ROPEE outperforms the baseline model by 0.9% and 1.2% in terms of F1 over AI
and AC, respectively. In the case of overlapping arguments, ROPEE demonstrates
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superior performance compared to the baseline model, with improvements of 0.7%
and 0.6%. This highlights the effectiveness of our suggested approach in managing
overlapping occurrences of event phenomena.
The remainder of this paper is organized as follows: In Section 2, related studies are

given. In Section 3, the details of the ROPEE model are introduced. Comparative exper‑
iments are performed and experimental results are analyzed in Section 4. Section 5 con‑
cludes this work.

2. Related Studies
Event extraction is one of the most challenging tasks in information extraction re‑

search [17]. Existing paradigms related to event extraction include pipeline methods and
joint learning methods [18].

The pipeline‑based method handles these four subtasks of EE separately. Each sub‑
task has its own objective function and loss. In 2015, Chen et al. [8] developed a dynamic
multi‑pooling convolutional neural network (DMCNN). This network utilizes a dynamic
multi‑pooling layer based on event triggers and arguments to retain essential information,
combining both the sentence‑level and lexical‑level details from the raw text without the
need for extensive preprocessing. Most deep learning supervised methods for event ex‑
traction require lots of labeled data for training. Annotating large amounts of data is very
laborious and hard to get. To gainmore insights from limited training data, Yang et al. [12]
combined the extractionmodel and event generationmethod in 2019 and improved the per‑
formance of the argument extractor through aweighted loss function based on various role
importance. The above twomethods cannot explicitlymodel the semantics between events
and roles, nor can they capture the interaction between them. In 2020, Li et al. [19] devised a
multi‑stage QA framework to represent event extraction as reading comprehension issues
and captured the dynamic connection between each subtask by integrating previous an‑
swers into questions. The generative event extractionmodel proposed by Paolini et al. [20]
in 2021 solves the encoding problem of label semantics and other weak supervision signals
in a pipeline manner and can improve the performance in few‑sample scenarios. Since the
loss function in the pipeline‑based method is calculated after the argument extraction, er‑
ror propagation problems may occur.

Joint learning methods integrate the loss in both the trigger extraction stage and argu‑
ment extraction stage into the final loss function, treating triggers and arguments equally,
and the two canmutually promote eachother’s extraction effects [18]. In 2021, Sheng et al. [9]
first covered all event overlap issues through a unified framework with a cascading de‑
coder to perform TC, TI, and argument extraction in sequence, and F1 reached 71.4% on
the FewFC dataset. In order to further extract inter‑word relationships in overlapping
sentences in parallel, Cao et al. [10] proposed a single‑stage framework based on inter‑
word relationships by jointly extracting the intra‑word and cross‑word pair relationships
of triggers and arguments. The above two methods focus on the event extraction task
itself and do not introduce additional information or other tasks of joint information ex‑
traction. In 2022, Hsu et al. [21] converted event extraction into a conditional generation
problem, and extracted triggers and arguments end‑to‑end through additional prompts
and weak supervision information. In 2022, Van Nguyen et al. [22] used an edge weight‑
ingmechanism to learn the dependency graph between task instances and jointly complete
the information extraction task. In addition to introducing additional prompt information
in document‑level event extraction, remote dependencies can also be used to improve ex‑
traction performance. In 2023, Liu et al. [23] proposed a chain reasoning paradigm for
document‑level event argument extraction, which represented argument queries by con‑
structing first‑order logic rules and T‑Norm fuzzy logic, which is used for end‑to‑end learn‑
ing. We propose a joint overlapping event extraction model ROPEE for the event overlap‑
ping phenomenon. It uses the correspondence between event types and roles and trigger
embeddings to predict roles, which not only effectively alleviates error propagation, but
also further improves the accuracy of event extraction.
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3. ROPEE Model
The overall framework of ROPEE is illustrated in Figure 2. ROPEE includes fourmod‑

ules: event detection, trigger identification, role pre‑judgment, and argument extraction.
Specifically, type detection predicts potential event types and extracts overlapping trig‑
gers by calculating the similarity between sentence representations and event‑type embed‑
dings. The role pre‑judgment module comprehensively considers text embeddings and
trigger embeddings, pre‑judgment roles based on the correspondence table between event
types and roles, which can assist in the extraction of overlapping arguments. Trigger ex‑
traction and argument extraction are based on text representation that incorporates specific
event types of information and specific role information, and binary classifiers are adopted
to predict the starting and ending positions of triggers or arguments. To minimize error
propagation, all modules are jointly learned during training.
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3.1. Encoder
BERT [24] is utilized as an encoder. Sentence x = {x1, x2, …, xN} treats each Chinese

character (xi) as a token and is fed into the bert‑base‑Chinesemodule. The embedding of the
sentence is obtained by H = BERT (x1, x2, …, xN) = {h1, h2, …, hN}∈ RN×d, where d is the
dimension of the embeddings.

3.2. Event Detection Decoder
The event detection decoder is shown in the upper left corner of Figure 2, which is

used to predict potential event types in sentences by calculating the correlation between
sentence representations that imply type features and event‑type embeddings. Specifically,
event‑type embeddings can be denoted by a randomly initialized matrix (C∈ R|C|×d). We
apply rel to calculate the relevance between each token embedding (hi) and the potential
event type (c∈C), see Equation (1), and then a sentence representation (sc) adaptive to the
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event type is obtained, see Equation (2). Thus, the similarity probability between sc and c
is generated using a normalization σ operation for each event, see Equation (3).

rel(c,hi) = vT × tanh
(
W1

rel [c;hi; |c− hi|; c⊙ hi]
)

(1)

sc =
N

∑
i=1

exp(rel(c,hi))

∑N
j=1 exp

(
rel

(
c,hj

))hi (2)

ĉ = σ(rel(c, sc)) (3)

whereW1
rel ∈ R4d×4d and v ∈ R4d×1 are parameters of relevance calculation. |·| denotes

the element‑wise subtraction operation. ⊙ denotes the element‑wise multiplication. [·; ·]
represents the concatenating operation. σ represents the sigmoid function. Types satisfy‑
ing ĉ > ξ1 are selected as potential event types, where ξ1 is a threshold hyperparameter
between 0 and 1. All potential event types hidden in sentence x constitute the set of event
types Cx. The decoder can learn the parameters θtd = {W1

rel ,v,C}.

3.3. Trigger Identification Decoder
A large number of experiments demonstrate that trigger information can enhance

the ability of argument extraction. The trigger identification decoder is used to identify
triggers according to a specific event type (c ∈ Cx). The decoder includes a conditional
layer normalization (CLN) [25], a self‑attention layer [26], and a binary trigger tagging
classifier pair.

CLN fuses the two features and filters out unnecessary information. Here, the event‑
type information is encoded into the token representation, and the event‑typed token rep‑
resentation (gc

i ) is obtained:

gc
i = CLN(c,hi) = γc ⊙

(
hi − µ

σ

)
+ βc (4)

where type embedding c is used as the condition for γc = Wγc+ bγ and βc = Wβc+ bβ

in CLN. µ ∈ R and σ ∈ R are regarded as the average and deviation of hi:

µ =
1
d

d

∑
k=1

hik, σ =

√√√√1
d

d

∑
k=1

(hik − µ)2 (5)

where hik represents the k‑th dimension of hi.
In order to fully consider the contextual connection in the sentence, a self‑attention

layer [26] is used on the event‑typed token representation:

Zc = SelfAttention(Gc) (6)

where Gc =
{
gc

1, gc
2, . . . , gc

N
}
, Gc ∈ RN×d.

For each token, the binary classifier pair can mark the beginning and end position of
a trigger span:

t̂sc
i = p(ts

∣∣∣xi, c) = σ
(
wT

tsz
c
i + bts

)
t̂ec
i = p(te

∣∣∣xi, c) = σ
(
wT

tez
c
i + bte

)
(7)

where zc
i stands for the i‑th token embedding in Zc. We select the token satisfying t̂sc

i > ξ2
as the start position, and the one satisfying t̂ec

i > ξ3 as the end. ξ2 and ξ3 are threshold hy‑
perparameters. To acquire trigger t, each starting position is enumerated and the nearest
subsequent ending position is searched in the sentence. A token span from the start posi‑
tion to the end constitutes a complete trigger. The corresponding triggers are extracted at
different stages according to the potential event type. Thus, the trigger overlapping prob‑
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lem can be solved naturally. The set Tc,x contains all predicted triggers (t) under event
type (c) in sentence (x). θte is used to denote all parameters in the trigger identification
decoder module.

3.4. Role Pre‑Judgment Decoder
Since not all roles appear in a sentence under a specific event type, we designed a role

pre‑judgment decoder. Based on the predicted event type, it predicts the roles appearing
in the sentence based on the corresponding list of event types and roles, providing a basis
for extracting overlapping arguments. The decoder consists of three parts: the conditional
fusion layer, the self‑attention layer, and a role similarity detection function.

In order to obtain richer semantic information, we use CLN to fully integrate trigger
embeddings and token representation with event‑type knowledge to obtain a new token
representation (gct

i ), see Equation (8). Here, trigger embedding t is calculated by the aver‑
age pooling of token embeddings in the trigger span.

gct
i = CLN(gc

i , t) (8)

The self‑attention layer then reinforces the contextual relationships and the sentence
representation Zct′ is obtained:

Zct′ = SelfAttention
(
Gct) (9)

where Gct =
{
gct

1 , gct
2 , . . . , gct

N
}
, Gct ∈ RN×d.

The role similarity detection function predicts potential event‑type‑specific roles in
sentences by calculating the correlation between role embeddings and sentence represen‑
tations fused with role feature information. Specifically, a randomly initialized matrix
R∈ R|R|×d is used as role embeddings. We apply rel to calculate the relevance between
each token embedding (zct′

i ) and the potential role (r∈R), see Equation (10), and then a
sentence representation (sr) adaptive to the role is obtained, see Equation (11). Thus, the
similarity probability between sr and r is generated, see Equation (12), based onwhich nor‑
malization operation is performed to obtain the predicted probabilities of all roles under a
specific event type.

rel
(
r, zct′

i
)
= vT × tanh

(
W2

rel
[
r; zct′

i ;
∣∣r− zct′

i
∣∣; r⊙ zct′

i
])

(10)

sr =
N

∑
i=1

exp
(
rel

(
r, zct′

i
))

∑N
j=1 exp

(
rel

(
r, zct′

j

))zct′
i (11)

r̂ct = p(r
∣∣xi, c, t) = σ(rel(r, sr)) (12)

Select the role that satisfies r̂ct > ξ4 as the potential role type, and ξ4 is the threshold.
The role type set Rt,c,x contains all potential roles whose trigger is t under event type c in
sentence x. θre is used to denote all parameters in the role pre‑judgment decoder module.

3.5. Argument Extraction Decoder
An argument extraction decoder is composed of a positional embedding layer (PEL)

and role‑aware binary classifier pairs for argument tagging.
The relative position of a token to the trigger in the text is beneficial for argument ex‑

traction [9,27]. Here, relative position embeddings [8] imply the relative distance infor‑
mation between the current token and the trigger boundary token. Relative positional
embeddings are incorporated into the sentence representation (Zct′) using a concatena‑
tion operation:

Zct =
[
Zct′;P

]
(13)
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where P ∈ RN×dp is the relative position embeddings, and dp is the dimension of posi‑
tion embeddings.

For each token, a binary classifier sequence is employed to mark the boundary posi‑
tion of an argument under r ∈ Rt,c,x:

âsctr
i = p(as

r
∣∣xi, c, t, r) = r̂ctσ

(
wT

rs zct
i + brs

)
âectr

i = p(ae
r
∣∣xi, c, t, r) = r̂ctσ

(
wT

re zct
i + bre

) (14)

where zct
i represents the i‑th token in Zct. For each role (r), select the token that satis‑

fies âsctr
i > ξ5 as the starting position and the one that satisfies âectr

i > ξ6 as the end.
ξ5, ξ6 ∈ [0, 1] are thresholds. In order to extract the boundary of argument (ar) with role
(r), all starting positions are enumerated and the nearest subsequent ending position is
searched in the sentence. Tokens between the starting and the ending position constitute
a complete argument. In this way, only arguments of a specific role (r) under a specific
trigger (t) and specific event type (c) in a sentence are extracted at each prediction stage.
Thereby, the argument overlapping problem can be solved naturally. All candidate ar‑
guments (ar) form a set Ar,t,c,x, and θae denotes the set of all parameters of the PEL and
argument classifier.

3.6. Model Training
The loss of four modules is integrated during the training process, so the total loss

function is designed as follows:

Lossall = − ∑
x∈D

[ ∑
c∈Cx

logpθ1(c|x) + ∑
t∈Tx,c

logpθ2(t|x, c) + ∑
r∈Rx,c,t

logpθ3(r|x, c, t) + ∑
ar∈Ax,c,t,r

logpθ4(ar|x, c, t, r)] (15)

where Θ ≜ {θ1, θ2, θ3, θ4}. The first two subtasks, pθ1(c
∣∣x) and pθ2(t

∣∣x, c) , are adopted
from [9]. We decomposed the argument extraction loss to pθ3(r

∣∣x, c, t) and pθ4(ar
∣∣x, c, t, r)

and formulated it as:
pθ1(c|x) = (ĉ)c(1 − ĉ)(1−c)

pθ2(t|x, c) = ∏
z∈{s,e}

N
∏
i=1

(
t̂zc
i
)tzc

i
(
1 − t̂zc

i
)(1−tzc

i )

pθ3(r|x, c, t) =
(
r̂ct)rct(

1 − r̂ct)(1−rct)

pθ4(ar|x, c, t, r) = ∏
z∈{s,e}

N
∏
i=1

(
âzctr

i
)azctr

i
(
1 − âzctr

i
)(1−azctr

i )

(16)

where ĉ, t̂sc
i , t̂ec

i , r̂ct, âsctr
i , and âectr

i are the predicted probabilities of the event type, start‑
ing and ending positions of triggers, role types, and starting and ending positions of argu‑
ments, respectively, which can be calculated according to Formulas (3), (7), (12), and (14). c,
tsc
i , t

ec
i , rct, asctr

i , and aectr
i are real labels in the training data. θ1 ≜ {θbert, θtd}, θ2 ≜ {θbert, θte},

θ3 ≜ {θbert, θre}, θ4 ≜ {θbert, θae}, and θbert, θtd, θte, θre, θae denote the parameters from
BERT, event detection, trigger identification, role pre‑judgment, and argument extraction,
respectively. We choose Adam [28] over shuffled mini‑batches to minimize Lossall.

4. Experiments and Analysis
4.1. Datasets

We use the FewFC dataset [11] to conduct comparative experiments. The reason for
choosing FewFC is that other datasets do not completely cover the three overlapping sit‑
uations mentioned in Section 1 like FewFC. For example, only 10% of events in the main‑
streamACE2005 dataset have overlapping arguments, and there are no samples with over‑
lapping triggers [12]. FewFC is a benchmark dataset in the Chinese financial field extracted
for overlapping events, in which a total of 10 event types and 18 roles are annotated, and
about 22% of the sentences contain overlapping events. Regardless of whether the event
types are the same, the test set in FewFC contains 168 samples with overlapping triggers
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and 209 samples with overlapping arguments. Note that there is an intersection between
overlapping samples. The dataset is split into training, validation, and testing by 80%, 10%,
and 10%. See Table 1 for more detail.

Table 1. Statistics of FewFC. Each column represents the size of each subset in terms of overlapped
triggers, arguments, samples, and events.

Trigger Overlap Argument Overlap Samples Event

Training 1314 1541 7185 10,277
Validation 168 203 899 1281
Testing 168 209 898 1332
All 1650 1953 8982 12,890

4.2. Implementation Details
We choose PyTorch for code implementation, andNVIDIAA100‑PCIE‑40GB for train‑

ing. ROPEE uses the bert‑base‑Chinese model with a starting learning rate of 2 × 10–5, a
decoder learning rate of 1 × 10–4, and a decoder dropout rate of 0.3. The batch size is
eight. The hidden layer size (d) is 768, the size of the position embeddings (dp) is 64, and
the epochs for training are 20. All hyperparameters are turned on for the validation set.
The event type embeddings and role embeddings are trained from scratch with random
initialization.

4.3. Evaluation Metric
The evaluation metric includes four parts [8–10]: (1) Trigger Identification (TI): The

trigger is considered correctly recognized if the predicted trigger span aligns with the
ground truth label. (2) Trigger Classification* (TC): The trigger is deemed correctly clas‑
sified when it is both accurately identified and assigned to the right event type. (3) Argu‑
ment Identification (AI): The argument is considered correctly identified if the event type is
accurately recognized and the predicted argument span aligns with the gold span. (4) Ar‑
gument Classification (AC): The argument is considered correctly classifiedwhen it is both
accurately identified and the predicted role matches the gold role. Each of these parts is
evaluated by three metrics: micro precision (P), micro recall (R), and micro F1‑measure
(F1). The specific formula is as follows:

Precisionmicro =
∑n

i=1 TPi
∑n

i=1 TPi+∑n
i=1 FPi

Recallmicro =
∑n

i=1 TPi
∑n

i=1 TPi+∑n
i=1 FNi

F1micro = 2· Precisionmicro ·Recallmicro
Precisionmicro+Recallmicro

(17)

where Precisionmicro and Recallmicro represent the average precision and recall across
all categories.

4.4. Baselines
The followingbaselinemodels are chosen to comparewithROPEEover the FewFCdataset:

(1) BERT‑softmax [24]: It uses BERT to obtain the feature representation of words for the
classification of both trigger and event arguments.

(2) BERT‑CRF [29]: It uses a CRF module based on BERT to catch the transfer rules be‑
tween adjacent tags.

(3) BERT‑CRF‑joint: It extends the classic BIO labeling scheme by merging tags of event
types and roles for sequence annotation, such as BIO‑type roles [30].
These methods convert the EE task into a sequence labeling task by attaching a label

to each token. The flattened sequence labeling approach cannot address the overlapping
problem due to label conflicts.
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(4) PLMEE [12]: It extracts triggers and arguments in a pipeline manner, and alleviates
the argument overlapping issue by extracting role‑aware arguments.

(5) MQAEE: It is extended based on Li et al. [15]. It first predicts overlapping triggers
through question and answer, and then predicts overlapping arguments based on
typed triggers.

(6) CasEE [9]: It performs all four subtasks sequentially with a cascade decoder based on
the specific previous predictions.

The above three methods are multi‑stage methods for overlapping event extraction.

4.5. Main Results
Table 2 shows experimental results comparing ROPEE with baseline models over

FewFC. It can be revealed from the table below.

Table 2. Model comparative results of EE on four subtasks over FewFC. Highest scores are in bold.

TI (%) TC (%) AI (%) AC (%)

P R F1 P R F1 P R F1 P R F1

BERT‑softmax 89.8 79.0 84.0 80.2 61.8 69.8 74.6 62.8 68.2 72.5 60.2 65.8
BERT‑CRF 90.8 80.8 85.5 81.7 63.6 71.5 75.1 64.3 69.3 72.9 61.8 66.9

BERT‑CRF‑joint 89.5 79.8 84.4 80.7 63.0 70.8 76.1 63.5 69.2 74.2 61.2 67.1

PLMEE 83.7 85.8 84.7 75.6 74.5 75.1 74.3 67.3 70.6 72.5 65.5 68.8
MQAEE 89.1 85.5 87.4 79.7 76.1 77.8 70.3 68.3 69.3 68.2 66.5 67.3
CasEE 89.4 87.7 88.6 77.9 78.5 78.2 72.8 73.1 72.9 71.3 71.5 71.4

ROPEE 88.8 88.2 88.5 74.7 82.8 78.6 69.5 78.6 73.8 67.6 76.9 72.0

(1) In contrast to the flattened sequence labeling methods, ROPEE achieves superior re‑
call and F1 scores. Specifically, ROPEE outperforms BERT‑CRF‑joint by 15.7% and
4.9% on recall and the F1 score of AC. ROPEE also achieves significantly better than
the sequence labeling method on recall because the sequence labeling method can
only solve the flat event extraction problem, which can cause label conflicts. This
shows that ROPEE can effectively solve the problem of overlapping event extraction.

(2) Compared with the multi‑stage methods for overlapping event extraction, the F1
scores of ROPEE in AI and AC are greater than that of CasEE by 0.9% and 0.6%, re‑
spectively. We believe that the role pre‑judgment decoder in themodel provides good
help for argument extraction. In particular, ROPEE outperforms CasEE on the recall
score of all four subtasks, especially AI and AC by 5.5% and 5.4%, respectively. This
shows that the ROPEE model can better recall arguments that match the role type in
the training of role pre‑judgment. Overall, ROPEE outperforms all multi‑stage meth‑
ods for overlapping event extraction.

(3) We also conducted comparative experiments on the large languagemodelChatGLM2‑
6B [31,32]. Some parameters of ChatGLM were fine‑tuned using the P‑Tuning‑v2
method, but the final result was not ideal. ChatGLM is more accurate in extracting
core arguments and triggers, but the span position it extracts is seriously inconsis‑
tent with the original text, indicating that ChatGLM fails to understand the boundary
meaning represented by span.

4.6. Results of Overlapped EE
Table 3 shows the comparative performance of ROPEE and CasEE in two overlapping

situations. For sentences with overlapping triggers, ROPEE achieves improvements of
0.9% and 1.2% over CasEE on the F1 score of AI and AC, respectively. For overlapping
arguments, ROPEE outperforms CasEE in all four subtasks. Experimental results illustrate
the superiority of ROPEE in solving overlapping problems, and we argue that the role pre‑
judgment decoder predicts potential roles and promotes the performance of extraction in
overlapping arguments.
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Table 3. Comparative results of ROPEE and CasEE in two overlapping situations. Highest scores
are in bold.

TI (%) TC (%) AI (%) AC (%)

Trigger Overlap CasEE 92.5 82.8 75.5 74.2
ROPEE 92.0 82.4 76.4 75.4

Argument Overlap CasEE 88.6 78.2 74.2 72.8
ROPEE 89.2 78.7 74.9 73.4

4.7. Ablation Studies
To verify the rationality of the role pre‑judgment decoder, we conducted ablation

experiments. In Table 4, ROP‑text_emb only uses the text representation containing event‑
type embeddings as the predicted role type. type_emb denotes models that pre‑judge roles
using only event‑type embeddings. As shown from this table, the type_emb used in the
CasEE model performs worse than ROPEE on the F1 of TC, AI, and AC. It can be seen
that event‑type embeddings alone are not as efficient as the text embeddings containing
event‑type embeddings when used as the input for the role pre‑judgment decoder, e.g.,
ROP‑text_emb. ROPEE performs role pre‑judgment by fusing the information of text repre‑
sentation and trigger embeddings, which outperforms ROP‑text_emb in the F1 score of all
four subtasks. It can be seen that trigger embeddings serve as supplementary information,
allowing the model to grasp the knowledge hidden in the text.

Table 4. Comparative results on F1 using different role classifier strategies. Highest scores are
in bold.

TI (%) TC (%) AI (%) AC (%)

type_emb 88.6 78.2 72.9 71.4
ROP‑text_emb 88.2 78.4 73.4 71.7

ROPEE 88.5 78.6 73.8 72.0

In order to check the effectiveness of the role pre‑judgment decoder, we adopt two
training strategies while retaining the role pre‑judgment decoder. The experimental re‑
sults are given in Table 5. We use the correct role type for training and validation, such
as Role‑x (x can be 1, 2, 3, 4, or 5, representing the role pre‑judgment decoder in the loss
function after the correct role is input to the model weight value). With hyperparameters
unchanged, the Role‑1model converged quickly. It stopped iterating at 11 epochs, and its
effects on four subtasks were not as good as ROPEE. To enable the model to learn more
fully and pay attention to the learning of role types, we gradually increase the weight of
the loss function in the role prediction part with the other hyperparameters remaining un‑
changed. An obvious trend of first increasing and then decreasing can be seen from Role‑x
in Table 5, and the best performance is achieved in Role‑3, which is only 0.3% lower than
ROPEE in both of AI and AC. It can be seen that the training strategy of using the correct
role type requires adjusting parameters on the original basis to enable the model to focus
on role‑type learning. However, the performance of this training strategy is not as good as
ROPEE.We argue that the correct role type information can greatly reduce the difficulty of
the task. The rapid convergence of the model during training leads to insufficient learning
and over‑fitting.

Table 6 shows the comparative results between a model with trigger extraction and
one without trigger extraction. In the stage of data annotation, if no triggers are annotated,
the event extraction task is completed using only event types, roles, and arguments. Since
AI and AC tasks need only event‑type information, we use these two to measure the per‑
formance of ROPEE. According to Table 6, 20 epochs are also used for training. When the
correct triggers are not provided, the F1 score is decreased by 1.8% and 1.5% respectively,
in AI and AC. Due to the increased difficulty in model training, we increased the number
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of training epochs to 50, and the result was increased by 0.2% in the F1 of AI, in contrast
with 20 epoch w/o trigger. Thus, the lack of trigger annotation information will result in the
inability to obtain the position embeddings of triggers during argument extraction, which
also affects the model performance. Despite this, the model without trigger information
achieves improvements than that of PLMEE and MQAEE, both of which are multi‑stage
methods with triggers involved.

Table 5. Comparative results on F1 using different training strategies. Highest scores are in bold.

TI (%) TC (%) AI (%) AC (%)

Role‑1 88.1 77.6 71.7 69.4
Role‑2 88.5 77.7 72.7 70.6
Role‑3 88.4 78.1 73.5 71.7
Role‑4 87.8 76.6 72.0 70.3
Role‑5 88.2 77.2 72.4 70.7
ROPEE 88.5 78.6 73.8 72.0

Table 6. Comparative results on F1 with and without trigger annotation.

P (%) R (%) F1 (%)

ROPEE
AI 69.5 78.6 73.8
AC 67.6 76.9 72.0

20 epoch w/o trigger AI 71.4 72.6 72.0
AC 70.0 71.0 70.5

50 epoch w/o trigger AI 70.9 73.5 72.2
AC 69.3 71.7 70.5

4.8. Case Analysis
Figure 3 shows a test case analysis onCasEE andROPEE, two events both triggered by

“reduce”. For the “减持” (Reduction) event, both CasEE and ROPEE predict “Great Wall
Film and Television” as the role of “target‑company”, and there is no such argument in the
standard answer. This shows that these two models lack the ability to judge the semantic
boundaries of events. For the “股份股权转让” (share equity transfer) event, CasEE failed
to extract the remote argument “GreatWall Group” as the role sub, while ROPEE improved
the recall of AC by adding a role pre‑judgment decoder, and, thus, was able to correctly
detect the role of sub.
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5. Conclusions
We design a joint learning framework ROPEE for overlapping event extraction, in

which the event detection decoder can identify potential event types and help extract over‑
lapping triggers. Based on text embeddings and trigger embeddings, a role pre‑judgment
module is proposed to predict roles based on the corresponding relationship between
event types and roles, thereby enhancing the extraction of overlapping arguments. ROPEE
has a certain effectiveness in addressing the issue of trigger overlap in EE, as well as argu‑
ment overlap. Unlike other pipeline models, we integrate the tasks of four modules in
the loss optimization layer, avoiding the traditional problem of error propagation exist‑
ing in other pipeline methods. On the FewFC dataset, which was compared with other
flattened sequence labeling methods (such as BERT‑softmax, BERT‑CRF, and BERT‑CRF‑
joint), ROPEE achieves excellent recall and F1 scores on all subtasks; compared with multi‑
stage methods for overlapping event extraction (such as PLMEE, MQAEE, and CasEE),
and ROPEE is superior to the above methods in terms of F1 scores of TC, AI, and AC. The
above results show the superiority of ROPEE in overlapping event extraction. The ablation
experimental results show that our model can also be used in different training strategies
and other task scenarios or datasets without trigger labeling. In the future, we plan to
build one more overlapping datasets based on specific application scenarios to verify our
model’s performance. In addition, since trigger tagging requires additionalmanpower and
material resources, the absence of trigger tagging will reduce the accuracy of the model.
The scenario without trigger annotation is general (models should automatically find the
core arguments in the sentence), and we plan to improve the model performance in this
scenario using position embeddings relative to the core arguments. Finally, we implement
joint learning by designing a joint loss of four modules in this article, and we plan to de‑
velop different joint strategies to strengthen the interaction between each subtask.
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