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Abstract

:

The objective of event extraction is to recognize event triggers and event categories within unstructured text and produce structured event arguments. However, there is a common phenomenon of triggers and arguments of different event types in a sentence that may be the same word elements, which poses new challenges to this task. In this article, a joint learning framework for overlapping event extraction (ROPEE) is proposed. In this framework, a role pre-judgment module is devised prior to argument extraction. It conducts role pre-judgment by leveraging the correlation between event types and roles, as well as trigger embeddings. Experiments on the FewFC show that the proposed model outperforms other baseline models in terms of Trigger Classification, Argument Identification, and Argument Classification by 0.4%, 0.9%, and 0.6%. In scenarios of trigger overlap and argument overlap, the proposed model outperforms the baseline models in terms of Argument Identification and Argument Classification by 0.9%, 1.2%, 0.7%, and 0.6%, respectively, indicating the effectiveness of ROPEE in solving overlapping events.
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1. Introduction


Event extraction (EE) is a challenging task in natural language understanding that plays a crucial role [1,2,3,4]. EE is dedicated to extracting event information occurring in the real world from text, classifying them into predefined event types, identifying the trigger and event participants, etc. [5]. Event extraction can be widely used in information retrieval and summarization, knowledge graph construction [6], intelligence analysis [7], and other fields. EE usually includes four subtasks, i.e., trigger identification (TI), Trigger Classification (TC), Argument Identification (AI), and Argument Classification (AC) [8,9,10].



The objective of event extraction is to identify events and arguments from the text. The event extraction task is formally defined as follows:



Given an input sentence x = {x1, x2, …, xN} consisting of N words, an event-type collection ( C ), and an argument role collection ( ℛ ). Let    ℰ x    represent the gold set.    ℰ x    includes all event types (   C x  ⊆ C  ) in the sentence, all triggers (   T  x , c    ) in each event type (  c ∈  C x   ), and different argument roles under each event type.    a r  ∈  A x    is the argument corresponding to   r ∈ ℛ  .



However, a sentence may contain multiple events, and the arguments and triggers of these events have complex overlapping phenomena. We summarize this into three situations: (1) Different event types may be triggered by the same trigger. The trigger “减持” (reduced its holdings) marked in red in Figure 1 triggers both the shareholding reduction event and the share equity transfer event. (2) The same argument plays different roles in different event types. In Figure 1, “大族激光” (Han’s Laser) plays the role of obj in the “股份股权转让” (share equity transfer) event, and also plays the target-company role in the share equity transfer, which is triggered by “减持” (reduced its holdings). (3) The same argument plays the same role in different events of the same event type. In Figure 1, the “股份股权转让” (share equity transfer) event appears twice in the sentence, both occurring in “10月” (October). In FewFC (a Chinese financial event extraction dataset) [11], about 13.5% of the sentences have trigger overlap problems, and 21.7% of the sentences have argument overlap problems. The same event type appears repeatedly in 8.3% of the sentences.



Most previous studies partially addressed overlapping issues and did not cover all the above situations. In 2019, Yang et al. [12] utilized a staged pipeline approach for event trigger and argument extraction. Nevertheless, this method overlooked the challenge of trigger overlap. In 2020, Xu et al. [13] used a joint extraction framework to solve the role overlapping problem. Xu defined event relationship triples to represent the relationship between triggers, arguments, and roles, thereby converting the argument classification problem into a relationship extraction problem. In 2020, Huang et al. [14] proposed using a hierarchical knowledge structure graph containing conceptual and semantic reasoning paths to represent knowledge. They employed GEANet to encode intricate knowledge, addressing the issue of trigger extraction in nested structures within the biomedical domain [14]. In 2022, Zhang et al. [15] designed a two-stage pipeline model in which the trigger is identified using a sequence annotation approach, and overlapping arguments are identified through multiple sets of role binary classification networks. In 2023, Yang et al. [16] used a multi-task learning model to extract entity relationships and events, in which a multi-label classification method is used to settle the overlapping role problem shared by these two tasks.



The contributions of this paper are summarized as follows:




	(1)

	
A role pre-judgment module is proposed to predict roles based on the correspondence between event types and roles, text embeddings, and trigger embeddings, which can significantly improve the recall rate of each subtask and provide a basis for extracting overlapping arguments.




	(2)

	
ROPEE adopts a joint learning framework, and the designed loss function includes the losses of four modules, event-type detection, trigger extraction, role pre-judgment, and argument extraction, so as to effectively learn the interactive relationship between modules during training. Thus, error propagation issues can be alleviated in the prediction stage.




	(3)

	
ROPEE outperforms the baseline model by 0.4%, 0.9%, and 0.6% in terms of F1 over TC, AI, and AC on the FewFC dataset. For sentences with overlapping triggers, ROPEE outperforms the baseline model by 0.9% and 1.2% in terms of F1 over AI and AC, respectively. In the case of overlapping arguments, ROPEE demonstrates superior performance compared to the baseline model, with improvements of 0.7% and 0.6%. This highlights the effectiveness of our suggested approach in managing overlapping occurrences of event phenomena.









The remainder of this paper is organized as follows: In Section 2, related studies are given. In Section 3, the details of the ROPEE model are introduced. Comparative experiments are performed and experimental results are analyzed in Section 4. Section 5 concludes this work.




2. Related Studies


Event extraction is one of the most challenging tasks in information extraction research [17]. Existing paradigms related to event extraction include pipeline methods and joint learning methods [18].



The pipeline-based method handles these four subtasks of EE separately. Each subtask has its own objective function and loss. In 2015, Chen et al. [8] developed a dynamic multi-pooling convolutional neural network (DMCNN). This network utilizes a dynamic multi-pooling layer based on event triggers and arguments to retain essential information, combining both the sentence-level and lexical-level details from the raw text without the need for extensive preprocessing. Most deep learning supervised methods for event extraction require lots of labeled data for training. Annotating large amounts of data is very laborious and hard to get. To gain more insights from limited training data, Yang et al. [12] combined the extraction model and event generation method in 2019 and improved the performance of the argument extractor through a weighted loss function based on various role importance. The above two methods cannot explicitly model the semantics between events and roles, nor can they capture the interaction between them. In 2020, Li et al. [19] devised a multi-stage QA framework to represent event extraction as reading comprehension issues and captured the dynamic connection between each subtask by integrating previous answers into questions. The generative event extraction model proposed by Paolini et al. [20] in 2021 solves the encoding problem of label semantics and other weak supervision signals in a pipeline manner and can improve the performance in few-sample scenarios. Since the loss function in the pipeline-based method is calculated after the argument extraction, error propagation problems may occur.



Joint learning methods integrate the loss in both the trigger extraction stage and argument extraction stage into the final loss function, treating triggers and arguments equally, and the two can mutually promote each other’s extraction effects [18]. In 2021, Sheng et al. [9] first covered all event overlap issues through a unified framework with a cascading decoder to perform TC, TI, and argument extraction in sequence, and F1 reached 71.4% on the FewFC dataset. In order to further extract inter-word relationships in overlapping sentences in parallel, Cao et al. [10] proposed a single-stage framework based on inter-word relationships by jointly extracting the intra-word and cross-word pair relationships of triggers and arguments. The above two methods focus on the event extraction task itself and do not introduce additional information or other tasks of joint information extraction. In 2022, Hsu et al. [21] converted event extraction into a conditional generation problem, and extracted triggers and arguments end-to-end through additional prompts and weak supervision information. In 2022, Van Nguyen et al. [22] used an edge weighting mechanism to learn the dependency graph between task instances and jointly complete the information extraction task. In addition to introducing additional prompt information in document-level event extraction, remote dependencies can also be used to improve extraction performance. In 2023, Liu et al. [23] proposed a chain reasoning paradigm for document-level event argument extraction, which represented argument queries by constructing first-order logic rules and T-Norm fuzzy logic, which is used for end-to-end learning. We propose a joint overlapping event extraction model ROPEE for the event overlapping phenomenon. It uses the correspondence between event types and roles and trigger embeddings to predict roles, which not only effectively alleviates error propagation, but also further improves the accuracy of event extraction.




3. ROPEE Model


The overall framework of ROPEE is illustrated in Figure 2. ROPEE includes four modules: event detection, trigger identification, role pre-judgment, and argument extraction. Specifically, type detection predicts potential event types and extracts overlapping triggers by calculating the similarity between sentence representations and event-type embeddings. The role pre-judgment module comprehensively considers text embeddings and trigger embeddings, pre-judgment roles based on the correspondence table between event types and roles, which can assist in the extraction of overlapping arguments. Trigger extraction and argument extraction are based on text representation that incorporates specific event types of information and specific role information, and binary classifiers are adopted to predict the starting and ending positions of triggers or arguments. To minimize error propagation, all modules are jointly learned during training.



3.1. Encoder


BERT [24] is utilized as an encoder. Sentence x = {x1, x2, …, xN} treats each Chinese character (xi) as a token and is fed into the bert-base-Chinese module. The embedding of the sentence is obtained by H = BERT (x1, x2, …, xN) = {h1, h2, …, hN}  ∈  ℝ  N × d    , where d is the dimension of the embeddings.




3.2. Event Detection Decoder


The event detection decoder is shown in the upper left corner of Figure 2, which is used to predict potential event types in sentences by calculating the correlation between sentence representations that imply type features and event-type embeddings. Specifically, event-type embeddings can be denoted by a randomly initialized matrix (C  ∈  ℝ   | C |  × d    ). We apply rel to calculate the relevance between each token embedding (hi) and the potential event type (c∈C), see Equation (1), and then a sentence representation (sc) adaptive to the event type is obtained, see Equation (2). Thus, the similarity probability between sc and c is generated using a normalization  σ  operation for each event, see Equation (3).


  r e l  (  c ,  h i   )  =  v T  × t a n h  (   W  r e l  1   [  c ;  h i  ;  |  c −  h i   |  ; c ⊙  h i   ]   )   



(1)






   s c  =   ∑   i = 1  N    e x p  (  r e l  (  c ,  h i   )   )      ∑   j = 1  N  e x p  (  r e l  (  c ,  h j   )   )     h i       



(2)






   c ^  = σ  (  r e l  (  c ,  s c   )   )   



(3)




where    W  r e l  1  ∈  ℝ  4 d × 4 d     and   v ∈  ℝ  4 d × 1     are parameters of relevance calculation.    | · |    denotes the element-wise subtraction operation.  ⊙  denotes the element-wise multiplication.    [  · ; ·  ]    represents the concatenating operation.  σ  represents the sigmoid function. Types satisfying    c ^  >  ξ 1    are selected as potential event types, where    ξ 1    is a threshold hyperparameter between 0 and 1. All potential event types hidden in sentence x constitute the set of event types    C x   . The decoder can learn the parameters    θ  t d   = {  W  r e l  1  , v , C }  .




3.3. Trigger Identification Decoder


A large number of experiments demonstrate that trigger information can enhance the ability of argument extraction. The trigger identification decoder is used to identify triggers according to a specific event type (  c ∈  C x   ). The decoder includes a conditional layer normalization (CLN) [25], a self-attention layer [26], and a binary trigger tagging classifier pair.



CLN fuses the two features and filters out unnecessary information. Here, the event-type information is encoded into the token representation, and the event-typed token representation (   g i c   ) is obtained:


   g i c  = CLN  (  c ,  h i   )  =  γ c  ⊙  (     h i  − μ  σ   )  +  β c   



(4)




where type embedding c is used as the condition for    γ c  =  W γ  c +  b γ    and    β c  =  W β  c +  b β    in CLN.   μ ∈ ℝ   and   σ ∈ ℝ   are regarded as the average and deviation of hi:


  μ =  1 d    ∑   k = 1  d   h  i k   ,       σ =    1 d    ∑   k = 1  d     (   h  i k   − μ  )   2     



(5)




where hik represents the k-th dimension of hi.



In order to fully consider the contextual connection in the sentence, a self-attention layer [26] is used on the event-typed token representation:


   Z c  = SelfAttention  (   G c   )   



(6)




where    G c  =  {   g 1 c  ,  g 2 c  , … ,  g N c   }   ,    G c  ∈  ℝ  N × d    .



For each token, the binary classifier pair can mark the beginning and end position of a trigger span:


     t ^  i  s c   = p (  t s  |  x i  , c ) = σ  (   w   t s   T   z i c  +  b   t s     )       t ^  i  e c   = p (  t e  |  x i  , c ) = σ  (   w   t e   T   z i c  +  b   t e     )    



(7)




where    z i c    stands for the i-th token embedding in    Z c   . We select the token satisfying     t ^  i  s c   >  ξ 2    as the start position, and the one satisfying     t ^  i  e c   >  ξ 3    as the end.    ξ 2    and    ξ 3    are threshold hyperparameters. To acquire trigger t, each starting position is enumerated and the nearest subsequent ending position is searched in the sentence. A token span from the start position to the end constitutes a complete trigger. The corresponding triggers are extracted at different stages according to the potential event type. Thus, the trigger overlapping problem can be solved naturally. The set    T  c , x     contains all predicted triggers (t) under event type (c) in sentence (x).    θ  t e     is used to denote all parameters in the trigger identification decoder module.




3.4. Role Pre-Judgment Decoder


Since not all roles appear in a sentence under a specific event type, we designed a role pre-judgment decoder. Based on the predicted event type, it predicts the roles appearing in the sentence based on the corresponding list of event types and roles, providing a basis for extracting overlapping arguments. The decoder consists of three parts: the conditional fusion layer, the self-attention layer, and a role similarity detection function.



In order to obtain richer semantic information, we use CLN to fully integrate trigger embeddings and token representation with event-type knowledge to obtain a new token representation (   g i  c t    ), see Equation (8). Here, trigger embedding t is calculated by the average pooling of token embeddings in the trigger span.


   g i  c t   = CLN  (   g i c  , t  )   



(8)







The self-attention layer then reinforces the contextual relationships and the sentence representation    Z  c t ′     is obtained:


   Z  c t ′   = SelfAttention  (   G  c t    )   



(9)




where    G  c t   =  {   g 1  c t   ,  g 2  c t   , … ,  g N  c t    }   ,    G  c t   ∈  ℝ  N × d    .



The role similarity detection function predicts potential event-type-specific roles in sentences by calculating the correlation between role embeddings and sentence representations fused with role feature information. Specifically, a randomly initialized matrix R  ∈  ℝ   | ℛ |  × d     is used as role embeddings. We apply rel to calculate the relevance between each token embedding (   z i  c t ′    ) and the potential role (r∈R), see Equation (10), and then a sentence representation (sr) adaptive to the role is obtained, see Equation (11). Thus, the similarity probability between sr and r is generated, see Equation (12), based on which normalization operation is performed to obtain the predicted probabilities of all roles under a specific event type.


  r e l  (  r ,  z i  c t ′    )  =  v T  × t a n h  (   W  r e l  2   [  r ;  z i  c t ′   ;  |  r −  z i  c t ′    |  ; r ⊙  z i  c t ′    ]   )   



(10)






   s r  =   ∑   i = 1  N    e x p  (  r e l  (  r ,  z i  c t ′    )   )      ∑   j = 1  N  e x p  (  r e l  (  r ,  z j  c t ′    )   )     z i  c t ′      



(11)






    r ^   c t   = p ( r |  x i  , c , t ) = σ  (  r e l  (  r ,  s r   )   )   



(12)







Select the role that satisfies     r ^   c t   >  ξ 4    as the potential role type, and    ξ 4    is the threshold. The role type set    ℛ  t , c , x     contains all potential roles whose trigger is t under event type c in sentence x.    θ  r e     is used to denote all parameters in the role pre-judgment decoder module.




3.5. Argument Extraction Decoder


An argument extraction decoder is composed of a positional embedding layer (PEL) and role-aware binary classifier pairs for argument tagging.



The relative position of a token to the trigger in the text is beneficial for argument extraction [9,27]. Here, relative position embeddings [8] imply the relative distance information between the current token and the trigger boundary token. Relative positional embeddings are incorporated into the sentence representation (   Z  c t ′    ) using a concatenation operation:


   Z  c t   =  [   Z  c t ′   ; P  ]   



(13)




where   P ∈  ℝ  N ×  d p      is the relative position embeddings, and dp is the dimension of position embeddings.



For each token, a binary classifier sequence is employed to mark the boundary position of an argument under   r ∈  ℛ  t , c , x    :


     a ^  i  s c t r   = p (  a r s  |  x i  , c , t , r ) =   r ^   c t   σ  (   w   r s   T   z i  c t   +  b   r s     )       a ^  i  e c t r   = p (  a r e  |  x i  , c , t , r ) =   r ^   c t   σ  (   w   r e   T   z i  c t   +  b   r e     )    



(14)




where    z i  c t     represents the i-th token in Zct. For each role (r), select the token that satisfies     a ^  i  s c t r   >  ξ 5    as the starting position and the one that satisfies     a ^  i  e c t r   >  ξ 6    as the end.    ξ 5  ,  ξ 6  ∈  [  0 ,   1  ]    are thresholds. In order to extract the boundary of argument (ar) with role (r), all starting positions are enumerated and the nearest subsequent ending position is searched in the sentence. Tokens between the starting and the ending position constitute a complete argument. In this way, only arguments of a specific role (r) under a specific trigger (t) and specific event type (c) in a sentence are extracted at each prediction stage. Thereby, the argument overlapping problem can be solved naturally. All candidate arguments (ar) form a set    A  r , t , c , x    , and    θ  a e     denotes the set of all parameters of the PEL and argument classifier.




3.6. Model Training


The loss of four modules is integrated during the training process, so the total loss function is designed as follows:


    Loss   all   = −   ∑   x ∈ D   [   ∑   c ∈  C x    l o g  p   θ 1    ( c | x ) +   ∑   t ∈  T  x , c     l o g  p   θ 2    ( t | x , c ) +   ∑   r ∈  ℛ  x , c , t     l o g  p   θ 3    ( r | x , c , t ) +   ∑    a r  ∈  A  x , c , t , r     l o g  p   θ 4    (  a r  | x , c , t , r ) ]  



(15)




where   Θ ≜  {   θ 1  ,  θ 2  ,  θ 3  ,  θ 4   }   . The first two subtasks,    p   θ 1    ( c | x )   and    p   θ 2    ( t | x , c )  , are adopted from [9]. We decomposed the argument extraction loss to    p   θ 3    ( r | x , c , t )   and    p   θ 4    (  a r  | x , c , t , r )   and formulated it as:


    p   θ 1    ( c | x ) =    (  c ^  )    c ¯      (  1 −  c ^   )     (  1 −  c ¯   )        p   θ 2    ( t | x , c ) =   ∏   z ∈  {  s , e  }      ∏   i = 1  N     (    t ^  i  z c    )      t ¯  i  z c        (  1 −   t ^  i  z c    )     (  1 −   t ¯  i  z c    )        p   θ 3    ( r | x , c , t ) =    (    r ^   c t    )      r ¯   c t        (  1 −   r ^   c t    )     (  1 −   r ¯   c t    )        p   θ 4    (  a r  | x , c , t , r ) =   ∏   z ∈  {  s , e  }      ∏   i = 1  N     (    a ^  i  z c t r    )      a ¯  i  z c t r        (  1 −   a ^  i  z c t r    )     (  1 −   a ¯  i  z c t r    )      



(16)




where   c ^  ,     t ^  i  s c    ,     t ^  i  e c    ,     r ^   c t    ,     a ^  i  s c t r    , and     a ^  i  e c t r     are the predicted probabilities of the event type, starting and ending positions of triggers, role types, and starting and ending positions of arguments, respectively, which can be calculated according to Formulas (3), (7), (12), and (14).   c ¯  ,     t ¯  i  s c    ,     t ¯  i  e c    ,     r ¯   c t    ,     a ¯  i  s c t r    , and     a ¯  i  e c t r     are real labels in the training data.    θ 1  ≜  {   θ  b e r t   ,  θ  t d    }   ,    θ 2  ≜  {   θ  b e r t   ,  θ  t e    }   ,    θ 3  ≜  {   θ  b e r t   ,  θ  r e    }   ,    θ 4  ≜  {   θ  b e r t   ,  θ  a e    }   , and    θ  b e r t    ,    θ  t d    ,    θ  t e    ,    θ  r e    ,    θ  a e     denote the parameters from BERT, event detection, trigger identification, role pre-judgment, and argument extraction, respectively. We choose Adam [28] over shuffled mini-batches to minimize Lossall.





4. Experiments and Analysis


4.1. Datasets


We use the FewFC dataset [11] to conduct comparative experiments. The reason for choosing FewFC is that other datasets do not completely cover the three overlapping situations mentioned in Section 1 like FewFC. For example, only 10% of events in the mainstream ACE2005 dataset have overlapping arguments, and there are no samples with overlapping triggers [12]. FewFC is a benchmark dataset in the Chinese financial field extracted for overlapping events, in which a total of 10 event types and 18 roles are annotated, and about 22% of the sentences contain overlapping events. Regardless of whether the event types are the same, the test set in FewFC contains 168 samples with overlapping triggers and 209 samples with overlapping arguments. Note that there is an intersection between overlapping samples. The dataset is split into training, validation, and testing by 80%, 10%, and 10%. See Table 1 for more detail.




4.2. Implementation Details


We choose PyTorch for code implementation, and NVIDIA A100-PCIE-40GB for training. ROPEE uses the bert-base-Chinese model with a starting learning rate of 2 × 10–5, a decoder learning rate of 1 × 10–4, and a decoder dropout rate of 0.3. The batch size is eight. The hidden layer size (d) is 768, the size of the position embeddings (dp) is 64, and the epochs for training are 20. All hyperparameters are turned on for the validation set. The event type embeddings and role embeddings are trained from scratch with random initialization.




4.3. Evaluation Metric


The evaluation metric includes four parts [8,9,10]: (1) Trigger Identification (TI): The trigger is considered correctly recognized if the predicted trigger span aligns with the ground truth label. (2) Trigger Classification* (TC): The trigger is deemed correctly classified when it is both accurately identified and assigned to the right event type. (3) Argument Identification (AI): The argument is considered correctly identified if the event type is accurately recognized and the predicted argument span aligns with the gold span. (4) Argument Classification (AC): The argument is considered correctly classified when it is both accurately identified and the predicted role matches the gold role. Each of these parts is evaluated by three metrics: micro precision (P), micro recall (R), and micro F1-measure (F1). The specific formula is as follows:


     Precision   m i c r o   =     ∑   i = 1  n    TP  i      ∑   i = 1  n    TP  i  +   ∑   i = 1  n    FP  i         Recall   m i c r o   =     ∑   i = 1  n    TP  i      ∑   i = 1  n    TP  i  +   ∑   i = 1  n    FN  i       F  1  m i c r o   = 2 ·     Precision   m i c r o   ·   Recall   m i c r o       Precision   m i c r o   +   Recall   m i c r o       



(17)




where Precisionmicro and Recallmicro represent the average precision and recall across all categories.




4.4. Baselines


The following baseline models are chosen to compare with ROPEE over the FewFC dataset:




	(1)

	
BERT-softmax [24]: It uses BERT to obtain the feature representation of words for the classification of both trigger and event arguments.




	(2)

	
BERT-CRF [29]: It uses a CRF module based on BERT to catch the transfer rules between adjacent tags.




	(3)

	
BERT-CRF-joint: It extends the classic BIO labeling scheme by merging tags of event types and roles for sequence annotation, such as BIO-type roles [30].









These methods convert the EE task into a sequence labeling task by attaching a label to each token. The flattened sequence labeling approach cannot address the overlapping problem due to label conflicts.



	(4)

	
PLMEE [12]: It extracts triggers and arguments in a pipeline manner, and alleviates the argument overlapping issue by extracting role-aware arguments.




	(5)

	
MQAEE: It is extended based on Li et al. [15]. It first predicts overlapping triggers through question and answer, and then predicts overlapping arguments based on typed triggers.




	(6)

	
CasEE [9]: It performs all four subtasks sequentially with a cascade decoder based on the specific previous predictions.







The above three methods are multi-stage methods for overlapping event extraction.




4.5. Main Results


Table 2 shows experimental results comparing ROPEE with baseline models over FewFC. It can be revealed from the table below.



	(1)

	
In contrast to the flattened sequence labeling methods, ROPEE achieves superior recall and F1 scores. Specifically, ROPEE outperforms BERT-CRF-joint by 15.7% and 4.9% on recall and the F1 score of AC. ROPEE also achieves significantly better than the sequence labeling method on recall because the sequence labeling method can only solve the flat event extraction problem, which can cause label conflicts. This shows that ROPEE can effectively solve the problem of overlapping event extraction.




	(2)

	
Compared with the multi-stage methods for overlapping event extraction, the F1 scores of ROPEE in AI and AC are greater than that of CasEE by 0.9% and 0.6%, respectively. We believe that the role pre-judgment decoder in the model provides good help for argument extraction. In particular, ROPEE outperforms CasEE on the recall score of all four subtasks, especially AI and AC by 5.5% and 5.4%, respectively. This shows that the ROPEE model can better recall arguments that match the role type in the training of role pre-judgment. Overall, ROPEE outperforms all multi-stage methods for overlapping event extraction.




	(3)

	
We also conducted comparative experiments on the large language model ChatGLM2-6B [31,32]. Some parameters of ChatGLM were fine-tuned using the P-Tuning-v2 method, but the final result was not ideal. ChatGLM is more accurate in extracting core arguments and triggers, but the span position it extracts is seriously inconsistent with the original text, indicating that ChatGLM fails to understand the boundary meaning represented by span.








4.6. Results of Overlapped EE


Table 3 shows the comparative performance of ROPEE and CasEE in two overlapping situations. For sentences with overlapping triggers, ROPEE achieves improvements of 0.9% and 1.2% over CasEE on the F1 score of AI and AC, respectively. For overlapping arguments, ROPEE outperforms CasEE in all four subtasks. Experimental results illustrate the superiority of ROPEE in solving overlapping problems, and we argue that the role pre-judgment decoder predicts potential roles and promotes the performance of extraction in overlapping arguments.




4.7. Ablation Studies


To verify the rationality of the role pre-judgment decoder, we conducted ablation experiments. In Table 4, ROP-text_emb only uses the text representation containing event-type embeddings as the predicted role type. type_emb denotes models that pre-judge roles using only event-type embeddings. As shown from this table, the type_emb used in the CasEE model performs worse than ROPEE on the F1 of TC, AI, and AC. It can be seen that event-type embeddings alone are not as efficient as the text embeddings containing event-type embeddings when used as the input for the role pre-judgment decoder, e.g., ROP-text_emb. ROPEE performs role pre-judgment by fusing the information of text representation and trigger embeddings, which outperforms ROP-text_emb in the F1 score of all four subtasks. It can be seen that trigger embeddings serve as supplementary information, allowing the model to grasp the knowledge hidden in the text.



In order to check the effectiveness of the role pre-judgment decoder, we adopt two training strategies while retaining the role pre-judgment decoder. The experimental results are given in Table 5. We use the correct role type for training and validation, such as Role-x (x can be 1, 2, 3, 4, or 5, representing the role pre-judgment decoder in the loss function after the correct role is input to the model weight value). With hyperparameters unchanged, the Role-1 model converged quickly. It stopped iterating at 11 epochs, and its effects on four subtasks were not as good as ROPEE. To enable the model to learn more fully and pay attention to the learning of role types, we gradually increase the weight of the loss function in the role prediction part with the other hyperparameters remaining unchanged. An obvious trend of first increasing and then decreasing can be seen from Role-x in Table 5, and the best performance is achieved in Role-3, which is only 0.3% lower than ROPEE in both of AI and AC. It can be seen that the training strategy of using the correct role type requires adjusting parameters on the original basis to enable the model to focus on role-type learning. However, the performance of this training strategy is not as good as ROPEE. We argue that the correct role type information can greatly reduce the difficulty of the task. The rapid convergence of the model during training leads to insufficient learning and over-fitting.



Table 6 shows the comparative results between a model with trigger extraction and one without trigger extraction. In the stage of data annotation, if no triggers are annotated, the event extraction task is completed using only event types, roles, and arguments. Since AI and AC tasks need only event-type information, we use these two to measure the performance of ROPEE. According to Table 6, 20 epochs are also used for training. When the correct triggers are not provided, the F1 score is decreased by 1.8% and 1.5% respectively, in AI and AC. Due to the increased difficulty in model training, we increased the number of training epochs to 50, and the result was increased by 0.2% in the F1 of AI, in contrast with 20 epoch w/o trigger. Thus, the lack of trigger annotation information will result in the inability to obtain the position embeddings of triggers during argument extraction, which also affects the model performance. Despite this, the model without trigger information achieves improvements than that of PLMEE and MQAEE, both of which are multi-stage methods with triggers involved.




4.8. Case Analysis


Figure 3 shows a test case analysis on CasEE and ROPEE, two events both triggered by “reduce”. For the “减持” (Reduction) event, both CasEE and ROPEE predict “Great Wall Film and Television” as the role of “target-company”, and there is no such argument in the standard answer. This shows that these two models lack the ability to judge the semantic boundaries of events. For the “股份股权转让” (share equity transfer) event, CasEE failed to extract the remote argument “Great Wall Group” as the role sub, while ROPEE improved the recall of AC by adding a role pre-judgment decoder, and, thus, was able to correctly detect the role of sub.





5. Conclusions


We design a joint learning framework ROPEE for overlapping event extraction, in which the event detection decoder can identify potential event types and help extract overlapping triggers. Based on text embeddings and trigger embeddings, a role pre-judgment module is proposed to predict roles based on the corresponding relationship between event types and roles, thereby enhancing the extraction of overlapping arguments. ROPEE has a certain effectiveness in addressing the issue of trigger overlap in EE, as well as argument overlap. Unlike other pipeline models, we integrate the tasks of four modules in the loss optimization layer, avoiding the traditional problem of error propagation existing in other pipeline methods. On the FewFC dataset, which was compared with other flattened sequence labeling methods (such as BERT-softmax, BERT-CRF, and BERT-CRF-joint), ROPEE achieves excellent recall and F1 scores on all subtasks; compared with multi-stage methods for overlapping event extraction (such as PLMEE, MQAEE, and CasEE), and ROPEE is superior to the above methods in terms of F1 scores of TC, AI, and AC. The above results show the superiority of ROPEE in overlapping event extraction. The ablation experimental results show that our model can also be used in different training strategies and other task scenarios or datasets without trigger labeling. In the future, we plan to build one more overlapping datasets based on specific application scenarios to verify our model’s performance. In addition, since trigger tagging requires additional manpower and material resources, the absence of trigger tagging will reduce the accuracy of the model. The scenario without trigger annotation is general (models should automatically find the core arguments in the sentence), and we plan to improve the model performance in this scenario using position embeddings relative to the core arguments. Finally, we implement joint learning by designing a joint loss of four modules in this article, and we plan to develop different joint strategies to strengthen the interaction between each subtask.
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Figure 1. Examples of three overlapping phenomena. 






Figure 1. Examples of three overlapping phenomena.



[image: Electronics 12 04688 g001]







[image: Electronics 12 04688 g002] 





Figure 2. The overall framework of ROPEE. 
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Figure 3. Golden data of test case analysis on CasEE and ROPEE. 
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Table 1. Statistics of FewFC. Each column represents the size of each subset in terms of overlapped triggers, arguments, samples, and events.
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	Trigger Overlap
	Argument Overlap
	Samples
	Event





	Training
	1314
	1541
	7185
	10,277



	Validation
	168
	203
	899
	1281



	Testing
	168
	209
	898
	1332



	All
	1650
	1953
	8982
	12,890










 





Table 2. Model comparative results of EE on four subtasks over FewFC. Highest scores are in bold.
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TI (%)

	
TC (%)

	
AI (%)

	
AC (%)




	
P

	
R

	
F1

	
P

	
R

	
F1

	
P

	
R

	
F1

	
P

	
R

	
F1






	
BERT-softmax

	
89.8

	
79.0

	
84.0

	
80.2

	
61.8

	
69.8

	
74.6

	
62.8

	
68.2

	
72.5

	
60.2

	
65.8




	
BERT-CRF

	
90.8

	
80.8

	
85.5

	
81.7

	
63.6

	
71.5

	
75.1

	
64.3

	
69.3

	
72.9

	
61.8

	
66.9




	
BERT-CRF-joint

	
89.5

	
79.8

	
84.4

	
80.7

	
63.0

	
70.8

	
76.1

	
63.5

	
69.2

	
74.2

	
61.2

	
67.1




	
PLMEE

	
83.7

	
85.8

	
84.7

	
75.6

	
74.5

	
75.1

	
74.3

	
67.3

	
70.6

	
72.5

	
65.5

	
68.8




	
MQAEE

	
89.1

	
85.5

	
87.4

	
79.7

	
76.1

	
77.8

	
70.3

	
68.3

	
69.3

	
68.2

	
66.5

	
67.3




	
CasEE

	
89.4

	
87.7

	
88.6

	
77.9

	
78.5

	
78.2

	
72.8

	
73.1

	
72.9

	
71.3

	
71.5

	
71.4




	
ROPEE

	
88.8

	
88.2

	
88.5

	
74.7

	
82.8

	
78.6

	
69.5

	
78.6

	
73.8

	
67.6

	
76.9

	
72.0











 





Table 3. Comparative results of ROPEE and CasEE in two overlapping situations. Highest scores are in bold.
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TI (%)

	
TC (%)

	
AI (%)

	
AC (%)






	
Trigger Overlap

	
CasEE

	
92.5

	
82.8

	
75.5

	
74.2




	
ROPEE

	
92.0

	
82.4

	
76.4

	
75.4




	
Argument Overlap

	
CasEE

	
88.6

	
78.2

	
74.2

	
72.8




	
ROPEE

	
89.2

	
78.7

	
74.9

	
73.4











 





Table 4. Comparative results on F1 using different role classifier strategies. Highest scores are in bold.
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	TI (%)
	TC (%)
	AI (%)
	AC (%)





	type_emb
	88.6
	78.2
	72.9
	71.4



	ROP-text_emb
	88.2
	78.4
	73.4
	71.7



	ROPEE
	88.5
	78.6
	73.8
	72.0










 





Table 5. Comparative results on F1 using different training strategies. Highest scores are in bold.
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	TI (%)
	TC (%)
	AI (%)
	AC (%)





	Role-1
	88.1
	77.6
	71.7
	69.4



	Role-2
	88.5
	77.7
	72.7
	70.6



	Role-3
	88.4
	78.1
	73.5
	71.7



	Role-4
	87.8
	76.6
	72.0
	70.3



	Role-5
	88.2
	77.2
	72.4
	70.7



	ROPEE
	88.5
	78.6
	73.8
	72.0










 





Table 6. Comparative results on F1 with and without trigger annotation.
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P (%)

	
R (%)

	
F1 (%)






	
ROPEE

	
AI

	
69.5

	
78.6

	
73.8




	
AC

	
67.6

	
76.9

	
72.0




	
20 epoch w/o trigger

	
AI

	
71.4

	
72.6

	
72.0




	
AC

	
70.0

	
71.0

	
70.5




	
50 epoch w/o trigger

	
AI

	
70.9

	
73.5

	
72.2




	
AC

	
69.3

	
71.7

	
70.5
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